// Copyright 2005, Google Inc. // All rights reserved. // // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions are // met: // // * Redistributions of source code must retain the above copyright // notice, this list of conditions and the following disclaimer. // * Redistributions in binary form must reproduce the above // copyright notice, this list of conditions and the following disclaimer // in the documentation and/or other materials provided with the // distribution. // * Neither the name of Google Inc. nor the names of its // contributors may be used to endorse or promote products derived from // this software without specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. // // Authors: wan@google.com (Zhanyong Wan), eefacm@gmail.com (Sean Mcafee) // // The Google C++ Testing Framework (Google Test) // // This header file declares functions and macros used internally by // Google Test. They are subject to change without notice. #ifndef GTEST_INCLUDE_GTEST_INTERNAL_GTEST_INTERNAL_H_ #define GTEST_INCLUDE_GTEST_INTERNAL_GTEST_INTERNAL_H_ #include "gtest/internal/gtest-port.h" #if GTEST_OS_LINUX # include <stdlib.h> # include <sys/types.h> # include <sys/wait.h> # include <unistd.h> #endif // GTEST_OS_LINUX #include <ctype.h> #include <string.h> #include <iomanip> #include <limits> #include <set> #include "gtest/internal/gtest-string.h" #include "gtest/internal/gtest-filepath.h" #include "gtest/internal/gtest-type-util.h" #include "llvm/Support/raw_os_ostream.h" // Due to C++ preprocessor weirdness, we need double indirection to // concatenate two tokens when one of them is __LINE__. Writing // // foo ## __LINE__ // // will result in the token foo__LINE__, instead of foo followed by // the current line number. For more details, see // http://www.parashift.com/c++-faq-lite/misc-technical-issues.html#faq-39.6 #define GTEST_CONCAT_TOKEN_(foo, bar) GTEST_CONCAT_TOKEN_IMPL_(foo, bar) #define GTEST_CONCAT_TOKEN_IMPL_(foo, bar) foo ## bar // Google Test defines the testing::Message class to allow construction of // test messages via the << operator. The idea is that anything // streamable to std::ostream can be streamed to a testing::Message. // This allows a user to use his own types in Google Test assertions by // overloading the << operator. // // util/gtl/stl_logging-inl.h overloads << for STL containers. These // overloads cannot be defined in the std namespace, as that will be // undefined behavior. Therefore, they are defined in the global // namespace instead. // // C++'s symbol lookup rule (i.e. Koenig lookup) says that these // overloads are visible in either the std namespace or the global // namespace, but not other namespaces, including the testing // namespace which Google Test's Message class is in. // // To allow STL containers (and other types that has a << operator // defined in the global namespace) to be used in Google Test assertions, // testing::Message must access the custom << operator from the global // namespace. Hence this helper function. // // Note: Jeffrey Yasskin suggested an alternative fix by "using // ::operator<<;" in the definition of Message's operator<<. That fix // doesn't require a helper function, but unfortunately doesn't // compile with MSVC. // LLVM INTERNAL CHANGE: To allow operator<< to work with both // std::ostreams and LLVM's raw_ostreams, we define a special // std::ostream with an implicit conversion to raw_ostream& and stream // to that. This causes the compiler to prefer std::ostream overloads // but still find raw_ostream& overloads. namespace llvm { class convertible_fwd_ostream : public std::ostream { raw_os_ostream ros_; public: convertible_fwd_ostream(std::ostream& os) : std::ostream(os.rdbuf()), ros_(*this) {} operator raw_ostream&() { return ros_; } }; } template <typename T> inline void GTestStreamToHelper(std::ostream* os, const T& val) { llvm::convertible_fwd_ostream cos(*os); cos << val; } class ProtocolMessage; namespace proto2 { class Message; } namespace testing { // Forward declarations. class AssertionResult; // Result of an assertion. class Message; // Represents a failure message. class Test; // Represents a test. class TestInfo; // Information about a test. class TestPartResult; // Result of a test part. class UnitTest; // A collection of test cases. template <typename T> ::std::string PrintToString(const T& value); namespace internal { struct TraceInfo; // Information about a trace point. class ScopedTrace; // Implements scoped trace. class TestInfoImpl; // Opaque implementation of TestInfo class UnitTestImpl; // Opaque implementation of UnitTest // How many times InitGoogleTest() has been called. extern int g_init_gtest_count; // The text used in failure messages to indicate the start of the // stack trace. GTEST_API_ extern const char kStackTraceMarker[]; // A secret type that Google Test users don't know about. It has no // definition on purpose. Therefore it's impossible to create a // Secret object, which is what we want. class Secret; // Two overloaded helpers for checking at compile time whether an // expression is a null pointer literal (i.e. NULL or any 0-valued // compile-time integral constant). Their return values have // different sizes, so we can use sizeof() to test which version is // picked by the compiler. These helpers have no implementations, as // we only need their signatures. // // Given IsNullLiteralHelper(x), the compiler will pick the first // version if x can be implicitly converted to Secret*, and pick the // second version otherwise. Since Secret is a secret and incomplete // type, the only expression a user can write that has type Secret* is // a null pointer literal. Therefore, we know that x is a null // pointer literal if and only if the first version is picked by the // compiler. char IsNullLiteralHelper(Secret* p); char (&IsNullLiteralHelper(...))