// Copyright (c) 2012 The Chromium Authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. /** * @fileoverview Imports text files in the Linux event trace format into the * timeline model. This format is output both by sched_trace and by Linux's perf * tool. * * This importer assumes the events arrive as a string. The unit tests provide * examples of the trace format. * * Linux scheduler traces use a definition for 'pid' that is different than * tracing uses. Whereas tracing uses pid to identify a specific process, a pid * in a linux trace refers to a specific thread within a process. Within this * file, we the definition used in Linux traces, as it improves the importing * code's readability. */ base.require('timeline_model'); base.require('timeline_color_scheme'); base.require('linux_perf_bus_parser'); base.require('linux_perf_clock_parser'); base.require('linux_perf_cpufreq_parser'); base.require('linux_perf_drm_parser'); base.require('linux_perf_exynos_parser'); base.require('linux_perf_gesture_parser'); base.require('linux_perf_i915_parser'); base.require('linux_perf_mali_parser'); base.require('linux_perf_power_parser'); base.require('linux_perf_sched_parser'); base.require('linux_perf_workqueue_parser'); base.require('linux_perf_android_parser'); base.exportTo('tracing', function() { /** * Represents the scheduling state for a single thread. * @constructor */ function CpuState(cpu) { this.cpu = cpu; } CpuState.prototype = { __proto__: Object.prototype, /** * Switches the active pid on this Cpu. If necessary, add a TimelineSlice * to the cpu representing the time spent on that Cpu since the last call to * switchRunningLinuxPid. */ switchRunningLinuxPid: function(importer, prevState, ts, pid, comm, prio) { // Generate a slice if the last active pid was not the idle task if (this.lastActivePid !== undefined && this.lastActivePid != 0) { var duration = ts - this.lastActiveTs; var thread = importer.threadsByLinuxPid[this.lastActivePid]; if (thread) name = thread.userFriendlyName; else name = this.lastActiveComm; var slice = new tracing.TimelineSlice('', name, tracing.getStringColorId(name), this.lastActiveTs, { comm: this.lastActiveComm, tid: this.lastActivePid, prio: this.lastActivePrio, stateWhenDescheduled: prevState }, duration); this.cpu.slices.push(slice); } this.lastActiveTs = ts; this.lastActivePid = pid; this.lastActiveComm = comm; this.lastActivePrio = prio; } }; /** * Imports linux perf events into a specified model. * @constructor */ function LinuxPerfImporter(model, events) { this.importPriority = 2; this.model_ = model; this.events_ = events; this.clockSyncRecords_ = []; this.cpuStates_ = {}; this.kernelThreadStates_ = {}; this.buildMapFromLinuxPidsToTimelineThreads(); this.lineNumber = -1; this.pseudoThreadCounter = 1; this.parsers_ = []; this.eventHandlers_ = {}; } TestExports = {}; // Matches the default trace record in 3.2 and later (includes irq-info): // <idle>-0 [001] d... 1.23: sched_switch var lineREWithIRQInfo = new RegExp( '^\\s*(.+?)\\s+\\[(\\d+)\\]' + '\\s+[dX.][N.][Hhs.][0-9a-f.]' + '\\s+(\\d+\\.\\d+):\\s+(\\S+):\\s(.*)$'); TestExports.lineREWithIRQInfo = lineREWithIRQInfo; // Matches the default trace record pre-3.2: // <idle>-0 [001] 1.23: sched_switch var lineRE = /^\s*(.+?)\s+\[(\d+)\]\s*(\d+\.\d+):\s+(\S+):\s(.*)$/; TestExports.lineRE = lineRE; // Matches the trace_event_clock_sync record // 0: trace_event_clock_sync: parent_ts=19581477508 var traceEventClockSyncRE = /trace_event_clock_sync: parent_ts=(\d+\.?\d*)/; TestExports.traceEventClockSyncRE = traceEventClockSyncRE; // Some kernel trace events are manually classified in slices and // hand-assigned a pseudo PID. var pseudoKernelPID = 0; /** * Deduce the format of trace data. Linix kernels prior to 3.3 used * one format (by default); 3.4 and later used another. * * @return {string} the regular expression for parsing data when * the format is recognized; otherwise null. */ function autoDetectLineRE(line) { if (lineREWithIRQInfo.test(line)) return lineREWithIRQInfo; if (lineRE.test(line)) return lineRE; return null; }; TestExports.autoDetectLineRE = autoDetectLineRE; /** * Guesses whether the provided events is a Linux perf string. * Looks for the magic string "# tracer" at the start of the file, * or the typical task-pid-cpu-timestamp-function sequence of a typical * trace's body. * * @return {boolean} True when events is a linux perf array. */ LinuxPerfImporter.canImport = function(events) { if (!