/* $OpenBSD: schnorr.c,v 1.5 2010/12/03 23:49:26 djm Exp $ */ /* * Copyright (c) 2008 Damien Miller. All rights reserved. * * Permission to use, copy, modify, and distribute this software for any * purpose with or without fee is hereby granted, provided that the above * copyright notice and this permission notice appear in all copies. * * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. */ /* * Implementation of Schnorr signatures / zero-knowledge proofs, based on * description in: * * F. Hao, P. Ryan, "Password Authenticated Key Exchange by Juggling", * 16th Workshop on Security Protocols, Cambridge, April 2008 * * http://grouper.ieee.org/groups/1363/Research/contributions/hao-ryan-2008.pdf */ #include "includes.h" #include <sys/types.h> #include <string.h> #include <stdarg.h> #include <stdio.h> #include <openssl/evp.h> #include <openssl/bn.h> #include "xmalloc.h" #include "buffer.h" #include "log.h" #include "schnorr.h" #include "openbsd-compat/openssl-compat.h" /* #define SCHNORR_DEBUG */ /* Privacy-violating debugging */ /* #define SCHNORR_MAIN */ /* Include main() selftest */ #ifndef SCHNORR_DEBUG # define SCHNORR_DEBUG_BN(a) # define SCHNORR_DEBUG_BUF(a) #else # define SCHNORR_DEBUG_BN(a) debug3_bn a # define SCHNORR_DEBUG_BUF(a) debug3_buf a #endif /* SCHNORR_DEBUG */ /* * Calculate hash component of Schnorr signature H(g || g^v || g^x || id) * using the hash function defined by "evp_md". Returns signature as * bignum or NULL on error. */ static BIGNUM * schnorr_hash(const BIGNUM *p, const BIGNUM *q, const BIGNUM *g, const EVP_MD *evp_md, const BIGNUM *g_v, const BIGNUM *g_x, const u_char *id, u_int idlen) { u_char *digest; u_int digest_len; BIGNUM *h; Buffer b; int success = -1; if ((h = BN_new()) == NULL) { error("%s: BN_new", __func__); return NULL; } buffer_init(&b); /* h = H(g || p || q || g^v || g^x || id) */ buffer_put_bignum2(&b, g); buffer_put_bignum2(&b, p); buffer_put_bignum2(&b, q); buffer_put_bignum2(&b, g_v); buffer_put_bignum2(&b, g_x); buffer_put_string(&b, id, idlen); SCHNORR_DEBUG_BUF((buffer_ptr(&b), buffer_len(&b), "%s: hashblob", __func__)); if (hash_buffer(buffer_ptr(&b), buffer_len(&b), evp_md, &digest, &digest_len) != 0) { error("%s: hash_buffer", __func__); goto out; } if (BN_bin2bn(digest, (int)digest_len, h) == NULL) { error("%s: BN_bin2bn", __func__); goto out; } success = 0; SCHNORR_DEBUG_BN((h, "%s: h = ", __func__)); out: buffer_free(&b); bzero(digest, digest_len); xfree(digest); digest_len = 0; if (success == 0) return h; BN_clear_free(h); return NULL; } /* * Generate Schnorr signature to prove knowledge of private value 'x' used * in public exponent g^x, under group defined by 'grp_p', 'grp_q' and 'grp_g' * using the hash function "evp_md". * 'idlen' bytes from 'id' will be included in the signature hash as an anti- * replay salt. * * On success, 0 is returned. The signature values are returned as *e_p * (g^v mod p) and *r_p (v - xh mod q). The caller must free these values. * On failure, -1 is returned. */ int schnorr_sign(const BIGNUM *grp_p, const BIGNUM *grp_q, const BIGNUM *grp_g, const EVP_MD *evp_md, const BIGNUM *x, const BIGNUM *g_x, const u_char *id, u_int