[2]; // NOLINT // A compile-time bool constant that is true if and only if x is a // null pointer literal (i.e. NULL or any 0-valued compile-time // integral constant). #ifdef GTEST_ELLIPSIS_NEEDS_POD_ // We lose support for NULL detection where the compiler doesn't like // passing non-POD classes through ellipsis (...). # define GTEST_IS_NULL_LITERAL_(x) false #else # define GTEST_IS_NULL_LITERAL_(x) \ (sizeof(::testing::internal::IsNullLiteralHelper(x)) == 1) #endif // GTEST_ELLIPSIS_NEEDS_POD_ // Appends the user-supplied message to the Google-Test-generated message. GTEST_API_ String AppendUserMessage(const String& gtest_msg, const Message& user_msg); // A helper class for creating scoped traces in user programs. class GTEST_API_ ScopedTrace { public: // The c'tor pushes the given source file location and message onto // a trace stack maintained by Google Test. ScopedTrace(const char* file, int line, const Message& message); // The d'tor pops the info pushed by the c'tor. // // Note that the d'tor is not virtual in order to be efficient. // Don't inherit from ScopedTrace! ~ScopedTrace(); private: GTEST_DISALLOW_COPY_AND_ASSIGN_(ScopedTrace); } GTEST_ATTRIBUTE_UNUSED_; // A ScopedTrace object does its job in its // c'tor and d'tor. Therefore it doesn't // need to be used otherwise. // Converts a streamable value to a String. A NULL pointer is // converted to "(null)". When the input value is a ::string, // ::std::string, ::wstring, or ::std::wstring object, each NUL // character in it is replaced with "\\0". // Declared here but defined in gtest.h, so that it has access // to the definition of the Message class, required by the ARM // compiler. template <typename T> String StreamableToString(const T& streamable); // The Symbian compiler has a bug that prevents it from selecting the // correct overload of FormatForComparisonFailureMessage (see below) // unless we pass the first argument by reference. If we do that, // however, Visual Age C++ 10.1 generates a compiler error. Therefore // we only apply the work-around for Symbian. #if defined(__SYMBIAN32__) # define GTEST_CREF_WORKAROUND_ const& #else # define GTEST_CREF_WORKAROUND_ #endif // When this operand is a const char* or char*, if the other operand // is a ::std::string or ::string, we print this operand as a C string // rather than a pointer (we do the same for wide strings); otherwise // we print it as a pointer to be safe. // This internal macro is used to avoid duplicated code. #define GTEST_FORMAT_IMPL_(operand2_type, operand1_printer)\ inline String FormatForComparisonFailureMessage(\ operand2_type::value_type* GTEST_CREF_WORKAROUND_ str, \ const operand2_type& /*operand2*/) {\ return operand1_printer(str);\ }\ inline String FormatForComparisonFailureMessage(\ const operand2_type::value_type* GTEST_CREF_WORKAROUND_ str, \ const operand2_type& /*operand2*/) {\ return operand1_printer(str);\ } GTEST_FORMAT_IMPL_(::std::string, String::ShowCStringQuoted) #if GTEST_HAS_STD_WSTRING GTEST_FORMAT_IMPL_(::std::wstring, String::ShowWideCStringQuoted) #endif // GTEST_HAS_STD_WSTRING #if GTEST_HAS_GLOBAL_STRING GTEST_FORMAT_IMPL_(::string, String::ShowCStringQuoted) #endif // GTEST_HAS_GLOBAL_STRING #if GTEST_HAS_GLOBAL_WSTRING GTEST_FORMAT_IMPL_(::wstring, String::ShowWideCStringQuoted) #endif // GTEST_HAS_GLOBAL_WSTRING #undef GTEST_FORMAT_IMPL_ // The next four overloads handle the case where the operand being // printed is a char/wchar_t pointer and the other operand is not a // string/wstring object. In such cases, we just print the operand as // a pointer to be safe. #define GTEST_FORMAT_CHAR_PTR_IMPL_(CharType) \ template <typename T> \ String FormatForComparisonFailureMessage(CharType* GTEST_CREF_WORKAROUND_ p, \ const T&) { \ return PrintToString(static_cast<const void*>(p)); \ } GTEST_FORMAT_CHAR_PTR_IMPL_(char) GTEST_FORMAT_CHAR_PTR_IMPL_(const char) GTEST_FORMAT_CHAR_PTR_IMPL_(wchar_t) GTEST_FORMAT_CHAR_PTR_IMPL_(const wchar_t) #undef GTEST_FORMAT_CHAR_PTR_IMPL_ // Constructs and returns the message for an equality assertion // (e.g. ASSERT_EQ, EXPECT_STREQ, etc) failure. // // The first four parameters are the expressions used in the assertion // and their values, as strings. For example, for ASSERT_EQ(foo, bar) // where foo is 5 and bar is 6, we have: // // expected_expression: "foo" // actual_expression: "bar" // expected_value: "5" // actual_value: "6" // // The ignoring_case parameter is true iff the assertion is a // *_STRCASEEQ*. When it's true, the string " (ignoring case)" will // be inserted into the message. GTEST_API_ AssertionResult EqFailure(const char* expected_expression, const char* actual_expression, const String& expected_value, const String& actual_value, bool ignoring_case); // Constructs a failure message for Boolean assertions such as EXPECT_TRUE. GTEST_API_ String GetBoolAssertionFailureMessage( const AssertionResult& assertion_result, const char* expression_text, const char* actual_predicate_value, const char* expected_predicate_value); // This template class represents an IEEE floating-point number // (either single-precision or double-precision, depending on the // template parameters). // // The purpose of this class is to do more sophisticated number // comparison. (Due to round-off error, etc, it's very unlikely that // two floating-points will be equal exactly. Hence a naive // comparison by the == operation often doesn't work.) // // Format of IEEE floating-point: // // The most-significant bit being the leftmost, an IEEE // floating-point looks like // // sign_bit exponent_bits fraction_bits // // Here, sign_bit is a single bit that designates the sign of the // number. // // For float, there are 8 exponent bits and 23 fraction bits. // // For double, there are 11 exponent bits and 52 fraction bits. // // More details can be found at // http://en.wikipedia.org/wiki/IEEE_floating-point_standard. // // Template parameter: // // RawType: the raw floating-point type (either float or double) template <typename RawType> class FloatingPoint { public: // Defines the unsigned integer type that has the same size as the // floating point number. typedef typename TypeWithSize<sizeof(RawType)>::UInt Bits; // Constants. // # of bits in a number. static const size_t kBitCount = 8*sizeof(RawType); // # of fraction bits in a number. static const size_t kFractionBitCount = std::numeric_limits<RawType>::digits - 1; // # of exponent bits in a number. static const size_t kExponentBitCount = kBitCount - 1 - kFractionBitCount; // The mask for the sign bit. static const Bits kSignBitMask = static_cast<Bits>(1) << (kBitCount - 1); // The mask for the fraction bits. static const Bits kFractionBitMask = ~static_cast<Bits>(0) >> (kExponentBitCount + 1); // The mask for the exponent bits. static const Bits kExponentBitMask = ~(kSignBitMask | kFractionBitMask); // How many ULP's (Units in the Last Place) we want to tolerate when // comparing two numbers. The larger the value, the more error we // allow. A 0 value means that two numbers must be exactly the same // to be considered equal. // // The maximum error of a single floating-point operation is 0.5 // units in the last place. On Intel CPU's, all floating-point // calculations are done with 80-bit precision, while double has 64 // bits. Therefore, 4 should be enough for ordinary use. // // See the following article for more details on ULP: // http://www.cygnus-software.com/papers/comparingfloats/comparingfloats.htm. static const size_t kMaxUlps = 4; // Constructs a FloatingPoint from a raw floating-point number. // // On an Intel CPU, passing a non-normalized NAN (Not a Number) // around may change its bits, although the new value is guaranteed // to be also a NAN. Therefore, don't expect this constructor to // preserve the bits in x when x is a NAN. explicit FloatingPoint(const RawType& x) { u_.value_ = x; } // Static methods // Reinterprets a bit pattern as a floating-point number. // // This function is needed to test the AlmostEquals() method. static RawType ReinterpretBits(const Bits bits) { FloatingPoint fp(0); fp.u_.bits_ = bits; return fp.u_.value_; } // Returns the floating-point number that represent positive infinity. static RawType Infinity() { return ReinterpretBits(kExponentBitMask); } // Non-static methods // Returns the bits that represents this number. const Bits &bits() const { return u_.bits_; } // Returns the exponent bits of this number. Bits exponent_bits() const { return kExponentBitMask & u_.bits_; } // Returns the fraction bits of this number. Bits fraction_bits() const { return kFractionBitMask & u_.bits_; } // Returns the sign bit of this number. Bits sign_bit() const { return kSignBitMask & u_.bits_; } // Returns true iff this is NAN (not a number). bool is_nan() const { // It's a NAN if the exponent bits are all ones and the fraction // bits are not entirely zeros. return (exponent_bits() == kExponentBitMask) && (fraction_bits() != 0); } // Returns true iff this number is at most kMaxUlps ULP's away from // rhs. In particular, this function: // // - returns false if either number is (or both are) NAN. // - treats really large numbers as almost equal to infinity. // - thinks +0.0 and -0.0 are 0 DLP's apart. bool AlmostEquals(const FloatingPoint& rhs) const { // The IEEE standard says that any comparison operation involving // a NAN must return false. if (is_nan() || rhs.is_nan()) return false; return DistanceBetweenSignAndMagnitudeNumbers(u_.bits_, rhs.u_.bits_) <= kMaxUlps; } private: // The data type used to store the actual floating-point number. union FloatingPointUnion { RawType value_; // The raw floating-point number. Bits bits_; // The bits that represent the number. }; // Converts an integer from the sign-and-magnitude representation to // the biased representation. More precisely, let N be 2 to the // power of (kBitCount - 1), an integer x is represented by the // unsigned number x + N. // // For instance, // // -N + 1 (the most negative number representable using // sign-and-magnitude) is represented by 1; // 0 is represented by N; and // N - 1 (the biggest number representable using // sign-and-magnitude) is represented by 2N - 1. // // Read http://en.wikipedia.org/wiki/Signed_number_representations // for more details on signed number representations. static Bits SignAndMagnitudeToBiased(const Bits &sam) { if (kSignBitMask & sam) { // sam represents a negative number. return ~sam + 1; } else { // sam represents a positive number. return kSignBitMask | sam; } } // Given two numbers in the sign-and-magnitude representation, // returns the distance between them as an unsigned number. static Bits