/* * Copyright (c) 2011 The LibYuv project authors. All Rights Reserved. * * Use of this source code is governed by a BSD-style license * that can be found in the LICENSE file in the root of the source * tree. An additional intellectual property rights grant can be found * in the file PATENTS. All contributing project authors may * be found in the AUTHORS file in the root of the source tree. */ #include "libyuv/planar_functions.h" #include <string.h> #include "libyuv/cpu_id.h" #include "row.h" namespace libyuv { #if defined(__ARM_NEON__) && !defined(COVERAGE_ENABLED) #define HAS_SPLITUV_NEON // Reads 16 pairs of UV and write even values to dst_u and odd to dst_v // Alignment requirement: 16 bytes for pointers, and multiple of 16 pixels. static void SplitUV_NEON(const uint8* src_uv, uint8* dst_u, uint8* dst_v, int pix) { __asm__ volatile ( "1:\n" "vld2.u8 {q0,q1}, [%0]! \n" // load 16 pairs of UV "vst1.u8 {q0}, [%1]! \n" // store U "vst1.u8 {q1}, [%2]! \n" // Store V "subs %3, %3, #16 \n" // 16 processed per loop "bhi 1b \n" : "+r"(src_uv), "+r"(dst_u), "+r"(dst_v), "+r"(pix) // Output registers : // Input registers : "q0", "q1" // Clobber List ); } #elif (defined(WIN32) || defined(__x86_64__) || defined(__i386__)) \ && !defined(COVERAGE_ENABLED) && !defined(TARGET_IPHONE_SIMULATOR) #if defined(_MSC_VER) #define TALIGN16(t, var) static __declspec(align(16)) t _ ## var #else #define TALIGN16(t, var) t var __attribute__((aligned(16))) #endif // Shuffle table for converting ABGR to ARGB. extern "C" TALIGN16(const uint8, kShuffleMaskABGRToARGB[16]) = { 2u, 1u, 0u, 3u, 6u, 5u, 4u, 7u, 10u, 9u, 8u, 11u, 14u, 13u, 12u, 15u }; // Shuffle table for converting BGRA to ARGB. extern "C" TALIGN16(const uint8, kShuffleMaskBGRAToARGB[16]) = { 3u, 2u, 1u, 0u, 7u, 6u, 5u, 4u, 11u, 10u, 9u, 8u, 15u, 14u, 13u, 12u }; #if defined(WIN32) && !defined(COVERAGE_ENABLED) #define HAS_SPLITUV_SSE2 __declspec(naked) static void SplitUV_SSE2(const uint8* src_uv, uint8* dst_u, uint8* dst_v, int pix) { __asm { push edi mov eax, [esp + 4 + 4] // src_uv mov edx, [esp + 4 + 8] // dst_u mov edi, [esp + 4 + 12] // dst_v mov ecx, [esp + 4 + 16] // pix pcmpeqb xmm7, xmm7 // generate mask 0x00ff00ff psrlw xmm7, 8 wloop: movdqa xmm0, [eax] movdqa xmm1, [eax + 16] lea eax, [eax + 32] movdqa xmm2, xmm0 movdqa xmm3, xmm1 pand xmm0, xmm7 // even bytes pand xmm1, xmm7 packuswb xmm0, xmm1 movdqa [edx], xmm0 lea edx, [edx + 16] psrlw xmm2, 8 // odd bytes psrlw xmm3, 8 packuswb xmm2, xmm3 movdqa [edi], xmm2 lea edi, [edi + 16] sub ecx, 16 ja wloop pop edi ret } } #elif (defined(__x86_64__) || defined(__i386__)) && \ !defined(COVERAGE_ENABLED) && !defined(TARGET_IPHONE_SIMULATOR) #define HAS_SPLITUV_SSE2 static void SplitUV_SSE2(const uint8* src_uv, uint8* dst_u, uint8* dst_v, int pix) { asm volatile( "pcmpeqb %%xmm7,%%xmm7\n" "psrlw $0x8,%%xmm7\n" "1:" "movdqa (%0),%%xmm0\n" "movdqa 0x10(%0),%%xmm1\n" "lea 0x20(%0),%0\n" "movdqa %%xmm0,%%xmm2\n" "movdqa %%xmm1,%%xmm3\n" "pand %%xmm7,%%xmm0\n" "pand %%xmm7,%%xmm1\n" "packuswb %%xmm1,%%xmm0\n" "movdqa %%xmm0,(%1)\n" "lea 0x10(%1),%1\n" "psrlw $0x8,%%xmm2\n" "psrlw $0x8,%%xmm3\n" "packuswb %%xmm3,%%xmm2\n" "movdqa %%xmm2,(%2)\n" "lea 0x10(%2),%2\n" "sub $0x10,%3\n" "ja 1b\n" : "+r"(src_uv), // %0 "+r"(dst_u), // %1 "+r"(dst_v), // %2 "+r"(pix) // %3 : : "memory" ); } #endif #endif static void SplitUV_C(const uint8* src_uv, uint8* dst_u, uint8* dst_v, int pix) { // Copy a row of UV. for (int x = 0; x < pix; ++x) { dst_u[0] = src_uv[0]; dst_v[0] = src_uv[1]; src_uv += 2; dst_u += 1; dst_v += 1; } } static void I420CopyPlane(const uint8* src_y, int src_stride_y, uint8* dst_y, int dst_stride_y, int width, int height) { // Copy plane for (int y = 0; y < height; ++y) { memcpy(dst_y, src_y, width); src_y += src_stride_y; dst_y += dst_stride_y; } } // Copy I420 with optional flipping int I420Copy(const uint8* src_y, int src_stride_y, const uint8* src_u, int src_stride_u, const uint8* src_v, int src_stride_v, uint8* dst_y, int dst_stride_y, uint8* dst_u, int dst_stride_u, uint8* dst_v, int dst_stride_v, int width, int height) { if (!src_y || !src_u || !src_v || !dst_y || !dst_u || !dst_v || width <= 0 || height == 0) { return -1; } // Negative height means invert the image. if (height < 0) { height = -height; int halfheight = (height + 1) >> 1; src_y = src_y + (height - 1) * src_stride_y; src_u = src_u + (halfheight - 1) * src_stride_u; src_v = src_v + (halfheight - 1) * src_stride_v; src_stride_y = -src_stride_y; src_stride_u = -src_stride_u; src_stride_v = -src_stride_v; } int halfwidth = (width + 1) >> 1; int halfheight = (height + 1) >> 1; I420CopyPlane(src_y, src_stride_y, dst_y, dst_stride_y, width, height); I420CopyPlane(src_u, src_stride_u, dst_u, dst_stride_u, halfwidth, halfheight); I420CopyPlane(src_v, src_stride_v, dst_v, dst_stride_v, halfwidth, halfheight); return 