idlen, BIGNUM **r_p, BIGNUM **e_p) { int success = -1; BIGNUM *h, *tmp, *v, *g_v, *r; BN_CTX *bn_ctx; SCHNORR_DEBUG_BN((x, "%s: x = ", __func__)); SCHNORR_DEBUG_BN((g_x, "%s: g_x = ", __func__)); /* Avoid degenerate cases: g^0 yields a spoofable signature */ if (BN_cmp(g_x, BN_value_one()) <= 0) { error("%s: g_x < 1", __func__); return -1; } if (BN_cmp(g_x, grp_p) >= 0) { error("%s: g_x > g", __func__); return -1; } h = g_v = r = tmp = v = NULL; if ((bn_ctx = BN_CTX_new()) == NULL) { error("%s: BN_CTX_new", __func__); goto out; } if ((g_v = BN_new()) == NULL || (r = BN_new()) == NULL || (tmp = BN_new()) == NULL) { error("%s: BN_new", __func__); goto out; } /* * v must be a random element of Zq, so 1 <= v < q * we also exclude v = 1, since g^1 looks dangerous */ if ((v = bn_rand_range_gt_one(grp_p)) == NULL) { error("%s: bn_rand_range2", __func__); goto out; } SCHNORR_DEBUG_BN((v, "%s: v = ", __func__)); /* g_v = g^v mod p */ if (BN_mod_exp(g_v, grp_g, v, grp_p, bn_ctx) == -1) { error("%s: BN_mod_exp (g^v mod p)", __func__); goto out; } SCHNORR_DEBUG_BN((g_v, "%s: g_v = ", __func__)); /* h = H(g || g^v || g^x || id) */ if ((h = schnorr_hash(grp_p, grp_q, grp_g, evp_md, g_v, g_x, id, idlen)) == NULL) { error("%s: schnorr_hash failed", __func__); goto out; } /* r = v - xh mod q */ if (BN_mod_mul(tmp, x, h, grp_q, bn_ctx) == -1) { error("%s: BN_mod_mul (tmp = xv mod q)", __func__); goto out; } if (BN_mod_sub(r, v, tmp, grp_q, bn_ctx) == -1) { error("%s: BN_mod_mul (r = v - tmp)", __func__); goto out; } SCHNORR_DEBUG_BN((g_v, "%s: e = ", __func__)); SCHNORR_DEBUG_BN((r, "%s: r = ", __func__)); *e_p = g_v; *r_p = r; success = 0; out: BN_CTX_free(bn_ctx); if (h != NULL) BN_clear_free(h); if (v != NULL) BN_clear_free(v); BN_clear_free(tmp); return success; } /* * Generate Schnorr signature to prove knowledge of private value 'x' used * in public exponent g^x, under group defined by 'grp_p', 'grp_q' and 'grp_g' * using a SHA256 hash. * 'idlen' bytes from 'id' will be included in the signature hash as an anti- * replay salt. * On success, 0 is returned and *siglen bytes of signature are returned in * *sig (caller to free). Returns -1 on failure. */ int schnorr_sign_buf(const BIGNUM *grp_p, const BIGNUM *grp_q, const BIGNUM *grp_g, const BIGNUM *x, const BIGNUM *g_x, const u_char *id, u_int idlen, u_char **sig, u_int *siglen) { Buffer b; BIGNUM *r, *e; if (schnorr_sign(grp_p, grp_q, grp_g, EVP_sha256(), x, g_x, id, idlen, &r, &e) != 0) return -1; /* Signature is (e, r) */ buffer_init(&b); /* XXX sigtype-hash as string? */ buffer_put_bignum2(&b, e); buffer_put_bignum2(&b, r); *siglen = buffer_len(&b); *sig = xmalloc(*siglen); memcpy(*sig, buffer_ptr(&b), *siglen); SCHNORR_DEBUG_BUF((buffer_ptr(&b), buffer_len(&b), "%s: sigblob", __func__)); buffer_free(&b); BN_clear_free(r); BN_clear_free(e); return 0; } /* * Verify Schnorr signature { r (v - xh mod q), e (g^v mod p) } against * public exponent g_x (g^x) under group defined by 'grp_p', 'grp_q' and * 'grp_g' using hash "evp_md". * Signature hash will be salted with 'idlen' bytes from 'id'. * Returns -1 on failure, 0 on incorrect signature or 1 on matching signature. */ int