DistanceBetweenSignAndMagnitudeNumbers(const Bits &sam1, const Bits &sam2) { const Bits biased1 = SignAndMagnitudeToBiased(sam1); const Bits biased2 = SignAndMagnitudeToBiased(sam2); return (biased1 >= biased2) ? (biased1 - biased2) : (biased2 - biased1); } FloatingPointUnion u_; }; // Typedefs the instances of the FloatingPoint template class that we // care to use. typedef FloatingPoint<float> Float; typedef FloatingPoint<double> Double; // In order to catch the mistake of putting tests that use different // test fixture classes in the same test case, we need to assign // unique IDs to fixture classes and compare them. The TypeId type is // used to hold such IDs. The user should treat TypeId as an opaque // type: the only operation allowed on TypeId values is to compare // them for equality using the == operator. typedef const void* TypeId; template <typename T> class TypeIdHelper { public: // dummy_ must not have a const type. Otherwise an overly eager // compiler (e.g. MSVC 7.1 & 8.0) may try to merge // TypeIdHelper<T>::dummy_ for different Ts as an "optimization". static bool dummy_; }; template <typename T> bool TypeIdHelper<T>::dummy_ = false; // GetTypeId<T>() returns the ID of type T. Different values will be // returned for different types. Calling the function twice with the // same type argument is guaranteed to return the same ID. template <typename T> TypeId GetTypeId() { // The compiler is required to allocate a different // TypeIdHelper<T>::dummy_ variable for each T used to instantiate // the template. Therefore, the address of dummy_ is guaranteed to // be unique. return &(TypeIdHelper<T>::dummy_); } // Returns the type ID of ::testing::Test. Always call this instead // of GetTypeId< ::testing::Test>() to get the type ID of // ::testing::Test, as the latter may give the wrong result due to a // suspected linker bug when compiling Google Test as a Mac OS X // framework. GTEST_API_ TypeId GetTestTypeId(); // Defines the abstract factory interface that creates instances // of a Test object. class TestFactoryBase { public: virtual ~TestFactoryBase() {} // Creates a test instance to run. The instance is both created and destroyed // within TestInfoImpl::Run() virtual Test* CreateTest() = 0; protected: TestFactoryBase() {} private: GTEST_DISALLOW_COPY_AND_ASSIGN_(TestFactoryBase); }; // This class provides implementation of TeastFactoryBase interface. // It is used in TEST and TEST_F macros. template <class TestClass> class TestFactoryImpl : public TestFactoryBase { public: virtual Test* CreateTest() { return new TestClass; } }; #if GTEST_OS_WINDOWS // Predicate-formatters for implementing the HRESULT checking macros // {ASSERT|EXPECT}_HRESULT_{SUCCEEDED|FAILED} // We pass a long instead of HRESULT to avoid causing an // include dependency for the HRESULT type. GTEST_API_ AssertionResult IsHRESULTSuccess(const char* expr, long hr); // NOLINT GTEST_API_ AssertionResult IsHRESULTFailure(const char* expr, long hr); // NOLINT #endif // GTEST_OS_WINDOWS // Types of SetUpTestCase() and TearDownTestCase() functions. typedef void (*SetUpTestCaseFunc)(); typedef void (*TearDownTestCaseFunc)(); // Creates a new TestInfo object and registers it with Google Test; // returns the created object. // // Arguments: // // test_case_name: name of the test case // name: name of the test // type_param the name of the test's type parameter, or NULL if // this is not a typed or a type-parameterized test. // value_param text representation of the test's value parameter, // or NULL if this is not a type-parameterized test. // fixture_class_id: ID of the test fixture class // set_up_tc: pointer to the function that sets up the test case // tear_down_tc: pointer to the function that tears down the test case // factory: pointer to the factory that creates a test object. // The newly created TestInfo instance will assume // ownership of the factory object. GTEST_API_ TestInfo* MakeAndRegisterTestInfo( const char* test_case_name, const char* name, const char* type_param, const char* value_param, TypeId fixture_class_id, SetUpTestCaseFunc set_up_tc, TearDownTestCaseFunc tear_down_tc, TestFactoryBase* factory); // If *pstr starts with the given prefix, modifies *pstr to be right // past the prefix and returns true; otherwise leaves *pstr unchanged // and returns false. None of pstr, *pstr, and prefix can be NULL. GTEST_API_ bool SkipPrefix(const char* prefix, const char** pstr); #if GTEST_HAS_TYPED_TEST || GTEST_HAS_TYPED_TEST_P // State of the definition of a type-parameterized test case. class GTEST_API_ TypedTestCasePState { public: TypedTestCasePState() : registered_(false) {} // Adds the given test name to defined_test_names_ and return true // if the test case hasn't been registered; otherwise aborts the // program. bool AddTestName(const char* file, int line, const char* case_name, const char* test_name) { if (registered_) { fprintf(stderr, "%s Test %s must be defined before " "REGISTER_TYPED_TEST_CASE_P(%s, ...).