0; } // SetRows32 writes 'count' bytes using a 32 bit value repeated #if defined(__ARM_NEON__) && !defined(COVERAGE_ENABLED) #define HAS_SETROW_NEON static void SetRow32_NEON(uint8* dst, uint32 v32, int count) { __asm__ volatile ( "vdup.u32 q0, %2 \n" // duplicate 4 ints "1:\n" "vst1.u32 {q0}, [%0]! \n" // store "subs %1, %1, #16 \n" // 16 processed per loop "bhi 1b \n" : "+r"(dst), // %0 "+r"(count) // %1 : "r"(v32) // %2 : "q0", "memory" ); } #elif defined(WIN32) && !defined(COVERAGE_ENABLED) #define HAS_SETROW_SSE2 __declspec(naked) static void SetRow32_SSE2(uint8* dst, uint32 v32, int count) { __asm { mov eax, [esp + 4] // dst movd xmm7, [esp + 8] // v32 mov ecx, [esp + 12] // count pshufd xmm7, xmm7, 0 wloop: movdqa [eax], xmm7 lea eax, [eax + 16] sub ecx, 16 ja wloop ret } } #elif (defined(__x86_64__) || defined(__i386__)) && \ !defined(COVERAGE_ENABLED) && !defined(TARGET_IPHONE_SIMULATOR) #define HAS_SETROW_SSE2 static void SetRow32_SSE2(uint8* dst, uint32 v32, int count) { asm volatile( "movd %2, %%xmm7\n" "pshufd $0x0,%%xmm7,%%xmm7\n" "1:" "movdqa %%xmm7,(%0)\n" "lea 0x10(%0),%0\n" "sub $0x10,%1\n" "ja 1b\n" : "+r"(dst), // %0 "+r"(count) // %1 : "r"(v32) // %2 : "memory" ); } #endif static void SetRow8_C(uint8* dst, uint32 v8, int count) { memset(dst, v8, count); } static void I420SetPlane(uint8* dst_y, int dst_stride_y, int width, int height, int value) { void (*SetRow)(uint8* dst, uint32 value, int pix); #if defined(HAS_SETROW_NEON) if (libyuv::TestCpuFlag(libyuv::kCpuHasNEON) && (width % 16 == 0) && IS_ALIGNED(dst_y, 16) && (dst_stride_y % 16 == 0)) { SetRow = SetRow32_NEON; } else #elif defined(HAS_SETROW_SSE2) if (libyuv::TestCpuFlag(libyuv::kCpuHasSSE2) && (width % 16 == 0) && IS_ALIGNED(dst_y, 16) && (dst_stride_y % 16 == 0)) { SetRow = SetRow32_SSE2; } else #endif { SetRow = SetRow8_C; } uint32 v32 = value | (value << 8) | (value << 16) | (value << 24); // Set plane for (int y = 0; y < height; ++y) { SetRow(dst_y, v32, width); dst_y += dst_stride_y; } } // Draw a rectangle into I420 int I420Rect(uint8* dst_y, int dst_stride_y, uint8* dst_u, int dst_stride_u, uint8* dst_v, int dst_stride_v, int x, int y, int width, int height, int value_y, int value_u, int value_v) { if (!dst_y || !dst_u || !dst_v || width <= 0 || height == 0 || x < 0 || y < 0 || value_y < 0 || value_y > 255 || value_u < 0 || value_u > 255 || value_v < 0 || value_v > 255) { return -1; } // Negative height means invert the image. if (height < 0) { height = -height; int halfheight = (height + 1) >> 1; dst_y = dst_y + (height - 1) * dst_stride_y; dst_u = dst_u + (halfheight - 1) * dst_stride_u; dst_v = dst_v + (halfheight - 1) * dst_stride_v; dst_stride_y = -dst_stride_y; dst_stride_u = -dst_stride_u; dst_stride_v = -dst_stride_v; } int halfwidth = (width + 1) >> 1; int halfheight = (height + 1) >> 1; uint8* start_y = dst_y + y * dst_stride_y + x; uint8* start_u = dst_u + (y / 2) * dst_stride_u + (x / 2); uint8* start_v = dst_v + (y / 2) * dst_stride_v + (x / 2); I420SetPlane(start_y, dst_stride_y, width, height, value_y); I420SetPlane(start_u, dst_stride_u, halfwidth, halfheight, value_u); I420SetPlane(start_v, dst_stride_v, halfwidth, halfheight, value_v); return 0; } // Helper function to copy yuv data without scaling. Used // by our jpeg conversion callbacks to incrementally fill a yuv image. int I422ToI420(const uint8* src_y, int src_stride_y, const uint8* src_u, int src_stride_u, const uint8* src_v, int src_stride_v, uint8* dst_y, int dst_stride_y, uint8* dst_u, int dst_stride_u, uint8* dst_v, int dst_stride_v, int width, int height) { // Negative height means invert the image. if (height < 0) { height = -height; src_y = src_y + (height - 1) * src_stride_y; src_u = src_u + (height - 1) * src_stride_u; src_v = src_v + (height - 1) * src_stride_v; src_stride_y = -src_stride_y; src_stride_u = -src_stride_u; src_stride_v = -src_stride_v; } // Copy Y plane I420CopyPlane(src_y, src_stride_y, dst_y, dst_stride_y, width, height); // SubSample UV planes. int x, y; int halfwidth = (width + 1) >> 1; for (y = 0; y < height; y += 2) { const uint8* u0 = src_u; const uint8* u1 = src_u + src_stride_u; if ((y + 1) >= height) { u1 = u0; } for (x = 0; x < halfwidth; ++x) { dst_u[x] = (u0[x] + u1[x] + 1) >> 1; } src_u += src_stride_u * 2; dst_u += dst_stride_u; } for (y = 0; y < height; y += 2) { const uint8* v0 = src_v; const uint8* v1 = src_v + src_stride_v; if ((y + 1) >= height) { v1 = v0; } for (x = 0; x < halfwidth; ++x) { dst_v[x] = (v0[x] + v1[x] + 1) >> 1; } src_v += src_stride_v * 2; dst_v += dst_stride_v; } return 0; } static void I420CopyPlane2(const uint8* src, int src_stride_0, int src_stride_1, uint8* dst, int dst_stride_frame, int width, int height) { // Copy plane for (int y = 0; y < height; y += 