// This file is part of Eigen, a lightweight C++ template library // for linear algebra. // // Copyright (C) 2011 Jitse Niesen <jitse@maths.leeds.ac.uk> // // This Source Code Form is subject to the terms of the Mozilla // Public License v. 2.0. If a copy of the MPL was not distributed // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. #include "main.h" #include <unsupported/Eigen/MatrixFunctions> template <typename MatrixType, int IsComplex = NumTraits<typename internal::traits<MatrixType>::Scalar>::IsComplex> struct generateTestMatrix; // for real matrices, make sure none of the eigenvalues are negative template <typename MatrixType> struct generateTestMatrix<MatrixType,0> { static void run(MatrixType& result, typename MatrixType::Index size) { MatrixType mat = MatrixType::Random(size, size); EigenSolver<MatrixType> es(mat); typename EigenSolver<MatrixType>::EigenvalueType eivals = es.eigenvalues(); for (typename MatrixType::Index i = 0; i < size; ++i) { if (eivals(i).imag() == 0 && eivals(i).real() < 0) eivals(i) = -eivals(i); } result = (es.eigenvectors() * eivals.asDiagonal() * es.eigenvectors().inverse()).real(); } }; // for complex matrices, any matrix is fine template <typename MatrixType> struct generateTestMatrix<MatrixType,1> { static void run(MatrixType& result, typename MatrixType::Index size) { result = MatrixType::Random(size, size); } }; template<typename MatrixType> void testMatrixSqrt(const MatrixType& m) { MatrixType A; generateTestMatrix<MatrixType>::run(A, m.rows()); MatrixType sqrtA = A.sqrt(); VERIFY_IS_APPROX(sqrtA * sqrtA, A); } void test_matrix_square_root() { for (int i = 0; i < g_repeat; i++) { CALL_SUBTEST_1(testMatrixSqrt(Matrix3cf())); CALL_SUBTEST_2(testMatrixSqrt(MatrixXcd(12,12))); CALL_SUBTEST_3(testMatrixSqrt(Matrix4f())); CALL_SUBTEST_4(testMatrixSqrt(Matrix<double,Dynamic,Dynamic,RowMajor>(9, 9))); CALL_SUBTEST_5(testMatrixSqrt(Matrix<float,1,1>())); CALL_SUBTEST_5(testMatrixSqrt(Matrix<std::complex<float>,1,1>())); } }