\n", FormatFileLocation(file, line).c_str(), test_name, case_name); fflush(stderr); posix::Abort(); } defined_test_names_.insert(test_name); return true; } // Verifies that registered_tests match the test names in // defined_test_names_; returns registered_tests if successful, or // aborts the program otherwise. const char* VerifyRegisteredTestNames( const char* file, int line, const char* registered_tests); private: bool registered_; ::std::set<const char*> defined_test_names_; }; // Skips to the first non-space char after the first comma in 'str'; // returns NULL if no comma is found in 'str'. inline const char* SkipComma(const char* str) { const char* comma = strchr(str, ','); if (comma == NULL) { return NULL; } while (IsSpace(*(++comma))) {} return comma; } // Returns the prefix of 'str' before the first comma in it; returns // the entire string if it contains no comma. inline String GetPrefixUntilComma(const char* str) { const char* comma = strchr(str, ','); return comma == NULL ? String(str) : String(str, comma - str); } // TypeParameterizedTest<Fixture, TestSel, Types>::Register() // registers a list of type-parameterized tests with Google Test. The // return value is insignificant - we just need to return something // such that we can call this function in a namespace scope. // // Implementation note: The GTEST_TEMPLATE_ macro declares a template // template parameter. It's defined in gtest-type-util.h. template <GTEST_TEMPLATE_ Fixture, class TestSel, typename Types> class TypeParameterizedTest { public: // 'index' is the index of the test in the type list 'Types' // specified in INSTANTIATE_TYPED_TEST_CASE_P(Prefix, TestCase, // Types). Valid values for 'index' are [0, N - 1] where N is the // length of Types. static bool Register(const char* prefix, const char* case_name, const char* test_names, int index) { typedef typename Types::Head Type; typedef Fixture<Type> FixtureClass; typedef typename GTEST_BIND_(TestSel, Type) TestClass; // First, registers the first type-parameterized test in the type // list. MakeAndRegisterTestInfo( String::Format("%s%s%s/%d", prefix, prefix[0] == '\0' ? "" : "/", case_name, index).c_str(), GetPrefixUntilComma(test_names).c_str(), GetTypeName<Type>().c_str(), NULL, // No value parameter. GetTypeId<FixtureClass>(), TestClass::SetUpTestCase, TestClass::TearDownTestCase, new TestFactoryImpl<TestClass>); // Next, recurses (at compile time) with the tail of the type list. return TypeParameterizedTest<Fixture, TestSel, typename Types::Tail> ::Register(prefix, case_name, test_names, index + 1); } }; // The base case for the compile time recursion. template <GTEST_TEMPLATE_ Fixture, class TestSel> class TypeParameterizedTest<Fixture, TestSel, Types0> { public: static bool Register(const char* /*prefix*/, const char* /*case_name*/, const char* /*test_names*/, int /*index*/) { return true; } }; // TypeParameterizedTestCase<Fixture, Tests, Types>::Register() // registers *all combinations* of 'Tests' and 'Types' with Google // Test. The return value is insignificant - we just need to return // something such that we can call this function in a namespace scope. template <GTEST_TEMPLATE_ Fixture, typename Tests, typename Types> class TypeParameterizedTestCase { public: static bool Register(const char* prefix, const char* case_name, const char* test_names) { typedef typename Tests::Head Head; // First, register the first test in 'Test' for each type in 'Types'. TypeParameterizedTest<Fixture, Head, Types>::Register( prefix, case_name, test_names, 0); // Next, recurses (at compile time) with the tail of the test list. return TypeParameterizedTestCase<Fixture, typename Tests::Tail, Types> ::Register(prefix, case_name, SkipComma(test_names)); } }; // The base case for the compile time recursion. template <GTEST_TEMPLATE_ Fixture, typename Types> class TypeParameterizedTestCase<Fixture, Templates0, Types> { public: static bool Register(const char* /*prefix*/, const char* /*case_name*/, const char* /*test_names*/) { return true; } }; #endif // GTEST_HAS_TYPED_TEST || GTEST_HAS_TYPED_TEST_P // Returns the current OS stack trace as a String. // // The maximum number of stack frames to be included is specified by // the gtest_stack_trace_depth flag. The skip_count parameter // specifies the number of top frames to be skipped, which doesn't // count against the number of frames to be included. // // For example, if Foo() calls Bar(), which in turn calls // GetCurrentOsStackTraceExceptTop(..., 1), Foo() will be included in // the trace but Bar() and GetCurrentOsStackTraceExceptTop() won't. GTEST_API_ String GetCurrentOsStackTraceExceptTop(UnitTest* unit_test, int skip_count); // Helpers for suppressing warnings on unreachable code or constant // condition. // Always returns true. GTEST_API_ bool AlwaysTrue(); // Always returns false. inline bool AlwaysFalse() { return !AlwaysTrue(); } // Helper for suppressing false warning from Clang on a const char* // variable declared in a conditional expression always being NULL in // the else branch. struct GTEST_API_ ConstCharPtr { ConstCharPtr(const char* str) : value(str) {} operator bool() const { return true; } const char* value; }; // A simple Linear Congruential Generator for generating random // numbers with a uniform distribution. Unlike rand() and srand(), it // doesn't use global state (and therefore can't interfere with user // code). Unlike rand_r(), it's portable. An LCG isn't very random, // but it's good enough for our purposes. class GTEST_API_ Random { public: static const UInt32 kMaxRange = 1u << 31; explicit Random(UInt32 seed) : state_(seed) {} void Reseed(UInt32 seed) { state_ = seed; } // Generates a random number from [0, range). Crashes if 'range' is // 0 or greater than kMaxRange. UInt32 Generate(UInt32 range); private: UInt32 state_; GTEST_DISALLOW_COPY_AND_ASSIGN_(Random); }; // Defining a variable of type CompileAssertTypesEqual<T1, T2> will cause a // compiler error iff T1 and T2 are different types. template <typename T1, typename