//===--- SemaStmtAsm.cpp - Semantic Analysis for Asm Statements -----------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file implements semantic analysis for inline asm statements. // //===----------------------------------------------------------------------===// #include "clang/Sema/SemaInternal.h" #include "clang/Sema/Scope.h" #include "clang/Sema/ScopeInfo.h" #include "clang/Sema/Initialization.h" #include "clang/Sema/Lookup.h" #include "clang/AST/TypeLoc.h" #include "clang/Lex/Preprocessor.h" #include "clang/Basic/TargetInfo.h" #include "llvm/ADT/ArrayRef.h" #include "llvm/ADT/BitVector.h" #include "llvm/ADT/SmallString.h" #include "llvm/MC/MCAsmInfo.h" #include "llvm/MC/MCContext.h" #include "llvm/MC/MCExpr.h" #include "llvm/MC/MCInst.h" #include "llvm/MC/MCInstPrinter.h" #include "llvm/MC/MCInstrInfo.h" #include "llvm/MC/MCObjectFileInfo.h" #include "llvm/MC/MCRegisterInfo.h" #include "llvm/MC/MCStreamer.h" #include "llvm/MC/MCSubtargetInfo.h" #include "llvm/MC/MCSymbol.h" #include "llvm/MC/MCTargetAsmParser.h" #include "llvm/MC/MCParser/MCAsmLexer.h" #include "llvm/MC/MCParser/MCAsmParser.h" #include "llvm/Support/SourceMgr.h" #include "llvm/Support/TargetRegistry.h" #include "llvm/Support/TargetSelect.h" using namespace clang; using namespace sema; /// CheckAsmLValue - GNU C has an extremely ugly extension whereby they silently /// ignore "noop" casts in places where an lvalue is required by an inline asm. /// We emulate this behavior when -fheinous-gnu-extensions is specified, but /// provide a strong guidance to not use it. /// /// This method checks to see if the argument is an acceptable l-value and /// returns false if it is a case we can handle. static bool CheckAsmLValue(const Expr *E, Sema &S) { // Type dependent expressions will be checked during instantiation. if (E->isTypeDependent()) return false; if (E->isLValue()) return false; // Cool, this is an lvalue. // Okay, this is not an lvalue, but perhaps it is the result of a cast that we // are supposed to allow. const Expr *E2 = E->IgnoreParenNoopCasts(S.Context); if (E != E2 && E2->isLValue()) { if (!S.getLangOpts().HeinousExtensions) S.Diag(E2->getLocStart(), diag::err_invalid_asm_cast_lvalue) << E->getSourceRange(); else S.Diag(E2->getLocStart(), diag::warn_invalid_asm_cast_lvalue) << E->getSourceRange(); // Accept, even if we emitted an error diagnostic. return false; } // None of the above, just randomly invalid non-lvalue. return true; } /// isOperandMentioned - Return true if the specified operand # is mentioned /// anywhere in the decomposed asm string. static bool isOperandMentioned(unsigned OpNo, ArrayRef<GCCAsmStmt::AsmStringPiece> AsmStrPieces) { for (unsigned p = 0, e = AsmStrPieces.size(); p != e; ++p) { const GCCAsmStmt::AsmStringPiece &Piece = AsmStrPieces[p]; if (!Piece.isOperand()) continue; // If this is a reference to the input and if the input was the smaller // one, then we have to reject this asm. if (Piece.getOperandNo() == OpNo) return true; } return false; } StmtResult Sema::ActOnGCCAsmStmt(SourceLocation AsmLoc, bool IsSimple, bool IsVolatile, unsigned NumOutputs, unsigned NumInputs, IdentifierInfo **Names, MultiExprArg constraints, MultiExprArg exprs, Expr *asmString, MultiExprArg clobbers, SourceLocation RParenLoc) { unsigned NumClobbers = clobbers.size(); StringLiteral **Constraints = reinterpret_cast<StringLiteral**>(constraints.data()); Expr **Exprs = exprs.data(); StringLiteral *AsmString = cast<StringLiteral>(asmString); StringLiteral **Clobbers = reinterpret_cast<StringLiteral**>(clobbers.data()); SmallVector<TargetInfo::ConstraintInfo, 4> OutputConstraintInfos; // The parser