schnorr_verify(const BIGNUM *grp_p, const BIGNUM *grp_q, const BIGNUM *grp_g, const EVP_MD *evp_md, const BIGNUM *g_x, const u_char *id, u_int idlen, const BIGNUM *r, const BIGNUM *e) { int success = -1; BIGNUM *h = NULL, *g_xh = NULL, *g_r = NULL, *gx_q = NULL; BIGNUM *expected = NULL; BN_CTX *bn_ctx; SCHNORR_DEBUG_BN((g_x, "%s: g_x = ", __func__)); /* Avoid degenerate cases: g^0 yields a spoofable signature */ if (BN_cmp(g_x, BN_value_one()) <= 0) { error("%s: g_x <= 1", __func__); return -1; } if (BN_cmp(g_x, grp_p) >= 0) { error("%s: g_x >= p", __func__); return -1; } h = g_xh = g_r = expected = NULL; if ((bn_ctx = BN_CTX_new()) == NULL) { error("%s: BN_CTX_new", __func__); goto out; } if ((g_xh = BN_new()) == NULL || (g_r = BN_new()) == NULL || (gx_q = BN_new()) == NULL || (expected = BN_new()) == NULL) { error("%s: BN_new", __func__); goto out; } SCHNORR_DEBUG_BN((e, "%s: e = ", __func__)); SCHNORR_DEBUG_BN((r, "%s: r = ", __func__)); /* gx_q = (g^x)^q must === 1 mod p */ if (BN_mod_exp(gx_q, g_x, grp_q, grp_p, bn_ctx) == -1) { error("%s: BN_mod_exp (g_x^q mod p)", __func__); goto out; } if (BN_cmp(gx_q, BN_value_one()) != 0) { error("%s: Invalid signature (g^x)^q != 1 mod p", __func__); goto out; } SCHNORR_DEBUG_BN((g_xh, "%s: g_xh = ", __func__)); /* h = H(g || g^v || g^x || id) */ if ((h = schnorr_hash(grp_p, grp_q, grp_g, evp_md, e, g_x, id, idlen)) == NULL) { error("%s: schnorr_hash failed", __func__); goto out; } /* g_xh = (g^x)^h */ if (BN_mod_exp(g_xh, g_x, h, grp_p, bn_ctx) == -1) { error("%s: BN_mod_exp (g_x^h mod p)", __func__); goto out; } SCHNORR_DEBUG_BN((g_xh, "%s: g_xh = ", __func__)); /* g_r = g^r */ if (BN_mod_exp(g_r, grp_g, r, grp_p, bn_ctx) == -1) { error("%s: BN_mod_exp (g_x^h mod p)", __func__); goto out; } SCHNORR_DEBUG_BN((g_r, "%s: g_r = ", __func__)); /* expected = g^r * g_xh */ if (BN_mod_mul(expected, g_r, g_xh, grp_p, bn_ctx) == -1) { error("%s: BN_mod_mul (expected = g_r mod p)", __func__); goto out; } SCHNORR_DEBUG_BN((expected, "%s: expected = ", __func__)); /* Check e == expected */ success = BN_cmp(expected, e) == 0; out: BN_CTX_free(bn_ctx); if (h != NULL) BN_clear_free(h); if (gx_q != NULL) BN_clear_free(gx_q); if (g_xh != NULL) BN_clear_free(g_xh); if (g_r != NULL) BN_clear_free(g_r); if (expected != NULL) BN_clear_free(expected); return success; } /* * Verify Schnorr signature 'sig' of length 'siglen' against public exponent * g_x (g^x) under group defined by 'grp_p', 'grp_q' and 'grp_g' using a * SHA256 hash. * Signature hash will be salted with 'idlen' bytes from 'id'. * Returns -1 on failure, 0 on incorrect signature or 1 on matching signature. */ int schnorr_verify_buf(const BIGNUM *grp_p, const BIGNUM *grp_q, const BIGNUM *grp_g, const BIGNUM *g_x, const u_char *id, u_int idlen, const u_char *sig, u_int siglen) { Buffer b; int ret = -1; u_int rlen; BIGNUM *r, *e; e = r = NULL; if ((e = BN_new()) == NULL || (r = BN_new()) == NULL) { error("%s: BN_new", __func__); goto out; } /* Extract g^v and r from signature blob */ buffer_init(&b); buffer_append(&b, sig, siglen); SCHNORR_DEBUG_BUF((buffer_ptr(&b), buffer_len(&b), "%s: sigblob", __func__)); buffer_get_bignum2(&b, e); buffer_get_bignum2(&b, r); rlen = buffer_len(&b); buffer_free(&b); if (rlen != 0) { error("%s: remaining bytes in signature %d", __func__, rlen); goto out; } ret = schnorr_verify(grp_p, grp_q, grp_g, EVP_sha256(), g_x, id, idlen, r, e); out: BN_clear_free(e); BN_clear_free(r); return ret; } /* Helper functions */ /* * Generate uniformly distributed random number in range (1, high). * Return number on success, NULL on failure. */ BIGNUM * bn_rand_range_gt_one(const BIGNUM *high) { BIGNUM *r, *tmp; int success = -1; if ((tmp = BN_new()) == NULL) { error("%s: BN_new", __func__); return NULL; } if ((r = BN_new()) == NULL) { error("%s: BN_new failed", __func__); goto out; } if (BN_set_word(tmp, 2) != 1) { error("%s: BN_set_word(tmp, 2)", __func__); goto out; } if (BN_sub(tmp, high, tmp) == -1) { error("%s: BN_sub failed (tmp = high - 2)", __func__); goto out; } if (BN_rand_range(r, tmp) == -1) { error("%s: BN_rand_range failed", __func__); goto out; } if (BN_set_word(tmp, 2) != 1) { error("%s: BN_set_word(tmp, 2)", __func__); goto out; } if (BN_add(r, r, tmp) == -1) { error("%s: BN_add failed (r = r + 2)", __func__); goto out; } success = 0; out: BN_clear_free(tmp); if (success == 0) return r; BN_clear_free(r); return NULL; } /* * Hash contents of buffer 'b' with hash 'md'. Returns 0 on success, * with digest via 'digestp' (caller to free) and length via 'lenp'. * Returns -1 on failure. */ int hash_buffer(const u_char *buf, u_int len, const EVP_MD *md, u_char **digestp, u_int *lenp) { u_char digest[EVP_MAX_MD_SIZE]; u_int digest_len; EVP_MD_CTX evp_md_ctx; int success = -1; EVP_MD_CTX_init(&evp_md_ctx); if (EVP_DigestInit_ex(&evp_md_ctx, md, NULL) != 1) { error("%s: EVP_DigestInit_ex", __func__); goto out; } if (EVP_DigestUpdate(&evp_md_ctx, buf, len) != 1) { error("%s: EVP_DigestUpdate", __func__); goto out; } if (EVP_DigestFinal_ex(&evp_md_ctx, digest, &digest_len) != 1) { error("%s: EVP_DigestFinal_ex", __func__); goto out; } *digestp = xmalloc(digest_len); *lenp = digest_len; memcpy(*digestp, digest, *lenp); success = 0; out: EVP_MD_CTX_cleanup(&evp_md_ctx); bzero(digest, sizeof(digest)); digest_len = 0; return success; } /* print formatted string followed by bignum */ void debug3_bn(const BIGNUM *n, const char *fmt, ...) { char *out, *h; va_list args; out = NULL; va_start(args, fmt); vasprintf(&out, fmt, args); va_end(args); if (out == NULL) fatal("%s: vasprintf failed", __func__); if (n == NULL) debug3("%s(null)", out); else { h = BN_bn2hex(n); debug3("%s0x%s", out, h); free(h); } free(out); } /* print formatted string followed by buffer contents in hex */ void debug3_buf(const u_char *buf, u_int len, const char *fmt, ...) { char *out, h[65]; u_int i, j; va_list args; out = NULL; va_start(args, fmt); vasprintf(&out, fmt, args); va_end(args); if (out == NULL) fatal("%s: vasprintf failed", __func__); debug3("%s length %u%s", out, len, buf == NULL ? " (null)" : ""); free(out); if (buf == NULL) return; *h = '\0'; for (i = j = 0; i < len; i++) { snprintf(h + j, sizeof(h) - j, "%02x", buf[i]); j += 2; if (j >= sizeof(h) - 1 || i == len - 1) { debug3(" %s", h); *h = '\0'; j = 0; } } } /* * Construct a MODP