T2> struct CompileAssertTypesEqual; template <typename T> struct CompileAssertTypesEqual<T, T> { }; // Removes the reference from a type if it is a reference type, // otherwise leaves it unchanged. This is the same as // tr1::remove_reference, which is not widely available yet. template <typename T> struct RemoveReference { typedef T type; }; // NOLINT template <typename T> struct RemoveReference<T&> { typedef T type; }; // NOLINT // A handy wrapper around RemoveReference that works when the argument // T depends on template parameters. #define GTEST_REMOVE_REFERENCE_(T) \ typename ::testing::internal::RemoveReference<T>::type // Removes const from a type if it is a const type, otherwise leaves // it unchanged. This is the same as tr1::remove_const, which is not // widely available yet. template <typename T> struct RemoveConst { typedef T type; }; // NOLINT template <typename T> struct RemoveConst<const T> { typedef T type; }; // NOLINT // MSVC 8.0, Sun C++, and IBM XL C++ have a bug which causes the above // definition to fail to remove the const in 'const int[3]' and 'const // char[3][4]'. The following specialization works around the bug. // However, it causes trouble with GCC and thus needs to be // conditionally compiled. #if defined(_MSC_VER) || defined(__SUNPRO_CC) || defined(__IBMCPP__) template <typename T, size_t N> struct RemoveConst<const T[N]> { typedef typename RemoveConst<T>::type type[N]; }; #endif // A handy wrapper around RemoveConst that works when the argument // T depends on template parameters. #define GTEST_REMOVE_CONST_(T) \ typename ::testing::internal::RemoveConst<T>::type // Turns const U&, U&, const U, and U all into U. #define GTEST_REMOVE_REFERENCE_AND_CONST_(T) \ GTEST_REMOVE_CONST_(GTEST_REMOVE_REFERENCE_(T)) // Adds reference to a type if it is not a reference type, // otherwise leaves it unchanged. This is the same as // tr1::add_reference, which is not widely available yet. template <typename T> struct AddReference { typedef T& type; }; // NOLINT template <typename T> struct AddReference<T&> { typedef T& type; }; // NOLINT // A handy wrapper around AddReference that works when the argument T // depends on template parameters. #define GTEST_ADD_REFERENCE_(T) \ typename ::testing::internal::AddReference<T>::type // Adds a reference to const on top of T as necessary. For example, // it transforms // // char ==> const char& // const char ==> const char& // char& ==> const char& // const char& ==> const char& // // The argument T must depend on some template parameters. #define GTEST_REFERENCE_TO_CONST_(T) \ GTEST_ADD_REFERENCE_(const GTEST_REMOVE_REFERENCE_(T)) // ImplicitlyConvertible<From, To>::value is a compile-time bool // constant that's true iff type From can be implicitly converted to // type To. template <typename From, typename To> class ImplicitlyConvertible { private: // We need the following helper functions only for their types. // They have no implementations. // MakeFrom() is an expression whose type is From. We cannot simply // use From(), as the type From may not have a public default // constructor. static From MakeFrom(); // These two functions are overloaded. Given an expression // Helper(x), the compiler will pick the first version if x can be // implicitly converted to type To; otherwise it will pick the // second version. // // The first version returns a value of size 1, and the second // version returns a value of size 2. Therefore, by checking the // size of Helper(x), which can be done at compile time, we can tell // which version of Helper() is used, and hence whether x can be // implicitly converted to type To. static char Helper(To); static char (&Helper(...))[2]; // NOLINT // We have to put the 'public' section after the 'private' section, // or MSVC refuses to compile the code. public: // MSVC warns about implicitly converting from double to int for // possible loss of data, so we need to temporarily disable the // warning. #ifdef _MSC_VER # pragma warning(push) // Saves the current warning state. # pragma warning(disable:4244) // Temporarily disables warning 4244. static const bool value = sizeof(Helper(ImplicitlyConvertible::MakeFrom())) == 1; # pragma warning(pop) // Restores the warning state. #elif defined(__BORLANDC__) // C++Builder cannot use member overload resolution during template // instantiation. The simplest workaround is to use its C++0x type traits // functions (C++Builder 2009 and above only). static const bool value = __is_convertible(From, To); #else static const bool value = sizeof(Helper(ImplicitlyConvertible::MakeFrom())) == 1; #endif // _MSV_VER }; template <typename From, typename To> const bool ImplicitlyConvertible<From, To>::value; // IsAProtocolMessage<T>::value is a compile-time bool constant that's // true iff T is type ProtocolMessage, proto2::Message, or a subclass // of those. template <typename T> struct IsAProtocolMessage : public bool_constant< ImplicitlyConvertible<const T*, const ::ProtocolMessage*>::value || ImplicitlyConvertible<const T*, const ::proto2::Message*>::value> { }; // When the compiler sees expression IsContainerTest<C>(0), if C is an // STL-style container class, the first overload of IsContainerTest // will be viable (since both C::iterator* and C::const_iterator* are // valid types and NULL can be implicitly converted to them). It will // be picked over the second overload as 'int' is a perfect match for // the type of argument 0. If C::iterator or C::const_iterator is not // a valid type, the