verifies that there is a string literal here. if (!AsmString->isAscii()) return StmtError(Diag(AsmString->getLocStart(),diag::err_asm_wide_character) << AsmString->getSourceRange()); for (unsigned i = 0; i != NumOutputs; i++) { StringLiteral *Literal = Constraints[i]; if (!Literal->isAscii()) return StmtError(Diag(Literal->getLocStart(),diag::err_asm_wide_character) << Literal->getSourceRange()); StringRef OutputName; if (Names[i]) OutputName = Names[i]->getName(); TargetInfo::ConstraintInfo Info(Literal->getString(), OutputName); if (!Context.getTargetInfo().validateOutputConstraint(Info)) return StmtError(Diag(Literal->getLocStart(), diag::err_asm_invalid_output_constraint) << Info.getConstraintStr()); // Check that the output exprs are valid lvalues. Expr *OutputExpr = Exprs[i]; if (CheckAsmLValue(OutputExpr, *this)) { return StmtError(Diag(OutputExpr->getLocStart(), diag::err_asm_invalid_lvalue_in_output) << OutputExpr->getSourceRange()); } OutputConstraintInfos.push_back(Info); } SmallVector<TargetInfo::ConstraintInfo, 4> InputConstraintInfos; for (unsigned i = NumOutputs, e = NumOutputs + NumInputs; i != e; i++) { StringLiteral *Literal = Constraints[i]; if (!Literal->isAscii()) return StmtError(Diag(Literal->getLocStart(),diag::err_asm_wide_character) << Literal->getSourceRange()); StringRef InputName; if (Names[i]) InputName = Names[i]->getName(); TargetInfo::ConstraintInfo Info(Literal->getString(), InputName); if (!Context.getTargetInfo().validateInputConstraint(OutputConstraintInfos.data(), NumOutputs, Info)) { return StmtError(Diag(Literal->getLocStart(), diag::err_asm_invalid_input_constraint) << Info.getConstraintStr()); } Expr *InputExpr = Exprs[i]; // Only allow void types for memory constraints. if (Info.allowsMemory() && !Info.allowsRegister()) { if (CheckAsmLValue(InputExpr, *this)) return StmtError(Diag(InputExpr->getLocStart(), diag::err_asm_invalid_lvalue_in_input) << Info.getConstraintStr() << InputExpr->getSourceRange()); } if (Info.allowsRegister()) { if (InputExpr->getType()->isVoidType()) { return StmtError(Diag(InputExpr->getLocStart(), diag::err_asm_invalid_type_in_input) << InputExpr->getType() << Info.getConstraintStr() << InputExpr->getSourceRange()); } } ExprResult Result = DefaultFunctionArrayLvalueConversion(Exprs[i]); if (Result.isInvalid()) return StmtError(); Exprs[i] = Result.take(); InputConstraintInfos.push_back(Info); } // Check that the clobbers are valid. for (unsigned i = 0; i != NumClobbers; i++) { StringLiteral *Literal = Clobbers[i]; if (!Literal->isAscii()) return StmtError(Diag(Literal->getLocStart(),diag::err_asm_wide_character) << Literal->getSourceRange()); StringRef Clobber = Literal->getString(); if (!Context.getTargetInfo().isValidClobber(Clobber)) return StmtError(Diag(Literal->getLocStart(), diag::err_asm_unknown_register_name) << Clobber); } GCCAsmStmt *NS = new (Context) GCCAsmStmt(Context, AsmLoc, IsSimple, IsVolatile, NumOutputs, NumInputs, Names, Constraints, Exprs, AsmString, NumClobbers, Clobbers, RParenLoc); // Validate the asm string, ensuring it makes sense given the operands we // have. SmallVector<GCCAsmStmt::AsmStringPiece, 8> Pieces; unsigned DiagOffs; if (unsigned DiagID = NS->AnalyzeAsmString(Pieces, Context, DiagOffs)) { Diag(getLocationOfStringLiteralByte(AsmString, DiagOffs), DiagID) << AsmString->getSourceRange(); return StmtError(); } // Validate tied input operands for type mismatches. for (unsigned i = 0, e = InputConstraintInfos.size(); i != e; ++i) { TargetInfo::ConstraintInfo &Info = InputConstraintInfos[i]; // If this is a tied constraint, verify that the output and input have // either exactly the same type, or