group from hex strings p (which must be a safe * prime) and g, automatically calculating subgroup q as (p / 2) */ struct modp_group * modp_group_from_g_and_safe_p(const char *grp_g, const char *grp_p) { struct modp_group *ret; ret = xmalloc(sizeof(*ret)); ret->p = ret->q = ret->g = NULL; if (BN_hex2bn(&ret->p, grp_p) == 0 || BN_hex2bn(&ret->g, grp_g) == 0) fatal("%s: BN_hex2bn", __func__); /* Subgroup order is p/2 (p is a safe prime) */ if ((ret->q = BN_new()) == NULL) fatal("%s: BN_new", __func__); if (BN_rshift1(ret->q, ret->p) != 1) fatal("%s: BN_rshift1", __func__); return ret; } void modp_group_free(struct modp_group *grp) { if (grp->g != NULL) BN_clear_free(grp->g); if (grp->p != NULL) BN_clear_free(grp->p); if (grp->q != NULL) BN_clear_free(grp->q); bzero(grp, sizeof(*grp)); xfree(grp); } /* main() function for self-test */ #ifdef SCHNORR_MAIN static void schnorr_selftest_one(const BIGNUM *grp_p, const BIGNUM *grp_q, const BIGNUM *grp_g, const BIGNUM *x) { BIGNUM *g_x; u_char *sig; u_int siglen; BN_CTX *bn_ctx; if ((bn_ctx = BN_CTX_new()) == NULL) fatal("%s: BN_CTX_new", __func__); if ((g_x = BN_new()) == NULL) fatal("%s: BN_new", __func__); if (BN_mod_exp(g_x, grp_g, x, grp_p, bn_ctx) == -1) fatal("%s: g_x", __func__); if (schnorr_sign_buf(grp_p, grp_q, grp_g, x, g_x, "junk", 4, &sig, &siglen)) fatal("%s: schnorr_sign", __func__); if (schnorr_verify_buf(grp_p, grp_q, grp_g, g_x, "junk", 4, sig, siglen) != 1) fatal("%s: verify fail", __func__); if (schnorr_verify_buf(grp_p, grp_q, grp_g, g_x, "JUNK", 4, sig, siglen) != 0) fatal("%s: verify should have failed (bad ID)", __func__); sig[4] ^= 1; if (schnorr_verify_buf(grp_p, grp_q, grp_g, g_x, "junk", 4, sig, siglen) != 0) fatal("%s: verify should have failed (bit error)", __func__); xfree(sig); BN_free(g_x); BN_CTX_free(bn_ctx); } static void schnorr_selftest(void) { BIGNUM *x; struct modp_group *grp; u_int i; char *hh; grp = jpake_default_group(); if ((x = BN_new()) == NULL) fatal("%s: BN_new", __func__); SCHNORR_DEBUG_BN((grp->p, "%s: grp->p = ", __func__)); SCHNORR_DEBUG_BN((grp->q, "%s: grp->q = ", __func__)); SCHNORR_DEBUG_BN((grp->g, "%s: grp->g = ", __func__)); /* [1, 20) */ for (i = 1; i < 20; i++) { printf("x = %u\n", i); fflush(stdout); if (BN_set_word(x, i) != 1) fatal("%s: set x word", __func__); schnorr_selftest_one(grp->p, grp->q, grp->g, x); } /* 100 x random [0, p) */ for (i = 0; i < 100; i++) { if (BN_rand_range(x, grp->p) != 1) fatal("%s: BN_rand_range", __func__); hh = BN_bn2hex(x); printf("x = (random) 0x%s\n", hh); free(hh); fflush(stdout); schnorr_selftest_one(grp->p, grp->q, grp->g, x); } /* [q-20, q) */ if (BN_set_word(x, 20) != 1) fatal("%s: BN_set_word (x = 20)", __func__); if (BN_sub(x, grp->q, x) != 1) fatal("%s: BN_sub (q - x)", __func__); for (i = 0; i < 19; i++) { hh = BN_bn2hex(x); printf("x = (q - %d) 0x%s\n", 20 - i, hh); free(hh); fflush(stdout); schnorr_selftest_one(grp->p, grp->q, grp->g, x); if (BN_add(x, x, BN_value_one()) != 1) fatal("%s: BN_add (x + 1)", __func__); } BN_free(x); } int main(int argc, char **argv) { log_init(argv[0], SYSLOG_LEVEL_DEBUG3, SYSLOG_FACILITY_USER, 1); schnorr_selftest(); return 0; } #endif