2) { memcpy(dst, src, width); src += src_stride_0; dst += dst_stride_frame; memcpy(dst, src, width); src += src_stride_1; dst += dst_stride_frame; } } // Support converting from FOURCC_M420 // Useful for bandwidth constrained transports like USB 1.0 and 2.0 and for // easy conversion to I420. // M420 format description: // M420 is row biplanar 420: 2 rows of Y and 1 row of VU. // Chroma is half width / half height. (420) // src_stride_m420 is row planar. Normally this will be the width in pixels. // The UV plane is half width, but 2 values, so src_stride_m420 applies to // this as well as the two Y planes. static int X420ToI420(const uint8* src_y, int src_stride_y0, int src_stride_y1, const uint8* src_uv, int src_stride_uv, uint8* dst_y, int dst_stride_y, uint8* dst_u, int dst_stride_u, uint8* dst_v, int dst_stride_v, int width, int height) { // Negative height means invert the image. if (height < 0) { height = -height; int halfheight = (height + 1) >> 1; dst_y = dst_y + (height - 1) * dst_stride_y; dst_u = dst_u + (halfheight - 1) * dst_stride_u; dst_v = dst_v + (halfheight - 1) * dst_stride_v; dst_stride_y = -dst_stride_y; dst_stride_u = -dst_stride_u; dst_stride_v = -dst_stride_v; } int halfwidth = (width + 1) >> 1; void (*SplitUV)(const uint8* src_uv, uint8* dst_u, uint8* dst_v, int pix); #if defined(HAS_SPLITUV_NEON) if (libyuv::TestCpuFlag(libyuv::kCpuHasNEON) && (halfwidth % 16 == 0) && IS_ALIGNED(src_uv, 16) && (src_stride_uv % 16 == 0) && IS_ALIGNED(dst_u, 16) && (dst_stride_u % 16 == 0) && IS_ALIGNED(dst_v, 16) && (dst_stride_v % 16 == 0)) { SplitUV = SplitUV_NEON; } else #elif defined(HAS_SPLITUV_SSE2) if (libyuv::TestCpuFlag(libyuv::kCpuHasSSE2) && (halfwidth % 16 == 0) && IS_ALIGNED(src_uv, 16) && (src_stride_uv % 16 == 0) && IS_ALIGNED(dst_u, 16) && (dst_stride_u % 16 == 0) && IS_ALIGNED(dst_v, 16) && (dst_stride_v % 16 == 0)) { SplitUV = SplitUV_SSE2; } else #endif { SplitUV = SplitUV_C; } I420CopyPlane2(src_y, src_stride_y0, src_stride_y1, dst_y, dst_stride_y, width, height); int halfheight = (height + 1) >> 1; for (int y = 0; y < halfheight; ++y) { // Copy a row of UV. SplitUV(src_uv, dst_u, dst_v, halfwidth); dst_u += dst_stride_u; dst_v += dst_stride_v; src_uv += src_stride_uv; } return 0; } // Convert M420 to I420. int M420ToI420(const uint8* src_m420, int src_stride_m420, uint8* dst_y, int dst_stride_y, uint8* dst_u, int dst_stride_u, uint8* dst_v, int dst_stride_v, int width, int height) { return X420ToI420(src_m420, src_stride_m420, src_stride_m420 * 2, src_m420 + src_stride_m420 * 2, src_stride_m420 * 3, dst_y, dst_stride_y, dst_u, dst_stride_u, dst_v, dst_stride_v, width, height); } // Convert NV12 to I420. int NV12ToI420(const uint8* src_y, int src_stride_y, const uint8* src_uv, int src_stride_uv, uint8* dst_y, int dst_stride_y, uint8* dst_u, int dst_stride_u, uint8* dst_v, int dst_stride_v, int width, int height) { return X420ToI420(src_y, src_stride_y, src_stride_y, src_uv, src_stride_uv, dst_y, dst_stride_y, dst_u, dst_stride_u, dst_v, dst_stride_v, width, height); } // Convert NV12 to I420. Deprecated. int NV12ToI420(const uint8* src_y, const uint8* src_uv, int src_stride_frame, uint8* dst_y, int dst_stride_y, uint8* dst_u, int dst_stride_u, uint8* dst_v, int dst_stride_v, int width, int height) { return X420ToI420(src_y, src_stride_frame, src_stride_frame, src_uv, src_stride_frame, dst_y, dst_stride_y, dst_u, dst_stride_u, dst_v, dst_stride_v, width, height); } #if defined(WIN32) && !defined(COVERAGE_ENABLED) #define HAS_SPLITYUY2_SSE2 __declspec(naked) static void SplitYUY2_SSE2(const uint8* src_yuy2, uint8* dst_y, uint8* dst_u, uint8* dst_v, int pix) { __asm { push esi push edi mov eax, [esp + 8 + 4] // src_yuy2 mov edx, [esp + 8 + 8] // dst_y mov esi, [esp + 8 + 12] // dst_u mov edi, [esp + 8 + 16] // dst_v mov ecx, [esp + 8 + 20] // pix pcmpeqb xmm7, xmm7 // generate mask 0x00ff00ff psrlw xmm7, 8 wloop: movdqa xmm0, [eax] movdqa xmm1, [eax + 16] lea eax, [eax + 32] movdqa xmm2, xmm0 movdqa xmm3, xmm1 pand xmm2, xmm7 // even bytes are Y pand xmm3, xmm7 packuswb xmm2, xmm3 movdqa [edx], xmm2 lea edx, [edx + 16] psrlw xmm0, 8 // YUYV -> UVUV psrlw xmm1, 8 packuswb xmm0, xmm1 movdqa xmm1, xmm0 pand xmm0, xmm7 // U packuswb xmm0, xmm0 movq qword ptr [esi], xmm0 lea esi, [esi + 8] psrlw xmm1, 8 // V packuswb xmm1, xmm1 movq qword ptr [edi], xmm1 lea edi, [edi + 8] sub ecx, 16 ja wloop pop edi pop esi ret } } #elif (defined(__x86_64__) || defined(__i386__)) && \ !defined(COVERAGE_ENABLED) && !defined(TARGET_IPHONE_SIMULATOR) #define HAS_SPLITYUY2_SSE2 static void SplitYUY2_SSE2(const uint8* src_yuy2, uint8* dst_y, uint8* dst_u, uint8* dst_v, int pix) { asm volatile( "pcmpeqb %%xmm7,%%xmm7\n" "psrlw $0x8,%%xmm7\n" "1:" "movdqa (%0),%%xmm0\n" "movdqa 0x10(%0),%%xmm1\n" "lea 0x20(%0),%0\n" "movdqa %%xmm0,%%xmm2\n" "movdqa %%xmm1,%%xmm3\n" "pand %%xmm7,%%xmm2\n" "pand %%xmm7,%%xmm3\n" "packuswb %%xmm3,%%xmm2\n" "movdqa %%xmm2,(%1)\n" "lea 0x10(%1),%1\n" "psrlw $0x8,%%xmm0\n" "psrlw $0x8,%%xmm1\n" "packuswb %%xmm1,%%xmm0\n" "movdqa %%xmm0,%%xmm1\n" "pand %%xmm7,%%xmm0\n" "packuswb %%xmm0,%%xmm0\n" "movq %%xmm0,(%2)\n" "lea 0x8(%2),%2\n" "psrlw $0x8,%%xmm1\n" "packuswb %%xmm1,%%xmm1\n" "movq %%xmm1,(%3)\n" "lea 0x8(%3),%3\n" "sub $0x10,%4\n" "ja 1b\n" : "+r"(src_yuy2), // %0 "+r"(dst_y), // %1 "+r"(dst_u), // %2 "+r"(dst_v), // %3 "+r"(pix) // %4 : : "memory" ); } #endif static void SplitYUY2_C(const uint8* src_yuy2, uint8* dst_y, uint8* dst_u, uint8* dst_v, int pix) { // Copy a row of YUY2. for (int x = 0; x < pix; x += 2) { dst_y[0] = src_yuy2[0]; dst_y[1] = src_yuy2[2]; dst_u[0] = src_yuy2[1]; dst_v[0] = src_yuy2[3]; src_yuy2 += 4; dst_y += 2; dst_u += 1; dst_v += 1; } } // Convert Q420 to I420. // Format is rows of YY/YUYV int Q420ToI420(const uint8* src_y, int src_stride_y, const uint8* src_yuy2, int src_stride_yuy2, uint8* dst_y, int dst_stride_y, uint8* dst_u, int dst_stride_u, uint8* dst_v, int dst_stride_v, int width, int height) { // Negative height means invert the image. if (height < 0) { height = -height; int halfheight = (height + 1) >> 1; dst_y = dst_y + (height - 1) * dst_stride_y; dst_u = dst_u + (halfheight - 1) * dst_stride_u; dst_v = dst_v + (halfheight - 1) * dst_stride_v; dst_stride_y = -dst_stride_y; dst_stride_u = -dst_stride_u; dst_stride_v = -dst_stride_v; } void (*SplitYUY2)(const uint8* src_yuy2, uint8* dst_y, uint8* dst_u, uint8* dst_v, int pix); #if defined(HAS_SPLITYUY2_SSE2) if (libyuv::TestCpuFlag(libyuv::kCpuHasSSE2) && (width % 16 == 0) && IS_ALIGNED(src_yuy2, 16) && (src_stride_yuy2 % 16 == 0) && IS_ALIGNED(dst_y, 16) && (dst_stride_y % 16 == 0) && IS_ALIGNED(dst_u, 8) && (dst_stride_u % 8 == 0) && IS_ALIGNED(dst_v, 8) && (dst_stride_v % 8 == 0)) { SplitYUY2 = SplitYUY2_SSE2; } else #endif { SplitYUY2 = SplitYUY2_C; } for (int y = 0; y < height; y += 2) { memcpy(dst_y, src_y, width); dst_y += dst_stride_y; src_y += src_stride_y; // Copy a row of YUY2. SplitYUY2(src_yuy2, dst_y, dst_u, dst_v, width); dst_y += dst_stride_y; dst_u += dst_stride_u; dst_v += dst_stride_v; src_yuy2 += src_stride_yuy2; } return 0; } #if defined(WIN32) && !defined(COVERAGE_ENABLED) #define HAS_YUY2TOI420ROW_SSE2 __declspec(naked) void YUY2ToI420RowY_SSE2(const uint8* src_yuy2, uint8* dst_y, int pix) { __asm { mov eax, [esp + 4] // src_yuy2 mov edx, [esp + 8] // dst_y mov ecx, [esp + 12] // pix pcmpeqb xmm7, xmm7 // generate mask 0x00ff00ff psrlw xmm7, 8 wloop: movdqa xmm0, [eax] movdqa xmm1, [eax + 16] lea eax, [eax + 32] pand xmm0, xmm7 // even bytes are Y pand xmm1, xmm7 packuswb xmm0, xmm1 movdqa [edx], xmm0 lea edx, [edx + 16] sub ecx, 16 ja wloop ret } } __declspec(naked) void YUY2ToI420RowUV_SSE2(const uint8* src_yuy2, int stride_yuy2, uint8* dst_u, uint8* dst_y, int pix) { __asm { push esi push edi mov eax, [esp + 8 + 4] // src_yuy2 mov esi, [esp + 8 + 8] // stride_yuy2 mov edx, [esp + 8 + 12] // dst_u mov edi, [esp + 8 + 16] // dst_v mov ecx, [esp + 8 + 20] // pix pcmpeqb xmm7, xmm7 // generate mask 0x00ff00ff psrlw xmm7, 8 wloop: movdqa xmm0, [eax] movdqa xmm1, [eax + 16] movdqa xmm2, [eax + esi] movdqa xmm3, [eax + esi + 16] lea eax, [eax + 32] pavgb xmm0, xmm2 pavgb xmm1, xmm3 psrlw xmm0, 8 // YUYV -> UVUV psrlw xmm1, 8 packuswb xmm0, xmm1 movdqa xmm1, xmm0 pand xmm0, xmm7 // U packuswb xmm0, xmm0 movq qword ptr [edx], xmm0 lea edx, [edx + 8] psrlw xmm1, 8 // V packuswb xmm1, xmm1 movq qword ptr [edi], xmm1 lea edi, [edi + 8] sub ecx, 16 ja wloop pop edi pop esi ret } } #define HAS_UYVYTOI420ROW_SSE2 __declspec(naked) void UYVYToI420RowY_SSE2(const uint8* src_uyvy, uint8* dst_y, int pix) { __asm { mov eax, [esp + 4] // src_uyvy mov edx, [esp + 8] // dst_y mov ecx, [esp + 12] // pix wloop: movdqa xmm0, [eax] movdqa xmm1, [eax + 16] lea eax, [eax + 32] psrlw xmm0, 8 // odd bytes are Y psrlw xmm1, 8 packuswb xmm0, xmm1 movdqa [edx], xmm0 lea edx, [edx + 16] sub ecx, 16 ja wloop ret } } __declspec(naked) void UYVYToI420RowUV_SSE2(const uint8* src_uyvy, int stride_uyvy, uint8* dst_u, uint8* dst_y, int pix) { __asm { push esi push edi mov eax, [esp + 8 + 4] // src_yuy2 mov esi, [esp + 8 + 8] // stride_yuy2 mov edx, [esp + 8 + 12] // dst_u mov edi, [esp + 8 + 16] // dst_v mov ecx, [esp + 8 + 20] // pix pcmpeqb xmm7, xmm7 // generate mask 0x00ff00ff psrlw xmm7, 8 wloop: movdqa xmm0, [eax] movdqa xmm1, [eax + 16] movdqa xmm2, [eax + esi] movdqa xmm3, [eax + esi + 16] lea eax, [eax + 32] pavgb xmm0, xmm2 pavgb xmm1, xmm3 pand xmm0, xmm7 // UYVY -> UVUV pand xmm1, xmm7 packuswb xmm0, xmm1 movdqa xmm1, xmm0 pand xmm0, xmm7 // U packuswb xmm0, xmm0 movq qword ptr [edx], xmm0 lea edx, [edx + 8] psrlw xmm1, 8 // V