that they are int/ptr operands with the // same size (int/long, int*/long, are ok etc). if (!Info.hasTiedOperand()) continue; unsigned TiedTo = Info.getTiedOperand(); unsigned InputOpNo = i+NumOutputs; Expr *OutputExpr = Exprs[TiedTo]; Expr *InputExpr = Exprs[InputOpNo]; if (OutputExpr->isTypeDependent() || InputExpr->isTypeDependent()) continue; QualType InTy = InputExpr->getType(); QualType OutTy = OutputExpr->getType(); if (Context.hasSameType(InTy, OutTy)) continue; // All types can be tied to themselves. // Decide if the input and output are in the same domain (integer/ptr or // floating point. enum AsmDomain { AD_Int, AD_FP, AD_Other } InputDomain, OutputDomain; if (InTy->isIntegerType() || InTy->isPointerType()) InputDomain = AD_Int; else if (InTy->isRealFloatingType()) InputDomain = AD_FP; else InputDomain = AD_Other; if (OutTy->isIntegerType() || OutTy->isPointerType()) OutputDomain = AD_Int; else if (OutTy->isRealFloatingType()) OutputDomain = AD_FP; else OutputDomain = AD_Other; // They are ok if they are the same size and in the same domain. This // allows tying things like: // void* to int* // void* to int if they are the same size. // double to long double if they are the same size. // uint64_t OutSize = Context.getTypeSize(OutTy); uint64_t InSize = Context.getTypeSize(InTy); if (OutSize == InSize && InputDomain == OutputDomain && InputDomain != AD_Other) continue; // If the smaller input/output operand is not mentioned in the asm string, // then we can promote the smaller one to a larger input and the asm string // won't notice. bool SmallerValueMentioned = false; // If this is a reference to the input and if the input was the smaller // one, then we have to reject this asm. if (isOperandMentioned(InputOpNo, Pieces)) { // This is a use in the asm string of the smaller operand. Since we // codegen this by promoting to a wider value, the asm will get printed // "wrong". SmallerValueMentioned |= InSize < OutSize; } if (isOperandMentioned(TiedTo, Pieces)) { // If this is a reference to the output, and if the output is the larger // value, then it's ok because we'll promote the input to the larger type. SmallerValueMentioned |= OutSize < InSize; } // If the smaller value wasn't mentioned in the asm string, and if the // output was a register, just extend the shorter one to the size of the // larger one. if (!SmallerValueMentioned && InputDomain != AD_Other && OutputConstraintInfos[TiedTo].allowsRegister()) continue; // Either both of the operands were mentioned or the smaller one was // mentioned. One more special case that we'll allow: if the tied input is // integer, unmentioned, and is a constant, then we'll allow truncating it // down to the size of the destination. if (InputDomain == AD_Int && OutputDomain == AD_Int && !isOperandMentioned(InputOpNo, Pieces) && InputExpr->isEvaluatable(Context)) { CastKind castKind = (OutTy->isBooleanType() ? CK_IntegralToBoolean : CK_IntegralCast); InputExpr = ImpCastExprToType(InputExpr, OutTy, castKind).take(); Exprs[InputOpNo] = InputExpr; NS->setInputExpr(i, InputExpr); continue; } Diag(InputExpr->getLocStart(), diag::err_asm_tying_incompatible_types) << InTy << OutTy << OutputExpr->getSourceRange() << InputExpr->getSourceRange(); return StmtError(); } return Owned(NS); } // isMSAsmKeyword - Return true if this is an MS-style inline asm keyword. These // require special handling. static bool isMSAsmKeyword(StringRef Name) { bool Ret = llvm::StringSwitch<bool>(Name) .Cases("EVEN", "ALIGN", true) // Alignment directives. .Cases("LENGTH", "SIZE", "TYPE", true) // Type and variable sizes. .Case("_emit", true) // _emit Pseudoinstruction. .Default(false); return