// This file is part of Eigen, a lightweight C++ template library // for linear algebra. // // Copyright (C) 2009 Gael Guennebaud <gael.guennebaud@inria.fr> // // This Source Code Form is subject to the terms of the Mozilla // Public License v. 2.0. If a copy of the MPL was not distributed // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. #include "main.h" template<typename T> bool isNotNaN(const T& x) { return x==x; } // workaround aggressive optimization in ICC template<typename T> EIGEN_DONT_INLINE T sub(T a, T b) { return a - b; } template<typename T> bool isFinite(const T& x) { return isNotNaN(sub(x,x)); } template<typename T> EIGEN_DONT_INLINE T copy(const T& x) { return x; } template<typename MatrixType> void stable_norm(const MatrixType& m) { /* this test covers the following files: StableNorm.h */ typedef typename MatrixType::Index Index; typedef typename MatrixType::Scalar Scalar; typedef typename NumTraits<Scalar>::Real RealScalar; // Check the basic machine-dependent constants. { int ibeta, it, iemin, iemax; ibeta = std::numeric_limits<RealScalar>::radix; // base for floating-point numbers it = std::numeric_limits<RealScalar>::digits; // number of base-beta digits in mantissa iemin = std::numeric_limits<RealScalar>::min_exponent; // minimum exponent iemax = std::numeric_limits<RealScalar>::max_exponent; // maximum exponent VERIFY( (!(iemin > 1 - 2*it || 1+it>iemax || (it==2 && ibeta<5) || (it<=4 && ibeta <= 3 ) || it<2)) && "the stable norm algorithm cannot be guaranteed on this computer"); } Index rows = m.rows(); Index cols = m.cols(); Scalar big = internal::random<Scalar>() * ((std::numeric_limits<RealScalar>::max)() * RealScalar(1e-4)); Scalar small = internal::random<Scalar>() * ((std::numeric_limits<RealScalar>::min)() * RealScalar(1e4)); MatrixType vzero = MatrixType::Zero(rows, cols), vrand = MatrixType::Random(rows, cols), vbig(rows, cols), vsmall(rows,cols); vbig.fill(big); vsmall.fill(small); VERIFY_IS_MUCH_SMALLER_THAN(vzero.norm(), static_cast<RealScalar>(1)); VERIFY_IS_APPROX(vrand.stableNorm(), vrand.norm()); VERIFY_IS_APPROX(vrand.blueNorm(), vrand.norm()); VERIFY_IS_APPROX(vrand.hypotNorm(), vrand.norm()); RealScalar size = static_cast<RealScalar>(m.size()); // test isFinite VERIFY(!isFinite( std::numeric_limits<RealScalar>::infinity())); VERIFY(!isFinite(internal::sqrt(-internal::abs(big)))); // test overflow VERIFY(isFinite(internal::sqrt(size)*internal::abs(big))); VERIFY_IS_NOT_APPROX(internal::sqrt(copy(vbig.squaredNorm())), internal::abs(internal::sqrt(size)*big)); // here the default norm must fail VERIFY_IS_APPROX(vbig.stableNorm(), internal::sqrt(size)*internal::abs(big)); VERIFY_IS_APPROX(vbig.blueNorm(), internal::sqrt(size)*internal::abs(big)); VERIFY_IS_APPROX(vbig.hypotNorm(), internal::sqrt(size)*internal::abs(big)); // test underflow VERIFY(isFinite(internal::sqrt(size)*internal::abs(small))); VERIFY_IS_NOT_APPROX(internal::sqrt(copy(vsmall.squaredNorm())), internal::abs(internal::sqrt(size)*small)); // here the default norm must fail VERIFY_IS_APPROX(vsmall.stableNorm(), internal::sqrt(size)*internal::abs(small)); VERIFY_IS_APPROX(vsmall.blueNorm(), internal::sqrt(size)*internal::abs(small)); VERIFY_IS_APPROX(vsmall.hypotNorm(), internal::sqrt(size)*internal::abs(small)); // Test compilation of cwise() version VERIFY_IS_APPROX(vrand.colwise().stableNorm(), vrand.colwise().norm()); VERIFY_IS_APPROX(vrand.colwise().blueNorm(), vrand.colwise().norm()); VERIFY_IS_APPROX(vrand.colwise().hypotNorm(), vrand.colwise().norm()); VERIFY_IS_APPROX(vrand.rowwise().stableNorm(), vrand.rowwise().norm()); VERIFY_IS_APPROX(vrand.rowwise().blueNorm(), vrand.rowwise().norm()); VERIFY_IS_APPROX(vrand.rowwise().hypotNorm(), vrand.rowwise().norm()); } void test_stable_norm() { for(int i = 0; i < g_repeat; i++) { CALL_SUBTEST_1( stable_norm(Matrix<float, 1, 1>()) ); CALL_SUBTEST_2( stable_norm(Vector4d()) ); CALL_SUBTEST_3( stable_norm(VectorXd(internal::random<int>(10,2000))) ); CALL_SUBTEST_4( stable_norm(VectorXf(internal::random<int>(10,2000))) ); CALL_SUBTEST_5( stable_norm(VectorXcd(internal::random<int>(10,2000))) ); } }