/* * Copyright (C) 2010 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. * */ #include <android_native_app_glue.h> #include <errno.h> #include <jni.h> #include <sys/time.h> #include <time.h> #include <android/log.h> #include <stdio.h> #include <stdlib.h> #include <math.h> #define LOG_TAG "libplasma" #define LOGI(...) __android_log_print(ANDROID_LOG_INFO,LOG_TAG,__VA_ARGS__) #define LOGW(...) __android_log_print(ANDROID_LOG_WARN,LOG_TAG,__VA_ARGS__) #define LOGE(...) __android_log_print(ANDROID_LOG_ERROR,LOG_TAG,__VA_ARGS__) /* Set to 1 to enable debug log traces. */ #define DEBUG 0 /* Set to 1 to optimize memory stores when generating plasma. */ #define OPTIMIZE_WRITES 1 /* Return current time in milliseconds */ static double now_ms(void) { struct timeval tv; gettimeofday(&tv, NULL); return tv.tv_sec*1000. + tv.tv_usec/1000.; } /* We're going to perform computations for every pixel of the target * bitmap. floating-point operations are very slow on ARMv5, and not * too bad on ARMv7 with the exception of trigonometric functions. * * For better performance on all platforms, we're going to use fixed-point * arithmetic and all kinds of tricks */ typedef int32_t Fixed; #define FIXED_BITS 16 #define FIXED_ONE (1 << FIXED_BITS) #define FIXED_AVERAGE(x,y) (((x) + (y)) >> 1) #define FIXED_FROM_INT(x) ((x) << FIXED_BITS) #define FIXED_TO_INT(x) ((x) >> FIXED_BITS) #define FIXED_FROM_FLOAT(x) ((Fixed)((x)*FIXED_ONE)) #define FIXED_TO_FLOAT(x) ((x)/(1.*FIXED_ONE)) #define FIXED_MUL(x,y) (((int64_t)(x) * (y)) >> FIXED_BITS) #define FIXED_DIV(x,y) (((int64_t)(x) * FIXED_ONE) / (y)) #define FIXED_DIV2(x) ((x) >> 1) #define FIXED_AVERAGE(x,y) (((x) + (y)) >> 1) #define FIXED_FRAC(x) ((x) & ((1 << FIXED_BITS)-1)) #define FIXED_TRUNC(x) ((x) & ~((1 << FIXED_BITS)-1)) #define FIXED_FROM_INT_FLOAT(x,f) (Fixed)((x)*(FIXED_ONE*(f))) typedef int32_t Angle; #define ANGLE_BITS 9 #if ANGLE_BITS < 8 # error ANGLE_BITS must be at least 8 #endif #define ANGLE_2PI (1 << ANGLE_BITS) #define ANGLE_PI (1 << (ANGLE_BITS-1)) #define ANGLE_PI2 (1 << (ANGLE_BITS-2)) #define ANGLE_PI4 (1 << (ANGLE_BITS-3)) #define ANGLE_FROM_FLOAT(x) (Angle)((x)*ANGLE_PI/M_PI) #define ANGLE_TO_FLOAT(x) ((x)*M_PI/ANGLE_PI) #if ANGLE_BITS <= FIXED_BITS # define ANGLE_FROM_FIXED(x) (Angle)((x) >> (FIXED_BITS - ANGLE_BITS)) # define ANGLE_TO_FIXED(x) (Fixed)((x) << (FIXED_BITS - ANGLE_BITS)) #else # define ANGLE_FROM_FIXED(x) (Angle)((x) << (ANGLE_BITS - FIXED_BITS)) # define ANGLE_TO_FIXED(x) (Fixed)((x) >> (ANGLE_BITS - FIXED_BITS)) #endif static Fixed angle_sin_tab[ANGLE_2PI+1]; static void init_angles(void) { int nn; for (nn = 0; nn < ANGLE_2PI+1; nn++) { double radians = nn*M_PI/ANGLE_PI; angle_sin_tab[nn] = FIXED_FROM_FLOAT(sin(radians)); } } static __inline__ Fixed angle_sin( Angle a ) { return angle_sin_tab[(uint32_t)a & (ANGLE_2PI-1)]; } static __inline__ Fixed angle_cos( Angle a ) { return angle_sin(a + ANGLE_PI2); } static __inline__ Fixed fixed_sin( Fixed f ) { return angle_sin(ANGLE_FROM_FIXED(f)); } static __inline__ Fixed fixed_cos( Fixed f ) { return angle_cos(ANGLE_FROM_FIXED(f)); } /* Color palette used for rendering the plasma */ #define PALETTE_BITS 8 #define PALETTE_SIZE (1 << PALETTE_BITS) #if PALETTE_BITS > FIXED_BITS # error PALETTE_BITS must be smaller than FIXED_BITS #endif static uint16_t palette[PALETTE_SIZE]; static uint16_t make565(int red, int green, int blue) { return (uint16_t)( ((red << 8) & 0xf800) | ((green << 2) & 0x03e0) | ((blue >> 3) & 0x001f) ); } static void init_palette(void) { int nn, mm = 0; /* fun with colors */ for (nn = 0; nn < PALETTE_SIZE/4; nn++) { int jj = (nn-mm)*4*255/PALETTE_SIZE; palette[nn] = make565(255, jj, 255-jj); } for ( mm = nn; nn < PALETTE_SIZE/2; nn++ ) { int jj = (nn-mm)*4*255/PALETTE_SIZE; palette[nn] = make565(255-jj, 255, jj); } for ( mm = nn; nn < PALETTE_SIZE*3/4; nn++ ) { int jj = (nn-mm)*4*255/PALETTE_SIZE; palette[nn] = make565(0, 255-jj, 255); } for ( mm = nn; nn < PALETTE_SIZE; nn++ ) { int jj = (nn-mm)*4*255/PALETTE_SIZE; palette[nn] = make565(jj, 0, 255); } } static __inline__ uint16_t palette_from_fixed( Fixed x ) { if (x < 0) x = -x; if (x >= FIXED_ONE) x = FIXED_ONE-1; int idx = FIXED_FRAC(x) >> (FIXED_BITS - PALETTE_BITS); return palette[idx & (PALETTE_SIZE-1)]; } /* Angles expressed as fixed point radians */ static void init_tables(void) { init_palette(); init_angles(); } static void fill_plasma(ANativeWindow_Buffer* buffer, double t) { Fixed ft = FIXED_FROM_FLOAT(t/1000.); Fixed yt1 = FIXED_FROM_FLOAT(t/1230.); Fixed yt2 = yt1; Fixed xt10 = FIXED_FROM_FLOAT(t/3000.); Fixed xt20 = xt10; #define YT1_INCR FIXED_FROM_FLOAT(1/100.) #define YT2_INCR FIXED_FROM_FLOAT(1/163.) void* pixels = buffer->bits; //LOGI("width=%d height=%d stride=%d format=%d", buffer->width, buffer->height, // buffer->stride, buffer->format); int yy; for (yy = 0; yy < buffer->height; yy++) { uint16_t* line = (uint16_t*)pixels; Fixed base = fixed_sin(yt1) + fixed_sin(yt2); Fixed xt1 = xt10; Fixed xt2 = xt20; yt1 += YT1_INCR; yt2 += YT2_INCR; #define XT1_INCR FIXED_FROM_FLOAT(1/173.) #define XT2_INCR FIXED_FROM_FLOAT(1/242.) #if OPTIMIZE_WRITES /* optimize memory writes by generating one aligned 32-bit store * for every pair of pixels. */ uint16_t* line_end = line + buffer->width; if (line < line_end) { if (((uint32_t)line & 3) != 0) { Fixed ii = base + fixed_sin(xt1) + fixed_sin(xt2); xt1 += XT1_INCR; xt2 += XT2_INCR; line[0] = palette_from_fixed(ii >> 2); line++; } while (line + 2 <= line_end) { Fixed i1 = base + fixed_sin(xt1) + fixed_sin(xt2); xt1 += XT1_INCR; xt2 += XT2_INCR; Fixed i2 = base + fixed_sin(xt1) + fixed_sin(xt2); xt1 += XT1_INCR; xt2 += XT2_INCR; uint32_t pixel = ((uint32_t)palette_from_fixed(i1 >> 2) << 16) | (uint32_t)palette_from_fixed(i2 >> 2); ((uint32_t*)line)[0] = pixel; line += 2; } if (line < line_end) { Fixed ii = base + fixed_sin(xt1) + fixed_sin(xt2); line[0] = palette_from_fixed(ii >> 2); line++; } } #else /* !OPTIMIZE_WRITES */ int xx; for (xx = 0; xx < buffer->width; xx++) { Fixed ii = base + fixed_sin(xt1) + fixed_sin(xt2); xt1 += XT1_INCR; xt2 += XT2_INCR; line[xx] = palette_from_fixed(ii / 4); } #endif /* !OPTIMIZE_WRITES */ // go to next line pixels = (uint16_t*)pixels + buffer->stride; } } /* simple stats management */ typedef struct { double renderTime; double frameTime; } FrameStats; #define MAX_FRAME_STATS 200 #define MAX_PERIOD_MS 1500 typedef struct { double firstTime; double lastTime; double frameTime; int firstFrame; int numFrames; FrameStats frames[ MAX_FRAME_STATS ]; } Stats; static void stats_init( Stats* s ) { s->lastTime = now_ms(); s->firstTime = 0.; s->firstFrame = 0; s->numFrames = 0; } static void stats_startFrame( Stats* s ) { s->frameTime = now_ms(); } static void stats_endFrame( Stats* s ) { double now = now_ms(); double renderTime = now - s->frameTime; double frameTime = now - s->lastTime; int nn; if (now - s->firstTime >= MAX_PERIOD_MS) { if (s->numFrames > 0) { double minRender, maxRender, avgRender; double minFrame, maxFrame, avgFrame; int count; nn = s->firstFrame; minRender = maxRender = avgRender = s->frames[nn].renderTime; minFrame = maxFrame = avgFrame = s->frames[nn].frameTime; for (count = s->numFrames; count > 0; count-- ) { nn += 1; if (nn >= MAX_FRAME_STATS) nn -= MAX_FRAME_STATS; double render = s->frames[nn].renderTime; if (render < minRender) minRender = render; if (render > maxRender) maxRender = render; double frame = s->frames[nn].frameTime; if (frame < minFrame) minFrame = frame; if (frame > maxFrame) maxFrame = frame; avgRender += render; avgFrame += frame; } avgRender /= s->numFrames; avgFrame /= s->numFrames; LOGI("frame/s (avg,min,max) = (%.1f,%.1f,%.1f) " "render time ms (avg,min,max) = (%.1f,%.1f,%.1f)\n", 1000./avgFrame, 1000./maxFrame, 1000./minFrame, avgRender, minRender, maxRender); } s->numFrames = 0; s->firstFrame = 0; s->firstTime = now; } nn = s->firstFrame + s->numFrames; if (nn >= MAX_FRAME_STATS) nn -= MAX_FRAME_STATS; s->frames[nn].renderTime = renderTime; s->frames[nn].frameTime = frameTime; if (s->numFrames < MAX_FRAME_STATS) { s->numFrames += 1; } else { s->firstFrame += 1; if (s->firstFrame >= MAX_FRAME_STATS) s->firstFrame -= MAX_FRAME_STATS; } s->lastTime = now; } // ---------------------------------------------------------------------- struct engine { struct android_app* app; Stats stats; int animating; }; static void engine_draw_frame(struct engine* engine) { if (engine->app->window == NULL) { // No window. return; } ANativeWindow_Buffer buffer; if (ANativeWindow_lock(engine->app->window, &buffer, NULL) < 0) { LOGW("Unable to lock window buffer"); return; } stats_startFrame(&engine->stats); struct timespec t; t.tv_sec = t.tv_nsec = 0; clock_gettime(CLOCK_MONOTONIC, &t); int64_t time_ms = (((int64_t)t.tv_sec)*1000000000LL + t.tv_nsec)/1000000; /* Now fill the values with a nice little plasma */ fill_plasma(&buffer, time_ms); ANativeWindow_unlockAndPost(engine->app->window); stats_endFrame(&engine->stats); } static int engine_term_display(struct engine* engine) { engine->animating = 0; } static int32_t engine_handle_input(struct android_app* app, AInputEvent* event) { struct engine* engine = (struct engine*)app->userData; if (AInputEvent_getType(event) == AINPUT_EVENT_TYPE_MOTION) { engine->animating = 1; return 1; } else if (AInputEvent_getType(event) == AINPUT_EVENT_TYPE_KEY) { LOGI("Key event: action=%d keyCode=%d metaState=0x%x", AKeyEvent_getAction(event), AKeyEvent_getKeyCode(event), AKeyEvent_getMetaState(event)); } return 0; } static void engine_handle_cmd(struct android_app* app, int32_t cmd) { struct engine* engine = (struct engine*)app->userData; switch (cmd) { case APP_CMD_INIT_WINDOW: if (engine->app->window != NULL) { engine_draw_frame(engine); } break; case APP_CMD_TERM_WINDOW: engine_term_display(engine); break; case APP_CMD_LOST_FOCUS: engine->animating = 0; engine_draw_frame(engine); break; } } void android_main(struct android_app* state) { static int init; struct engine engine; // Make sure glue isn't stripped. app_dummy(); memset(&engine, 0, sizeof(engine)); state->userData = &engine; state->onAppCmd = engine_handle_cmd; state->onInputEvent = engine_handle_input; engine.app = state; if (!init) { init_tables(); init = 1; } stats_init(&engine.stats); // loop waiting for stuff to do. while (1) { // Read all pending events. int ident; int events; struct android_poll_source* source; // If not animating, we will block forever waiting for events. // If animating, we loop until all events are read, then continue // to draw the next frame of animation. while ((ident=ALooper_pollAll(engine.animating ? 0 : -1, NULL, &events, (void**)&source)) >= 0) { // Process this event. if (source != NULL) { source->process(state, source); } // Check if we are exiting. if (state->destroyRequested != 0) { LOGI("Engine thread destroy requested!"); engine_term_display(&engine); return; } } if (engine.animating) { engine_draw_frame(&engine); } } }