Ret; } // getIdentifierInfo - Given a Name and a range of tokens, find the associated // IdentifierInfo*. static IdentifierInfo *getIdentifierInfo(StringRef Name, ArrayRef<Token> AsmToks, unsigned Begin, unsigned End) { for (unsigned i = Begin; i <= End; ++i) { IdentifierInfo *II = AsmToks[i].getIdentifierInfo(); if (II && II->getName() == Name) return II; } return 0; } // getSpelling - Get the spelling of the AsmTok token. static StringRef getSpelling(Sema &SemaRef, Token AsmTok) { StringRef Asm; SmallString<512> TokenBuf; TokenBuf.resize(512); bool StringInvalid = false; Asm = SemaRef.PP.getSpelling(AsmTok, TokenBuf, &StringInvalid); assert (!StringInvalid && "Expected valid string!"); return Asm; } // Determine if we should bail on this MSAsm instruction. static bool bailOnMSAsm(std::vector<StringRef> Piece) { for (unsigned i = 0, e = Piece.size(); i != e; ++i) if (isMSAsmKeyword(Piece[i])) return true; return false; } // Determine if we should bail on this MSAsm block. static bool bailOnMSAsm(std::vector<std::vector<StringRef> > Pieces) { for (unsigned i = 0, e = Pieces.size(); i != e; ++i) if (bailOnMSAsm(Pieces[i])) return true; return false; } // Determine if this is a simple MSAsm instruction. static bool isSimpleMSAsm(std::vector<StringRef> &Pieces, const TargetInfo &TI) { if (isMSAsmKeyword(Pieces[0])) return false; for (unsigned i = 1, e = Pieces.size(); i != e; ++i) if (!TI.isValidGCCRegisterName(Pieces[i])) return false; return true; } // Determine if this is a simple MSAsm block. static bool isSimpleMSAsm(std::vector<std::vector<StringRef> > Pieces, const TargetInfo &TI) { for (unsigned i = 0, e = Pieces.size(); i != e; ++i) if (!isSimpleMSAsm(Pieces[i], TI)) return false; return true; } // Break the AsmSting into pieces (i.e., mnemonic and operands). static void buildMSAsmPieces(StringRef Asm, std::vector<StringRef> &Pieces) { std::pair<StringRef,StringRef> Split = Asm.split(' '); // Mnemonic Pieces.push_back(Split.first); Asm = Split.second; // Operands while (!Asm.empty()) { Split = Asm.split(", "); Pieces.push_back(Split.first); Asm = Split.second; } } static void buildMSAsmPieces(std::vector<std::string> &AsmStrings, std::vector<std::vector<StringRef> > &Pieces) { for (unsigned i = 0, e = AsmStrings.size(); i != e; ++i) buildMSAsmPieces(AsmStrings[i], Pieces[i]); } // Build the unmodified AsmString used by the IR. Also build the individual // asm instruction(s) and place them in the AsmStrings vector; these are fed // to the AsmParser. static std::string buildMSAsmString(Sema &SemaRef, ArrayRef<Token> AsmToks, std::vector<std::string> &AsmStrings, std::vector<std::pair<unsigned,unsigned> > &AsmTokRanges) { assert (!AsmToks.empty() && "Didn't expect an empty AsmToks!"); SmallString<512> Res; SmallString<512> Asm; unsigned startTok = 0; for (unsigned i = 0, e = AsmToks.size(); i < e; ++i) { bool isNewAsm = i == 0 || AsmToks[i].isAtStartOfLine() || AsmToks[i].is(tok::kw_asm); if (isNewAsm) { if (i) { AsmStrings.push_back(Asm.str()); AsmTokRanges.push_back(std::make_pair(startTok, i-1)); startTok = i; Res += Asm; Asm.clear(); Res += '\n'; } if (AsmToks[i].is(tok::kw_asm)) { i++; // Skip __asm assert (i != e && "Expected another token"); } } if (i && AsmToks[i].hasLeadingSpace() && !isNewAsm) Asm += ' '; Asm += getSpelling(SemaRef, AsmToks[i]); } AsmStrings.push_back(Asm.str()); AsmTokRanges.push_back(std::make_pair(startTok, AsmToks.size()-1)); Res += Asm; return Res.str(); } #define DEF_SIMPLE_MSASM(STR) \ MSAsmStmt *NS = \ new (Context) MSAsmStmt(Context, AsmLoc, LBraceLoc, /*IsSimple*/ true, \ /*IsVolatile*/ true, AsmToks, Inputs, Outputs, \ InputExprs, OutputExprs, STR, Constraints, \ Clobbers, EndLoc); StmtResult Sema::ActOnMSAsmStmt(SourceLocation AsmLoc, SourceLocation LBraceLoc, ArrayRef<Token> AsmToks, SourceLocation EndLoc) { SmallVector<StringRef, 4> Constraints; std::vector<std::string> InputConstraints; std::vector<std::string> OutputConstraints; SmallVector<StringRef, 4> Clobbers; std::set<std::string> ClobberRegs; SmallVector<IdentifierInfo*, 4> Inputs; SmallVector<IdentifierInfo*, 4> Outputs; SmallVector<Expr*, 4> InputExprs; SmallVector<Expr*, 4> OutputExprs; SmallVector<std::string, 4> InputExprNames; SmallVector<std::string, 4> OutputExprNames; // Empty asm statements don't need to instantiate the AsmParser, etc. StringRef EmptyAsmStr; if (AsmToks.empty()) { DEF_SIMPLE_MSASM(EmptyAsmStr); return Owned(NS); } std::vector<std::string> AsmStrings; std::vector<std::pair<unsigned,unsigned> > AsmTokRanges; std::string AsmString = buildMSAsmString(*this, AsmToks, AsmStrings, AsmTokRanges); std::vector<std::vector<StringRef> > Pieces(AsmStrings.size()); buildMSAsmPieces(AsmStrings, Pieces); bool IsSimple = isSimpleMSAsm(Pieces, Context.getTargetInfo()); // AsmParser doesn't fully support these asm statements. if (bailOnMSAsm(Pieces)) { DEF_SIMPLE_MSASM(EmptyAsmStr); return Owned(NS); } // Initialize targets and assembly printers/parsers. llvm::InitializeAllTargetInfos(); llvm::InitializeAllTargetMCs(); llvm::InitializeAllAsmParsers(); // Get the target specific parser. std::string Error; const std::string &TT = Context.getTargetInfo().getTriple().getTriple(); const llvm::Target *TheTarget(llvm::TargetRegistry::lookupTarget(TT, Error)); OwningPtr<llvm::MCAsmInfo> MAI(TheTarget->createMCAsmInfo(TT)); OwningPtr<llvm::MCRegisterInfo> MRI(TheTarget->createMCRegInfo(TT)); OwningPtr<llvm::MCObjectFileInfo> MOFI(new llvm::MCObjectFileInfo()); OwningPtr<llvm::MCSubtargetInfo> STI(TheTarget->createMCSubtargetInfo(TT, "", "")); for (unsigned StrIdx = 0, e = AsmStrings.size(); StrIdx != e; ++StrIdx) { llvm::SourceMgr SrcMgr; llvm::MCContext Ctx(*MAI, *MRI, MOFI.get(), &SrcMgr); llvm::MemoryBuffer *Buffer = llvm::MemoryBuffer::getMemBuffer(AsmStrings[StrIdx], "<inline asm>"); // Tell SrcMgr about this buffer, which is what the parser will pick up. SrcMgr.AddNewSourceBuffer(Buffer, llvm::SMLoc()); OwningPtr<llvm::MCStreamer> Str(createNullStreamer(Ctx)); OwningPtr<llvm::MCAsmParser> Parser(createMCAsmParser(SrcMgr, Ctx, *Str.get(), *MAI)); OwningPtr<llvm::MCTargetAsmParser> TargetParser(TheTarget->createMCAsmParser(*STI, *Parser)); // Change to the Intel dialect. Parser->setAssemblerDialect(1); Parser->setTargetParser(*TargetParser.get()); // Prime the lexer. Parser->Lex(); // Parse the opcode. StringRef IDVal; Parser->ParseIdentifier(IDVal); // Canonicalize the opcode to lower case. SmallString<128> OpcodeStr; for (unsigned i = 0, e = IDVal.size(); i != e; ++i) OpcodeStr.push_back(tolower(IDVal[i])); // Parse the operands. llvm::SMLoc IDLoc; SmallVector<llvm::MCParsedAsmOperand*, 8> Operands; bool HadError = TargetParser->ParseInstruction(OpcodeStr.str(), IDLoc, Operands); // If we had an error parsing the operands, fail gracefully. if (HadError) { DEF_SIMPLE_MSASM(EmptyAsmStr); return Owned(NS); } // Match the MCInstr. unsigned Kind; unsigned ErrorInfo; SmallVector<llvm::MCInst, 2> Instrs; HadError = TargetParser->MatchInstruction(IDLoc, Kind, Operands, Instrs, ErrorInfo, /*matchingInlineAsm*/ true); // If we had an error parsing the operands, fail gracefully. if (HadError) { DEF_SIMPLE_MSASM(EmptyAsmStr); return Owned(NS); } // Get the instruction descriptor. llvm::MCInst Inst = Instrs[0]; const llvm::MCInstrInfo *MII = TheTarget->createMCInstrInfo(); const