first overload is not viable, and the second // overload will be picked. Therefore, we can determine whether C is // a container class by checking the type of IsContainerTest<C>(0). // The value of the expression is insignificant. // // Note that we look for both C::iterator and C::const_iterator. The // reason is that C++ injects the name of a class as a member of the // class itself (e.g. you can refer to class iterator as either // 'iterator' or 'iterator::iterator'). If we look for C::iterator // only, for example, we would mistakenly think that a class named // iterator is an STL container. // // Also note that the simpler approach of overloading // IsContainerTest(typename C::const_iterator*) and // IsContainerTest(...) doesn't work with Visual Age C++ and Sun C++. typedef int IsContainer; template <class C> IsContainer IsContainerTest(int /* dummy */, typename C::iterator* /* it */ = NULL, typename C::const_iterator* /* const_it */ = NULL) { return 0; } typedef char IsNotContainer; template <class C> IsNotContainer IsContainerTest(long /* dummy */) { return '\0'; } // EnableIf<condition>::type is void when 'Cond' is true, and // undefined when 'Cond' is false. To use SFINAE to make a function // overload only apply when a particular expression is true, add // "typename EnableIf<expression>::type* = 0" as the last parameter. template<bool> struct EnableIf; template<> struct EnableIf<true> { typedef void type; }; // NOLINT // Utilities for native arrays. // ArrayEq() compares two k-dimensional native arrays using the // elements' operator==, where k can be any integer >= 0. When k is // 0, ArrayEq() degenerates into comparing a single pair of values. template <typename T, typename U> bool ArrayEq(const T* lhs, size_t size, const U* rhs); // This generic version is used when k is 0. template <typename T, typename U> inline bool ArrayEq(const T& lhs, const U& rhs) { return lhs == rhs; } // This overload is used when k >= 1. template <typename T, typename U, size_t N> inline bool ArrayEq(const T(&lhs)[N], const U(&rhs)[N]) { return internal::ArrayEq(lhs, N, rhs); } // This helper reduces code bloat. If we instead put its logic inside // the previous ArrayEq() function, arrays with different sizes would // lead to different copies of the template code. template <typename T, typename U> bool ArrayEq(const T* lhs, size_t size, const U* rhs) { for (size_t i = 0; i != size; i++) { if (!internal::ArrayEq(lhs[i], rhs[i])) return false; } return true; } // Finds the first element in the iterator range [begin, end) that // equals elem. Element may be a native array type itself. template <typename Iter, typename Element> Iter ArrayAwareFind(Iter begin, Iter end, const Element& elem) { for (Iter it = begin; it != end; ++it) { if (internal::ArrayEq(*it, elem)) return it; } return end; } // CopyArray() copies a k-dimensional native array using the elements' // operator=, where k can be any integer >= 0. When k is 0, // CopyArray() degenerates into copying a single value. template <typename T, typename U> void CopyArray(const T* from, size_t size, U* to); // This generic version is used when k is 0. template <typename T, typename U> inline void CopyArray(const T& from, U* to) { *to = from; } // This overload is used when k >= 1. template <typename T, typename U, size_t N> inline void CopyArray(const T(&from)[N], U(*to)[N]) { internal::CopyArray(from, N, *to); } // This helper reduces code bloat. If we instead put its logic inside // the previous CopyArray() function, arrays with different sizes // would lead to different copies of the template code. template <typename T, typename U> void CopyArray(const T* from, size_t size, U* to) { for (size_t i = 0; i != size; i++) { internal::CopyArray(from[i], to + i); } } // The relation between an NativeArray object (see below) and the // native array it represents. enum RelationToSource { kReference, // The NativeArray references the native array. kCopy // The NativeArray makes a copy of the native array and // owns the copy. }; // Adapts a native array to a read-only STL-style container. Instead // of the complete STL container concept, this adaptor only implements // members useful for Google Mock's container matchers. New members // should be added as needed. To simplify the implementation, we only // support Element being a raw type (i.e. having no top-level const or // reference modifier). It's the client's responsibility to satisfy // this requirement. Element can be an array type itself (hence // multi-dimensional arrays are supported). template <typename Element> class NativeArray { public: // STL-style container typedefs. typedef Element value_type; typedef Element* iterator; typedef const Element* const_iterator; // Constructs from a native array. NativeArray(const Element* array, size_t count, RelationToSource relation) { Init(array, count, relation); } // Copy constructor. NativeArray(const NativeArray& rhs) { Init(rhs.array_, rhs.size_, rhs.relation_to_source_); } ~NativeArray() { // Ensures that the user doesn't instantiate NativeArray with a // const or reference type. static_cast<void>(StaticAssertTypeEqHelper<Element, GTEST_REMOVE_REFERENCE_AND_CONST_(Element)>()); if (relation_to_source_ == kCopy) delete[] array_; } // STL-style container methods. size_t size() const { return size_; } const_iterator begin() const { return array_; } const_iterator end() const { return array_ + size_; } bool operator==(const NativeArray& rhs) const { return