(typeof(events) === 'string' || events instanceof String)) return false; if (/^# tracer:/.test(events)) return true; var m = /^(.+)\n/.exec(events); if (m) events = m[1]; if (autoDetectLineRE(events)) return true; return false; }; LinuxPerfImporter.prototype = { __proto__: Object.prototype, /** * Precomputes a lookup table from linux pids back to existing * TimelineThreads. This is used during importing to add information to each * timeline thread about whether it was running, descheduled, sleeping, et * cetera. */ buildMapFromLinuxPidsToTimelineThreads: function() { this.threadsByLinuxPid = {}; this.model_.getAllThreads().forEach( function(thread) { this.threadsByLinuxPid[thread.tid] = thread; }.bind(this)); }, /** * @return {CpuState} A CpuState corresponding to the given cpuNumber. */ getOrCreateCpuState: function(cpuNumber) { if (!this.cpuStates_[cpuNumber]) { var cpu = this.model_.getOrCreateCpu(cpuNumber); this.cpuStates_[cpuNumber] = new CpuState(cpu); } return this.cpuStates_[cpuNumber]; }, /** * @return {TimelinThread} A thread corresponding to the kernelThreadName. */ getOrCreateKernelThread: function(kernelThreadName, opt_pid, opt_tid) { if (!this.kernelThreadStates_[kernelThreadName]) { var pid = opt_pid; if (pid == undefined) { pid = /.+-(\d+)/.exec(kernelThreadName)[1]; pid = parseInt(pid, 10); } var tid = opt_tid; if (tid == undefined) tid = pid; var thread = this.model_.getOrCreateProcess(pid).getOrCreateThread(tid); thread.name = kernelThreadName; this.kernelThreadStates_[kernelThreadName] = { pid: pid, thread: thread, openSlice: undefined, openSliceTS: undefined }; this.threadsByLinuxPid[pid] = thread; } return this.kernelThreadStates_[kernelThreadName]; }, /** * @return {TimelinThread} A pseudo thread corresponding to the * threadName. Pseudo threads are for events that we want to break * out to a separate timeline but would not otherwise happen. * These threads are assigned to pseudoKernelPID and given a * unique (incrementing) TID. */ getOrCreatePseudoThread: function(threadName) { var thread = this.kernelThreadStates_[threadName]; if (!thread) { thread = this.getOrCreateKernelThread(threadName, pseudoKernelPID, this.pseudoThreadCounter); this.pseudoThreadCounter++; } return thread; }, /** * Imports the data in this.events_ into model_. */ importEvents: function(isSecondaryImport) { this.createParsers(); this.importCpuData(); if (!this.alignClocks(isSecondaryImport)) return; this.buildMapFromLinuxPidsToTimelineThreads(); this.buildPerThreadCpuSlicesFromCpuState(); }, /** * Called by the TimelineModel after all other importers have imported their * events. */ finalizeImport: function() { }, /** * Builds the cpuSlices array on each thread based on our knowledge of what * each Cpu is doing. This is done only for TimelineThreads that are * already in the model, on the assumption that not having any traced data * on a thread means that it is not of interest to the user. */ buildPerThreadCpuSlicesFromCpuState: function() { // Push the cpu slices to the threads that they run on. for (var cpuNumber in this.cpuStates_) { var cpuState = this.cpuStates_[cpuNumber]; var cpu = cpuState.cpu; for (var i = 0; i < cpu.slices.length; i++) { var slice = cpu.slices[i]; var thread = this.threadsByLinuxPid[slice.args.tid]; if (!thread) continue; if (!thread.tempCpuSlices) thread.tempCpuSlices = []; thread.tempCpuSlices.push(slice); } } // Create slices for when the thread is not running. var runningId = tracing.getColorIdByName('running'); var runnableId = tracing.getColorIdByName('runnable'); var sleepingId = tracing.getColorIdByName('sleeping'); var ioWaitId = tracing.getColorIdByName('iowait'); this.model_.getAllThreads().forEach(function(thread) { if (!thread.tempCpuSlices) return; var origSlices = thread.tempCpuSlices; delete thread.tempCpuSlices; origSlices.sort(function(x, y) { return x.start - y.start; }); // Walk the slice list and put slices between each original slice // to show when the thread isn't running var slices = []; if (origSlices.length) { var slice = origSlices[0]; slices.push(new tracing.TimelineSlice('', 'Running', runningId, slice.start, {}, slice.duration)); } for (var i = 1; i < origSlices.length; i++) { var prevSlice = origSlices[i - 1]; var nextSlice = origSlices[i]; var midDuration = nextSlice.start - prevSlice.end; if (prevSlice.args.stateWhenDescheduled == 'S') { slices.push(new tracing.TimelineSlice('', 'Sleeping', sleepingId, prevSlice.end, {}, midDuration)); } else if (prevSlice.args.stateWhenDescheduled == 'R' || prevSlice.args.stateWhenDescheduled == 'R+') { slices.push(new tracing.TimelineSlice('', 'Runnable', runnableId, prevSlice.end, {}, midDuration)); } else if (prevSlice.args.stateWhenDescheduled == 'D') { slices.push(new tracing.TimelineSlice( '', 'Uninterruptible Sleep', ioWaitId, prevSlice.end, {}, midDuration)); } else if (prevSlice.args.stateWhenDescheduled == 'T') { slices.push(new tracing.TimelineSlice('', '__TASK_STOPPED', ioWaitId, prevSlice.end, {}, midDuration)); } else if (prevSlice.args.stateWhenDescheduled == 't') { slices.push(new tracing.TimelineSlice('', 'debug', ioWaitId, prevSlice.end, {}, midDuration)); } else if (prevSlice.args.stateWhenDescheduled == 'Z') { slices.push(new tracing.TimelineSlice('', 'Zombie', ioWaitId, prevSlice.end, {}, midDuration)); } else if (prevSlice.args.stateWhenDescheduled == 'X') { slices.push(new tracing.TimelineSlice('', 'Exit Dead', ioWaitId, prevSlice.end, {}, midDuration)); } else if (prevSlice.args.stateWhenDescheduled == 'x') { slices.push(new tracing.TimelineSlice('', 'Task Dead', ioWaitId, prevSlice.end, {}, midDuration)); } else if (prevSlice.args.stateWhenDescheduled == 'W') { slices.push(new tracing.TimelineSlice('', 'WakeKill', ioWaitId, prevSlice.end, {}, midDuration)); } else if (prevSlice.args.stateWhenDescheduled == 'D|W') { slices.push(new tracing.TimelineSlice( '', 'Uninterruptable Sleep | WakeKill', ioWaitId, prevSlice.end, {}, midDuration)); } else { throw new Error('Unrecognized state: ') + prevSlice.args.stateWhenDescheduled; } slices.push(new tracing.TimelineSlice('', 'Running', runningId, nextSlice.start, {}, nextSlice.duration)); } thread.cpuSlices = slices; }); }, /** * Walks the slices stored on this.cpuStates_ and adjusts their timestamps * based on any alignment metadata we discovered. */ alignClocks: function(isSecondaryImport) { if (this.clockSyncRecords_.length == 0) { // If this is a secondary import, and no clock syncing records were // found, then abort the import. Otherwise, just skip clock alignment. if (!isSecondaryImport) return true; // Remove the newly imported CPU slices from the model. this.abortImport(); return false; } // Shift all the slice times based on the sync record. var sync = this.clockSyncRecords_[0]; // NB: parentTS of zero denotes no times-shift; this is // used when user and kernel event clocks are identical. if (sync.parentTS == 0 || sync.parentTS == sync.perfTS) return true; var timeShift = sync.parentTS - sync.perfTS; for (var cpuNumber in this.cpuStates_) { var cpuState = this.cpuStates_[cpuNumber]; var cpu = cpuState.cpu; for (var i = 0; i < cpu.slices.length; i++) { var slice = cpu.slices[i]; slice.start = slice.start + timeShift; slice.duration = slice.duration; } for (var counterName in cpu.counters) { var counter = cpu.counters[counterName]; for (var sI = 0; sI < counter.timestamps.length; sI++) counter.timestamps[sI] = (counter.timestamps[sI] + timeShift); } } for (var kernelThreadName in this.kernelThreadStates_) { var kthread = this.kernelThreadStates_[kernelThreadName]; var thread = kthread.thread; thread.shiftTimestampsForward(timeShift); } return true; }, /** * Removes any data that has been added to the model because of an error * detected during the import. */ abortImport: function() { if (this.pushedEventsToThreads) throw new Error('Cannot abort, have alrady pushedCpuDataToThreads.'); for (var cpuNumber in this.cpuStates_) delete this.model_.cpus[cpuNumber]; for (var kernelThreadName in this.kernelThreadStates_) { var kthread = this.kernelThreadStates_[kernelThreadName]; var thread = kthread.thread; var process = thread.parent; delete process.threads[thread.tid]; delete this.model_.processes[process.pid]; } this.model_.importErrors.push( 'Cannot import kernel trace without a clock sync.'); }, /** * Creates an instance of each registered linux perf event parser. * This allows the parsers to register handlers for the events they * understand. We also register our own special handlers (for the * timestamp synchronization markers). */ createParsers: function() { // Instantiate the parsers; this will register handlers for known events var parserConstructors = tracing.LinuxPerfParser.getSubtypeConstructors(); for (var i = 0; i < parserConstructors.length; ++i) { var parserConstructor = parserConstructors[i]; this.parsers_.push(new parserConstructor(this)); } this.registerEventHandler('tracing_mark_write:trace_event_clock_sync', LinuxPerfImporter.prototype.traceClockSyncEvent.bind(this)); this.registerEventHandler('tracing_mark_write', LinuxPerfImporter.prototype.traceMarkingWriteEvent.bind(this)); // NB: old-style trace markers; deprecated this.registerEventHandler('0:trace_event_clock_sync', LinuxPerfImporter.prototype.traceClockSyncEvent.bind(this)); this.registerEventHandler('0', LinuxPerfImporter.prototype.traceMarkingWriteEvent.bind(this)); }, /** * Registers a linux perf event parser used by importCpuData. */ registerEventHandler: function(eventName, handler) { // TODO(sleffler) how to handle conflicts? this.eventHandlers_[eventName] = handler; }, /** * Records the fact that a pid has become runnable. This data will * eventually get used to derive each thread's cpuSlices array. */ markPidRunnable: function(ts, pid, comm, prio) { // TODO(nduca): implement this functionality. }, importError: function(message) { this.model_.importErrors.push('Line ' + (this.lineNumber + 1) + ': ' + message); }, /** * Processes a trace_event_clock_sync event. */ traceClockSyncEvent: function(eventName, cpuNumber, pid, ts, eventBase) { var event = /parent_ts=(\d+\.?\d*)/.exec(eventBase[2]); if (!event) return false; this.clockSyncRecords_.push({ perfTS: ts, parentTS: event[1] * 1000 }); return true; }, /** * Processes a trace_marking_write event. */ traceMarkingWriteEvent: function(eventName, cpuNumber, pid, ts, eventBase, threadName) { var event = /^\s*(\w+):\s*(.*)$/.exec(eventBase[5]); if (!event) { // Check if the event matches events traced by the Android framework if (eventBase[5].lastIndexOf('B|', 0) === 0 || eventBase[5] === 'E' || eventBase[5].lastIndexOf('C|', 0) === 0) event = [eventBase[5], 'android', eventBase[5]]; else return false; } var writeEventName = eventName + ':' + event[1]; var threadName = (/(.+)-\d+/.exec(eventBase[1]))[1]; var handler = this.eventHandlers_[writeEventName]; if (!handler) { this.importError('Unknown trace_marking_write event ' + writeEventName); return true; } return handler(writeEventName, cpuNumber, pid, ts, event, threadName); }, /** * Walks the this.events_ structure and creates TimelineCpu objects. */ importCpuData: function() { this.lines_ = this.events_.split('\n'); var lineRE = null; for (this.lineNumber = 0; this.lineNumber < this.lines_.length; ++this.lineNumber) { var line = this.lines_[this.lineNumber]; if (line.length == 0 || /^#/.test(line)) continue; if (lineRE == null) { lineRE = autoDetectLineRE(line); if (lineRE == null) { this.importError('Cannot parse line: ' + line); continue; } } var eventBase = lineRE.exec(line); if (!eventBase) { this.importError('Unrecognized line: ' + line); continue; } var pid = parseInt((/.+-(\d+)/.exec(eventBase[1]))[1]); var cpuNumber = parseInt(eventBase[2]); var ts = parseFloat(eventBase[3]) * 1000; var eventName = eventBase[4]; var handler = this.eventHandlers_[eventName]; if (!handler) { this.importError('Unknown event ' + eventName + ' (' + line + ')'); continue; } if (!handler(eventName, cpuNumber, pid, ts, eventBase)) this.importError('Malformed ' + eventName + ' event (' + line + ')'); } } }; tracing.TimelineModel.registerImporter(LinuxPerfImporter); return { LinuxPerfImporter: LinuxPerfImporter, _LinuxPerfImporterTestExports: TestExports }; });