llvm::MCInstrDesc &Desc = MII->get(Inst.getOpcode()); llvm::MCInstPrinter *IP = TheTarget->createMCInstPrinter(1, *MAI, *MII, *MRI, *STI); // Build the list of clobbers, outputs and inputs. unsigned NumDefs = Desc.getNumDefs(); for (unsigned i = 1, e = Operands.size(); i != e; ++i) { unsigned NumMCOperands; unsigned MCIdx = TargetParser->getMCInstOperandNum(Kind, Inst, Operands, i, NumMCOperands); assert (NumMCOperands && "Expected at least 1 MCOperand!"); // If we have a one-to-many mapping, then search for the MCExpr. if (NumMCOperands > 1) { bool foundExpr = false; for (unsigned j = MCIdx, e = MCIdx + NumMCOperands; j != e; ++j) { if (Inst.getOperand(j).isExpr()) { foundExpr = true; MCIdx = j; break; } } assert (foundExpr && "Expected for find an expression!"); } const llvm::MCOperand &Op = Inst.getOperand(MCIdx); // Immediate. if (Op.isImm() || Op.isFPImm()) continue; bool isDef = NumDefs && (MCIdx < NumDefs); // Register/Clobber. if (Op.isReg() && isDef) { std::string Reg; llvm::raw_string_ostream OS(Reg); IP->printRegName(OS, Op.getReg()); StringRef Clobber(OS.str()); if (!Context.getTargetInfo().isValidClobber(Clobber)) return StmtError(Diag(AsmLoc, diag::err_asm_unknown_register_name) << Clobber); ClobberRegs.insert(Reg); continue; } // Expr/Input or Output. if (Op.isExpr()) { const llvm::MCExpr *Expr = Op.getExpr(); const llvm::MCSymbolRefExpr *SymRef; if ((SymRef = dyn_cast<llvm::MCSymbolRefExpr>(Expr))) { StringRef Name = SymRef->getSymbol().getName(); IdentifierInfo *II = getIdentifierInfo(Name, AsmToks, AsmTokRanges[StrIdx].first, AsmTokRanges[StrIdx].second); if (II) { CXXScopeSpec SS; UnqualifiedId Id; SourceLocation Loc; Id.setIdentifier(II, AsmLoc); ExprResult Result = ActOnIdExpression(getCurScope(), SS, Loc, Id, false, false); if (!Result.isInvalid()) { bool isMemDef = (i == 1) && Desc.mayStore(); if (isDef || isMemDef) { Outputs.push_back(II); OutputExprs.push_back(Result.take()); OutputExprNames.push_back(Name.str()); OutputConstraints.push_back("=r"); } else { Inputs.push_back(II); InputExprs.push_back(Result.take()); InputExprNames.push_back(Name.str()); InputConstraints.push_back("r"); } } } } } } } for (std::set<std::string>::iterator I = ClobberRegs.begin(), E = ClobberRegs.end(); I != E; ++I) Clobbers.push_back(*I); // Merge the output and input constraints. Output constraints are expected // first. for (std::vector<std::string>::iterator I = OutputConstraints.begin(), E = OutputConstraints.end(); I != E; ++I) Constraints.push_back(*I); for (std::vector<std::string>::iterator I = InputConstraints.begin(), E = InputConstraints.end(); I != E; ++I) Constraints.push_back(*I); // Enumerate the AsmString expressions. // FIXME: This isn't going to work if: // 1. The symbol name and an opcode/reg share the same, or are a substring of // the, name. // 2. The symbol name appears more then once in the asm string. unsigned OpNum = 0; for (unsigned i = 0, e = OutputExprNames.size(); i != e; ++i, ++OpNum) { size_t found = AsmString.find(OutputExprNames[i]); SmallString<32> Res; llvm::raw_svector_ostream OS(Res); OS << '$' << OpNum; AsmString.replace(found, OutputExprNames[i].size(), OS.str()); } for (unsigned i = 0, e = InputExprNames.size(); i != e; ++i, ++OpNum) { size_t found = AsmString.find(InputExprNames[i]); SmallString<32> Res; llvm::raw_svector_ostream OS(Res); OS << '$' << OpNum; AsmString.replace(found, InputExprNames[i].size(), OS.str()); } MSAsmStmt *NS = new (Context) MSAsmStmt(Context, AsmLoc, LBraceLoc, IsSimple, /*IsVolatile*/ true, AsmToks, Inputs, Outputs, InputExprs, OutputExprs, AsmString, Constraints, Clobbers, EndLoc); return Owned(NS); }