packuswb xmm1, xmm1 movq qword ptr [edi], xmm1 lea edi, [edi + 8] sub ecx, 16 ja wloop pop edi pop esi ret } } #elif (defined(__x86_64__) || defined(__i386__)) && \ !defined(COVERAGE_ENABLED) && !defined(TARGET_IPHONE_SIMULATOR) #define HAS_YUY2TOI420ROW_SSE2 static void YUY2ToI420RowY_SSE2(const uint8* src_yuy2, uint8* dst_y, int pix) { asm volatile( "pcmpeqb %%xmm7,%%xmm7\n" "psrlw $0x8,%%xmm7\n" "1:" "movdqa (%0),%%xmm0\n" "movdqa 0x10(%0),%%xmm1\n" "lea 0x20(%0),%0\n" "pand %%xmm7,%%xmm0\n" "pand %%xmm7,%%xmm1\n" "packuswb %%xmm1,%%xmm0\n" "movdqa %%xmm0,(%1)\n" "lea 0x10(%1),%1\n" "sub $0x10,%2\n" "ja 1b\n" : "+r"(src_yuy2), // %0 "+r"(dst_y), // %1 "+r"(pix) // %2 : : "memory" ); } static void YUY2ToI420RowUV_SSE2(const uint8* src_yuy2, int stride_yuy2, uint8* dst_u, uint8* dst_y, int pix) { asm volatile( "pcmpeqb %%xmm7,%%xmm7\n" "psrlw $0x8,%%xmm7\n" "1:" "movdqa (%0),%%xmm0\n" "movdqa 0x10(%0),%%xmm1\n" "movdqa (%0,%4,1),%%xmm2\n" "movdqa 0x10(%0,%4,1),%%xmm3\n" "lea 0x20(%0),%0\n" "pavgb %%xmm2,%%xmm0\n" "pavgb %%xmm3,%%xmm1\n" "psrlw $0x8,%%xmm0\n" "psrlw $0x8,%%xmm1\n" "packuswb %%xmm1,%%xmm0\n" "movdqa %%xmm0,%%xmm1\n" "pand %%xmm7,%%xmm0\n" "packuswb %%xmm0,%%xmm0\n" "movq %%xmm0,(%1)\n" "lea 0x8(%1),%1\n" "psrlw $0x8,%%xmm1\n" "packuswb %%xmm1,%%xmm1\n" "movq %%xmm1,(%2)\n" "lea 0x8(%2),%2\n" "sub $0x10,%3\n" "ja 1b\n" : "+r"(src_yuy2), // %0 "+r"(dst_u), // %1 "+r"(dst_y), // %2 "+r"(pix) // %3 : "r"(static_cast<intptr_t>(stride_yuy2)) // %4 : "memory" ); } #define HAS_UYVYTOI420ROW_SSE2 static void UYVYToI420RowY_SSE2(const uint8* src_uyvy, uint8* dst_y, int pix) { asm volatile( "1:" "movdqa (%0),%%xmm0\n" "movdqa 0x10(%0),%%xmm1\n" "lea 0x20(%0),%0\n" "psrlw $0x8,%%xmm0\n" "psrlw $0x8,%%xmm1\n" "packuswb %%xmm1,%%xmm0\n" "movdqa %%xmm0,(%1)\n" "lea 0x10(%1),%1\n" "sub $0x10,%2\n" "ja 1b\n" : "+r"(src_uyvy), // %0 "+r"(dst_y), // %1 "+r"(pix) // %2 : : "memory" ); } static void UYVYToI420RowUV_SSE2(const uint8* src_uyvy, int stride_uyvy, uint8* dst_u, uint8* dst_y, int pix) { asm volatile( "pcmpeqb %%xmm7,%%xmm7\n" "psrlw $0x8,%%xmm7\n" "1:" "movdqa (%0),%%xmm0\n" "movdqa 0x10(%0),%%xmm1\n" "movdqa (%0,%4,1),%%xmm2\n" "movdqa 0x10(%0,%4,1),%%xmm3\n" "lea 0x20(%0),%0\n" "pavgb %%xmm2,%%xmm0\n" "pavgb %%xmm3,%%xmm1\n" "pand %%xmm7,%%xmm0\n" "pand %%xmm7,%%xmm1\n" "packuswb %%xmm1,%%xmm0\n" "movdqa %%xmm0,%%xmm1\n" "pand %%xmm7,%%xmm0\n" "packuswb %%xmm0,%%xmm0\n" "movq %%xmm0,(%1)\n" "lea 0x8(%1),%1\n" "psrlw $0x8,%%xmm1\n" "packuswb %%xmm1,%%xmm1\n" "movq %%xmm1,(%2)\n" "lea 0x8(%2),%2\n" "sub $0x10,%3\n" "ja 1b\n" : "+r"(src_uyvy), // %0 "+r"(dst_u), // %1 "+r"(dst_y), // %2 "+r"(pix) // %3 : "r"(static_cast<intptr_t>(stride_uyvy)) // %4 : "memory" ); } #endif // Filter 2 rows of YUY2 UV's (422) into U and V (420) void YUY2ToI420RowUV_C(const uint8* src_yuy2, int src_stride_yuy2, uint8* dst_u, uint8* dst_v, int pix) { // Output a row of UV values, filtering 2 rows of YUY2 for (int x = 0; x < pix; x += 2) { dst_u[0] = (src_yuy2[1] + src_yuy2[src_stride_yuy2 + 1] + 1) >> 1; dst_v[0] = (src_yuy2[3] + src_yuy2[src_stride_yuy2 + 3] + 1) >> 1; src_yuy2 += 4; dst_u += 1; dst_v += 1; } } void YUY2ToI420RowY_C(const uint8* src_yuy2, uint8* dst_y, int pix) { // Copy a row of yuy2 Y values for (int x = 0; x < pix; ++x) { dst_y[0] = src_yuy2[0]; src_yuy2 += 2; dst_y += 1; } } void UYVYToI420RowUV_C(const uint8* src_uyvy, int src_stride_uyvy, uint8* dst_u, uint8* dst_v, int pix) { // Copy a row of uyvy UV values for (int x = 0; x < pix; x += 2) { dst_u[0] = (src_uyvy[0] + src_uyvy[src_stride_uyvy + 0] + 1) >> 1; dst_v[0] = (src_uyvy[2] + src_uyvy[src_stride_uyvy + 2] + 1) >> 1; src_uyvy += 4; dst_u += 1; dst_v += 1; } } void UYVYToI420RowY_C(const uint8* src_uyvy, uint8* dst_y, int pix) { // Copy a row of uyvy Y values for (int x = 0; x < pix; ++x) { dst_y[0] = src_uyvy[1]; src_uyvy += 2; dst_y += 1; } } // Convert YUY2 to I420. int YUY2ToI420(const uint8* src_yuy2, int src_stride_yuy2, uint8* dst_y, int dst_stride_y, uint8* dst_u, int dst_stride_u, uint8* dst_v, int dst_stride_v, int width, int height) { // Negative height means invert the image. if (height < 0) { height = -height; src_yuy2 = src_yuy2 + (height - 1) * src_stride_yuy2; src_stride_yuy2 = -src_stride_yuy2; } void (*YUY2ToI420RowUV)(const uint8* src_yuy2, int src_stride_yuy2, uint8* dst_u, uint8* dst_v, int pix); void (*YUY2ToI420RowY)(const uint8* src_yuy2, uint8* dst_y, int pix); #if defined(HAS_YUY2TOI420ROW_SSE2) if (libyuv::TestCpuFlag(libyuv::kCpuHasSSE2) && (width % 16 == 0) && IS_ALIGNED(src_yuy2, 16) && (src_stride_yuy2 % 16 == 0) && IS_ALIGNED(dst_y, 16) && (dst_stride_y % 16 == 0) && IS_ALIGNED(dst_u, 8) && (dst_stride_u % 8 == 0) && IS_ALIGNED(dst_v, 8) && (dst_stride_v % 8 == 0)) { YUY2ToI420RowY = YUY2ToI420RowY_SSE2; YUY2ToI420RowUV = YUY2ToI420RowUV_SSE2; } else #endif { YUY2ToI420RowY = YUY2ToI420RowY_C; YUY2ToI420RowUV = YUY2ToI420RowUV_C; } for (int y = 0; y < height; ++y) { if ((y & 1) == 0) { if (y >= (height - 1) ) { // last chroma on odd height clamp height src_stride_yuy2 = 0; } YUY2ToI420RowUV(src_yuy2, src_stride_yuy2, dst_u, dst_v, width); dst_u += dst_stride_u; dst_v += dst_stride_v; } YUY2ToI420RowY(src_yuy2, dst_y, width); dst_y += dst_stride_y; src_yuy2 += src_stride_yuy2; } return 0; } // Convert UYVY to I420. int UYVYToI420(const uint8* src_uyvy, int src_stride_uyvy, uint8* dst_y, int dst_stride_y, uint8* dst_u, int dst_stride_u, uint8* dst_v, int dst_stride_v, int width, int height) { // Negative height means invert the image. if (height < 0) { height = -height; src_uyvy = src_uyvy + (height - 1) * src_stride_uyvy; src_stride_uyvy = -src_stride_uyvy; } void (*UYVYToI420RowUV)(const uint8* src_uyvy, int src_stride_uyvy, uint8* dst_u, uint8* dst_v, int pix); void (*UYVYToI420RowY)(const uint8* src_uyvy, uint8* dst_y, int pix); #if defined(HAS_UYVYTOI420ROW_SSE2) if (libyuv::TestCpuFlag(libyuv::kCpuHasSSE2) && (width % 16 == 0) && IS_ALIGNED(src_uyvy, 16) && (src_stride_uyvy % 16 == 0) && IS_ALIGNED(dst_y, 16) && (dst_stride_y % 16 == 0) && IS_ALIGNED(dst_u, 8) && (dst_stride_u % 8 == 0) && IS_ALIGNED(dst_v, 8) && (dst_stride_v % 8 == 0)) { UYVYToI420RowY = UYVYToI420RowY_SSE2; UYVYToI420RowUV = UYVYToI420RowUV_SSE2; } else #endif { UYVYToI420RowY = UYVYToI420RowY_C; UYVYToI420RowUV = UYVYToI420RowUV_C; } for (int y = 0; y < height; ++y) { if ((y & 1) == 0) { if (y >= (height - 1) ) { // last chroma on odd height clamp height src_stride_uyvy = 0; } UYVYToI420RowUV(src_uyvy, src_stride_uyvy, dst_u, dst_v, width); dst_u += dst_stride_u; dst_v += dst_stride_v; } UYVYToI420RowY(src_uyvy, dst_y, width); dst_y += dst_stride_y; src_uyvy += src_stride_uyvy; } return 0; } // Convert I420 to ARGB. // TODO(fbarchard): Add SSE2 version and supply C version for fallback. int I420ToARGB(const uint8* src_y, int src_stride_y, const uint8* src_u, int src_stride_u, const uint8* src_v, int src_stride_v, uint8* dst_argb, int dst_stride_argb, int width, int height) { // Negative height means invert the image. if (height < 0) { height = -height; dst_argb = dst_argb + (height - 1) * dst_stride_argb; dst_stride_argb = -dst_stride_argb; } for (int y = 0; y < height; ++y) { FastConvertYUVToRGB32Row(src_y, src_u, src_v, dst_argb, width); dst_argb += dst_stride_argb; src_y += src_stride_y; if (y & 1) { src_u += src_stride_u; src_v += src_stride_v; } } // MMX used for FastConvertYUVToRGB32Row requires an emms instruction. EMMS(); return 0; } // Convert I420 to BGRA. int I420ToBGRA(const uint8* src_y, int src_stride_y, const uint8* src_u, int src_stride_u, const uint8* src_v, int src_stride_v, uint8* dst_argb, int dst_stride_argb, int width, int height) { // Negative height means invert the image. if (height < 0) { height = -height; dst_argb = dst_argb + (height - 1) * dst_stride_argb; dst_stride_argb = -dst_stride_argb; } for (int y = 0; y < height; ++y) { FastConvertYUVToBGRARow(src_y, src_u, src_v, dst_argb, width); dst_argb += dst_stride_argb; src_y += src_stride_y; if (y & 1) { src_u += src_stride_u; src_v += src_stride_v; } } EMMS(); return 0; } // Convert I420 to BGRA. int I420ToABGR(const uint8* src_y, int src_stride_y, const uint8* src_u, int src_stride_u, const uint8* src_v, int src_stride_v, uint8* dst_argb, int dst_stride_argb, int width, int height) { // Negative height means invert the image. if (height < 0) { height = -height; dst_argb = dst_argb + (height - 1) * dst_stride_argb; dst_stride_argb = -dst_stride_argb; } for (int y = 0; y < height; ++y) { FastConvertYUVToABGRRow(src_y, src_u, src_v, dst_argb, width); dst_argb += dst_stride_argb; src_y += src_stride_y; if (y & 1) { src_u += src_stride_u; src_v += src_stride_v; } } EMMS(); return 0; } // Convert I422 to ARGB. int I422ToARGB(const uint8* src_y, int src_stride_y, const uint8* src_u, int src_stride_u, const uint8* src_v, int src_stride_v, uint8* dst_argb, int dst_stride_argb, int width, int height) { // Negative height means invert the image. if (height < 0) { height = -height; dst_argb = dst_argb + (height - 1) * dst_stride_argb; dst_stride_argb = -dst_stride_argb; } for (int y = 0; y < height; ++y) { FastConvertYUVToRGB32Row(src_y, src_u, src_v, dst_argb, width); dst_argb += dst_stride_argb; src_y += src_stride_y; src_u += src_stride_u; src_v += src_stride_v; } // MMX used for FastConvertYUVToRGB32Row requires an emms instruction. EMMS(); return 0; } // Convert I444 to ARGB. int I444ToARGB(const uint8* src_y, int src_stride_y, const uint8* src_u, int src_stride_u, const uint8* src_v, int src_stride_v, uint8* dst_argb, int dst_stride_argb, int width, int height) { // Negative height means invert the image. if (height < 0) { height = -height; dst_argb = dst_argb + (height - 1) * dst_stride_argb; dst_stride_argb = -dst_stride_argb; } for (int y = 0; y < height; ++y) { FastConvertYUV444ToRGB32Row(src_y, src_u, src_v, dst_argb, width); dst_argb += dst_stride_argb; src_y += src_stride_y; src_u += src_stride_u; src_v += src_stride_v; } // MMX used for FastConvertYUVToRGB32Row requires an emms instruction. EMMS(); return 0; } // Convert I400 to ARGB. int I400ToARGB_Reference(const uint8* src_y, int src_stride_y, uint8* dst_argb, int dst_stride_argb, int width, int height) { // Negative height means invert the image. if (height < 0) { height = -height; dst_argb = dst_argb + (height - 1) * dst_stride_argb; dst_stride_argb = -dst_stride_argb; } for (int y = 0; y < height; ++y) { FastConvertYToRGB32Row(src_y, dst_argb, width); dst_argb += dst_stride_argb; src_y += src_stride_y; } // MMX used for FastConvertYUVToRGB32Row requires an emms instruction. EMMS(); return 0; } // TODO(fbarchard): 64 bit version #if defined(WIN32) && !defined(COVERAGE_ENABLED) #define HAS_I400TOARGBROW_SSE2 __declspec(naked) static void I400ToARGBRow_SSE2(const uint8* src_y, uint8* dst_argb, int pix) { __asm { mov eax, [esp + 4] // src_y mov edx, [esp + 8] // dst_argb mov ecx, [esp + 12] // pix pcmpeqb xmm7, xmm7 // generate mask 0xff000000 pslld xmm7, 24 wloop: movq xmm0, qword ptr [eax] lea eax, [eax + 8] punpcklbw xmm0, xmm0 movdqa xmm1, xmm0 punpcklwd xmm0, xmm0 punpckhwd xmm1, xmm1 por xmm0, xmm7 por xmm1, xmm7 movdqa [edx], xmm0 movdqa [edx + 16], xmm1 lea edx, [edx + 32] sub ecx, 8 ja wloop ret } } #define HAS_ABGRTOARGBROW_SSSE3 __declspec(naked) static void ABGRToARGBRow_SSSE3(const uint8* src_abgr, uint8* dst_argb, int pix) { __asm { mov eax, [esp + 4] // src_abgr mov edx, [esp + 8] // dst_argb mov ecx, [esp + 12] // pix movdqa xmm7, _kShuffleMaskABGRToARGB convertloop : movdqa xmm0, [eax] lea eax, [eax + 16] pshufb xmm0, xmm7 movdqa [edx], xmm0 lea edx, [edx + 16] sub ecx, 4 ja convertloop ret } } #define HAS_BGRATOARGBROW_SSSE3 __declspec(naked) static void BGRAToARGBRow_SSSE3(const uint8* src_bgra, uint8* dst_argb, int pix) { __asm { mov eax, [esp + 4] // src_bgra mov edx, [esp + 8] // dst_argb mov ecx, [esp + 12] // pix movdqa xmm7, _kShuffleMaskBGRAToARGB convertloop : movdqa xmm0, [eax] lea eax, [eax + 16] pshufb xmm0, xmm7 movdqa [edx], xmm0 lea edx, [edx + 16] sub ecx, 4 ja convertloop ret } } #elif (defined(__x86_64__) || defined(__i386__)) && \ !defined(COVERAGE_ENABLED) && !defined(TARGET_IPHONE_SIMULATOR) // TODO(yuche): consider moving ARGB related codes to a separate file. #define HAS_I400TOARGBROW_SSE2 static void I400ToARGBRow_SSE2(const uint8* src_y, uint8* dst_argb, int pix) { asm volatile( "pcmpeqb %%xmm7,%%xmm7\n" "pslld $0x18,%%xmm7\n" "1:" "movq (%0),%%xmm0\n" "lea 0x8(%0),%0\n" "punpcklbw %%xmm0,%%xmm0\n" "movdqa %%xmm0,%%xmm1\n" "punpcklwd %%xmm0,%%xmm0\n" "punpckhwd %%xmm1,%%xmm1\n" "por %%xmm7,%%xmm0\n" "por %%xmm7,%%xmm1\n" "movdqa %%xmm0,(%1)\n" "movdqa %%xmm1,0x10(%1)\n" "lea 0x20(%1),%1\n" "sub $0x8,%2\n" "ja 1b\n" : "+r"(src_y), // %0 "+r"(dst_argb), // %1 "+r"(pix) // %2 : : "memory" ); } #define HAS_ABGRTOARGBROW_SSSE3 static void ABGRToARGBRow_SSSE3(const uint8* src_abgr, uint8* dst_argb, int pix) { asm volatile( "movdqa (%3),%%xmm7\n" "1:" "movdqa (%0),%%xmm0\n" "lea 0x10(%0),%0\n" "pshufb %%xmm7,%%xmm0\n" "movdqa %%xmm0,(%1)\n" "lea 0x10(%1),%1\n" "sub $0x4,%2\n" "ja 1b\n" : "+r"(src_abgr), // %0 "+r"(dst_argb), // %1 "+r"(pix) // %2 : "r"(kShuffleMaskABGRToARGB) // %3 : "memory" ); } #define HAS_BGRATOARGBROW_SSSE3 static void BGRAToARGBRow_SSSE3(const uint8* src_bgra, uint8* dst_argb, int pix) { asm volatile( "movdqa (%3),%%xmm7\n" "1:" "movdqa (%0),%%xmm0\n" "lea 0x10(%0),%0\n" "pshufb %%xmm7,%%xmm0\n" "movdqa %%xmm0,(%1)\n" "lea 0x10(%1),%1\n" "sub $0x4,%2\n" "ja 1b\n" : "+r"(src_bgra), // %0 "+r"(dst_argb), // %1 "+r"(pix) // %2 : "r"(kShuffleMaskBGRAToARGB) // %3 : "memory" ); } #endif static void I400ToARGBRow_C(const uint8* src_y, uint8* dst_argb, int pix) { // Copy a Y to RGB. for (int x = 0; x < pix; ++x) { uint8 y = src_y[0]; dst_argb[2] = dst_argb[1] = dst_argb[0] = y; dst_argb[3] = 255u; dst_argb += 4; ++src_y; } } // Convert I400 to ARGB. int I400ToARGB(const uint8* src_y, int src_stride_y, uint8* dst_argb, int dst_stride_argb, int width, int height) { if (height < 0) { height = -height; src_y = src_y + (height - 1) * src_stride_y; src_stride_y = -src_stride_y; } void (*I400ToARGBRow)(const uint8* src_y, uint8* dst_argb, int pix); #if defined(HAS_I400TOARGBROW_SSE2) if (libyuv::TestCpuFlag(libyuv::kCpuHasSSE2) && (width % 8 == 0) && IS_ALIGNED(src_y, 8) && (src_stride_y % 8 == 0) && IS_ALIGNED(dst_argb, 16) && (dst_stride_argb % 16 == 0)) { I400ToARGBRow = I400ToARGBRow_SSE2; } else #endif { I400ToARGBRow = I400ToARGBRow_C; } for (int y = 0; y < height; ++y) { I400ToARGBRow(src_y, dst_argb, width); src_y += src_stride_y; dst_argb += dst_stride_argb; } return 0; } static void ABGRToARGBRow_C(const uint8* src_abgr, uint8* dst_argb, int pix) { for (int x = 0; x < pix; ++x) { // To support in-place conversion. uint8 r = src_abgr[0]; uint8 g = src_abgr[1]; uint8 b = src_abgr[2]; uint8 a = src_abgr[3]; dst_argb[0] = b; dst_argb[1] = g; dst_argb[2] = r; dst_argb[3] = a; dst_argb += 4; src_abgr += 4; } } int ABGRToARGB(const uint8* src_abgr, int src_stride_abgr, uint8* dst_argb, int dst_stride_argb, int width, int height) { if (height < 0) { height = -height; src_abgr = src_abgr + (height - 1) * src_stride_abgr; src_stride_abgr = -src_stride_abgr; } void (*ABGRToARGBRow)(const uint8* src_abgr, uint8* dst_argb, int pix); #if defined(HAS_ABGRTOARGBROW_SSSE3) if (libyuv::TestCpuFlag(libyuv::kCpuHasSSSE3) && (width % 4 == 0) && IS_ALIGNED(src_abgr, 16) && (src_stride_abgr % 16 == 0) && IS_ALIGNED(dst_argb, 16) && (dst_stride_argb % 16 == 0)) { ABGRToARGBRow = ABGRToARGBRow_SSSE3; } else #endif { ABGRToARGBRow = ABGRToARGBRow_C; } for (int y = 0; y < height; ++y) { ABGRToARGBRow(src_abgr, dst_argb, width); src_abgr += src_stride_abgr; dst_argb += dst_stride_argb; } return 0; } static void BGRAToARGBRow_C(const uint8* src_bgra, uint8* dst_argb, int pix) { for (int x = 0; x < pix; ++x) { // To support in-place conversion. uint8 a = src_bgra[0]; uint8 r = src_bgra[1]; uint8 g = src_bgra[2]; uint8 b = src_bgra[3]; dst_argb[0] = b; dst_argb[1] = g; dst_argb[2] = r; dst_argb[3] = a; dst_argb += 4; src_bgra += 4; } } // Convert BGRA to ARGB. int BGRAToARGB(const uint8* src_bgra, int src_stride_bgra, uint8* dst_argb, int dst_stride_argb, int width, int height) { if (height < 0) { height = -height; src_bgra = src_bgra + (height - 1) * src_stride_bgra; src_stride_bgra = -src_stride_bgra; } void (*BGRAToARGBRow)(const uint8* src_bgra, uint8* dst_argb, int pix); #if defined(HAS_BGRATOARGBROW_SSSE3) if (libyuv::TestCpuFlag(libyuv::kCpuHasSSSE3) && (width % 4 == 0) && IS_ALIGNED(src_bgra, 16) && (src_stride_bgra % 16 == 0) && IS_ALIGNED(dst_argb, 16) && (dst_stride_argb % 16 == 0)) { BGRAToARGBRow = BGRAToARGBRow_SSSE3; } else #endif { BGRAToARGBRow = BGRAToARGBRow_C; } for (int y = 0; y < height; ++y) { BGRAToARGBRow(src_bgra, dst_argb, width); src_bgra += src_stride_bgra; dst_argb += dst_stride_argb; } return 0; } // Convert ARGB to I400. int ARGBToI400(const uint8* src_argb, int src_stride_argb, uint8* dst_y, int dst_stride_y, int width, int height) { if (height < 0) { height = -height; src_argb = src_argb + (height - 1) * src_stride_argb; src_stride_argb = -src_stride_argb; } void (*ARGBToYRow)(const uint8* src_argb, uint8* dst_y, int pix); #if defined(HAS_ARGBTOYROW_SSSE3) if (libyuv::TestCpuFlag(libyuv::kCpuHasSSSE3) && (width % 4 == 0) && IS_ALIGNED(src_argb, 16) && (src_stride_argb % 16 == 0) && IS_ALIGNED(dst_y, 16) && (dst_stride_y % 16 == 0)) { ARGBToYRow = ARGBToYRow_SSSE3; } else #endif { ARGBToYRow = ARGBToYRow_C; } for (int y = 0; y < height; ++y) { ARGBToYRow(src_argb, dst_y, width); src_argb += src_stride_argb; dst_y += dst_stride_y; } return 0; } // Convert RAW to ARGB. int RAWToARGB(const uint8* src_raw, int src_stride_raw, uint8* dst_argb, int dst_stride_argb, int width, int height) { if (height < 0) { height = -height; src_raw = src_raw + (height - 1) * src_stride_raw; src_stride_raw = -src_stride_raw; } void (*RAWToARGBRow)(const uint8* src_raw, uint8* dst_argb, int pix); #if defined(HAS_RAWTOARGBROW_SSSE3) if (libyuv::TestCpuFlag(libyuv::kCpuHasSSSE3) && (width % 16 == 0) && IS_ALIGNED(src_raw, 16) && (src_stride_raw % 16 == 0) && IS_ALIGNED(dst_argb, 16) && (dst_stride_argb % 16 == 0)) { RAWToARGBRow = RAWToARGBRow_SSSE3; } else #endif { RAWToARGBRow = RAWToARGBRow_C; } for (int y = 0; y < height; ++y) { RAWToARGBRow(src_raw, dst_argb, width); src_raw += src_stride_raw; dst_argb += dst_stride_argb; } return 0; } // Convert BG24 to ARGB. int BG24ToARGB(const uint8* src_bg24, int src_stride_bg24, uint8* dst_argb, int dst_stride_argb, int width, int height) { if (height < 0) { height = -height; src_bg24 = src_bg24 + (height - 1) * src_stride_bg24; src_stride_bg24 = -src_stride_bg24; } void (*BG24ToARGBRow)(const uint8* src_bg24, uint8* dst_argb, int pix); #if defined(HAS_BG24TOARGBROW_SSSE3) if (libyuv::TestCpuFlag(libyuv::kCpuHasSSSE3) && (width % 16 == 0) && IS_ALIGNED(src_bg24, 16) && (src_stride_bg24 % 16 == 0) && IS_ALIGNED(dst_argb, 16) && (dst_stride_argb % 16 == 0)) { BG24ToARGBRow = BG24ToARGBRow_SSSE3; } else #endif { BG24ToARGBRow = BG24ToARGBRow_C; } for (int y = 0; y < height; ++y) { BG24ToARGBRow(src_bg24, dst_argb, width); src_bg24 += src_stride_bg24; dst_argb += dst_stride_argb; } return 0; } } // namespace libyuv