size() == rhs.size() && ArrayEq(begin(), size(), rhs.begin()); } private: // Initializes this object; makes a copy of the input array if // 'relation' is kCopy. void Init(const Element* array, size_t a_size, RelationToSource relation) { if (relation == kReference) { array_ = array; } else { Element* const copy = new Element[a_size]; CopyArray(array, a_size, copy); array_ = copy; } size_ = a_size; relation_to_source_ = relation; } const Element* array_; size_t size_; RelationToSource relation_to_source_; GTEST_DISALLOW_ASSIGN_(NativeArray); }; } // namespace internal } // namespace testing #define GTEST_MESSAGE_AT_(file, line, message, result_type) \ ::testing::internal::AssertHelper(result_type, file, line, message) \ = ::testing::Message() #define GTEST_MESSAGE_(message, result_type) \ GTEST_MESSAGE_AT_(__FILE__, __LINE__, message, result_type) #define GTEST_FATAL_FAILURE_(message) \ return GTEST_MESSAGE_(message, ::testing::TestPartResult::kFatalFailure) #define GTEST_NONFATAL_FAILURE_(message) \ GTEST_MESSAGE_(message, ::testing::TestPartResult::kNonFatalFailure) #define GTEST_SUCCESS_(message) \ GTEST_MESSAGE_(message, ::testing::TestPartResult::kSuccess) // Suppresses MSVC warnings 4072 (unreachable code) for the code following // statement if it returns or throws (or doesn't return or throw in some // situations). #define GTEST_SUPPRESS_UNREACHABLE_CODE_WARNING_BELOW_(statement) \ if (::testing::internal::AlwaysTrue()) { statement; } #define GTEST_TEST_THROW_(statement, expected_exception, fail) \ GTEST_AMBIGUOUS_ELSE_BLOCKER_ \ if (::testing::internal::ConstCharPtr gtest_msg = "") { \ bool gtest_caught_expected = false; \ try { \ GTEST_SUPPRESS_UNREACHABLE_CODE_WARNING_BELOW_(statement); \ } \ catch (expected_exception const&) { \ gtest_caught_expected = true; \ } \ catch (...) { \ gtest_msg.value = \ "Expected: " #statement " throws an exception of type " \ #expected_exception ".\n Actual: it throws a different type."; \ goto GTEST_CONCAT_TOKEN_(gtest_label_testthrow_, __LINE__); \ } \ if (!gtest_caught_expected) { \ gtest_msg.value = \ "Expected: " #statement " throws an exception of type " \ #expected_exception ".\n Actual: it throws nothing."; \ goto GTEST_CONCAT_TOKEN_(gtest_label_testthrow_, __LINE__); \ } \ } else \ GTEST_CONCAT_TOKEN_(gtest_label_testthrow_, __LINE__): \ fail(gtest_msg.value) #define GTEST_TEST_NO_THROW_(statement, fail) \ GTEST_AMBIGUOUS_ELSE_BLOCKER_ \ if (::testing::internal::AlwaysTrue()) { \ try { \ GTEST_SUPPRESS_UNREACHABLE_CODE_WARNING_BELOW_(statement); \ } \ catch (...) { \ goto GTEST_CONCAT_TOKEN_(gtest_label_testnothrow_, __LINE__); \ } \ } else \ GTEST_CONCAT_TOKEN_(gtest_label_testnothrow_, __LINE__): \ fail("Expected: " #statement " doesn't throw an exception.\n" \ " Actual: it throws.") #define GTEST_TEST_ANY_THROW_(statement, fail) \ GTEST_AMBIGUOUS_ELSE_BLOCKER_ \ if (::testing::internal::AlwaysTrue()) { \ bool gtest_caught_any = false; \ try { \ GTEST_SUPPRESS_UNREACHABLE_CODE_WARNING_BELOW_(statement); \ } \ catch (...) { \ gtest_caught_any = true; \ } \ if (!gtest_caught_any) { \ goto GTEST_CONCAT_TOKEN_(gtest_label_testanythrow_, __LINE__); \ } \ } else \ GTEST_CONCAT_TOKEN_(gtest_label_testanythrow_, __LINE__): \ fail("Expected: " #statement " throws an exception.\n" \ " Actual: it doesn't.") // Implements Boolean test assertions such as EXPECT_TRUE. expression can be // either a boolean expression or an AssertionResult. text is a textual // represenation of expression as it was passed into the EXPECT_TRUE. #define GTEST_TEST_BOOLEAN_(expression, text, actual, expected, fail) \ GTEST_AMBIGUOUS_ELSE_BLOCKER_ \ if (const ::testing::AssertionResult gtest_ar_ = \ ::testing::AssertionResult(expression)) \ ; \ else \ fail(::testing::internal::GetBoolAssertionFailureMessage(\ gtest_ar_, text, #actual, #expected).c_str()) #define GTEST_TEST_NO_FATAL_FAILURE_(statement, fail) \ GTEST_AMBIGUOUS_ELSE_BLOCKER_ \ if (::testing::internal::AlwaysTrue()) { \ ::testing::internal::HasNewFatalFailureHelper gtest_fatal_failure_checker; \ GTEST_SUPPRESS_UNREACHABLE_CODE_WARNING_BELOW_(statement); \ if (gtest_fatal_failure_checker.has_new_fatal_failure()) { \ goto GTEST_CONCAT_TOKEN_(gtest_label_testnofatal_, __LINE__); \ } \ } else \ GTEST_CONCAT_TOKEN_(gtest_label_testnofatal_, __LINE__): \ fail("Expected: " #statement " doesn't generate new fatal " \ "failures in the current thread.\n" \ " Actual: it does.") // Expands to the name of the class that implements the given test. #define GTEST_TEST_CLASS_NAME_(test_case_name, test_name) \ test_case_name##_##test_name##_Test // Helper macro for defining tests. #define GTEST_TEST_(test_case_name, test_name, parent_class, parent_id)\ class GTEST_TEST_CLASS_NAME_(test_case_name, test_name) : public parent_class {\ public:\ GTEST_TEST_CLASS_NAME_(test_case_name, test_name)() {}\ private:\ virtual void TestBody();\ static ::testing::TestInfo* const test_info_ GTEST_ATTRIBUTE_UNUSED_;\ GTEST_DISALLOW_COPY_AND_ASSIGN_(\ GTEST_TEST_CLASS_NAME_(test_case_name, test_name));\ };\ \ ::testing::TestInfo* const GTEST_TEST_CLASS_NAME_(test_case_name, test_name)\ ::test_info_ =\ ::testing::internal::MakeAndRegisterTestInfo(\ #test_case_name, #test_name, NULL, NULL, \ (parent_id), \ parent_class::SetUpTestCase, \ parent_class::TearDownTestCase, \ new ::testing::internal::TestFactoryImpl<\ GTEST_TEST_CLASS_NAME_(test_case_name, test_name)>);\ void GTEST_TEST_CLASS_NAME_(test_case_name, test_name)::TestBody() #endif // GTEST_INCLUDE_GTEST_INTERNAL_GTEST_INTERNAL_H_