// Copyright 2012 the V8 project authors. All rights reserved. // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions are // met: // // * Redistributions of source code must retain the above copyright // notice, this list of conditions and the following disclaimer. // * Redistributions in binary form must reproduce the above // copyright notice, this list of conditions and the following // disclaimer in the documentation and/or other materials provided // with the distribution. // * Neither the name of Google Inc. nor the names of its // contributors may be used to endorse or promote products derived // from this software without specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. // Platform specific code for Linux goes here. For the POSIX comaptible parts // the implementation is in platform-posix.cc. #include <pthread.h> #include <semaphore.h> #include <signal.h> #include <sys/prctl.h> #include <sys/time.h> #include <sys/resource.h> #include <sys/syscall.h> #include <sys/types.h> #include <stdlib.h> // Ubuntu Dapper requires memory pages to be marked as // executable. Otherwise, OS raises an exception when executing code // in that page. #include <sys/types.h> // mmap & munmap #include <sys/mman.h> // mmap & munmap #include <sys/stat.h> // open #include <fcntl.h> // open #include <unistd.h> // sysconf #ifdef __GLIBC__ #include <execinfo.h> // backtrace, backtrace_symbols #endif // def __GLIBC__ #include <strings.h> // index #include <errno.h> #include <stdarg.h> #undef MAP_TYPE #include "v8.h" #include "platform-posix.h" #include "platform.h" #include "v8threads.h" #include "vm-state-inl.h" namespace v8 { namespace internal { // 0 is never a valid thread id on Linux since tids and pids share a // name space and pid 0 is reserved (see man 2 kill). static const pthread_t kNoThread = (pthread_t) 0; double ceiling(double x) { return ceil(x); } static Mutex* limit_mutex = NULL; void OS::SetUp() { // Seed the random number generator. We preserve microsecond resolution. uint64_t seed = Ticks() ^ (getpid() << 16); srandom(static_cast<unsigned int>(seed)); limit_mutex = CreateMutex(); #ifdef __arm__ // When running on ARM hardware check that the EABI used by V8 and // by the C code is the same. bool hard_float = OS::ArmUsingHardFloat(); if (hard_float) { #if !USE_EABI_HARDFLOAT PrintF("ERROR: Binary compiled with -mfloat-abi=hard but without " "-DUSE_EABI_HARDFLOAT\n"); exit(1); #endif } else { #if USE_EABI_HARDFLOAT PrintF("ERROR: Binary not compiled with -mfloat-abi=hard but with " "-DUSE_EABI_HARDFLOAT\n"); exit(1); #endif } #endif } void OS::PostSetUp() { // Math functions depend on CPU features therefore they are initialized after // CPU. MathSetup(); } uint64_t OS::CpuFeaturesImpliedByPlatform() { return 0; // Linux runs on anything. } #ifdef __arm__ static bool CPUInfoContainsString(const char * search_string) { const char* file_name = "/proc/cpuinfo"; // This is written as a straight shot one pass parser // and not using STL string and ifstream because, // on Linux, it's reading from a (non-mmap-able) // character special device. FILE* f = NULL; const char* what = search_string; if (NULL == (f = fopen(file_name, "r"))) return false; int k; while (EOF != (k = fgetc(f))) { if (k == *what) { ++what; while ((*what != '\0') && (*what == fgetc(f))) { ++what; } if (*what == '\0') { fclose(f); return true; } else { what = search_string; } } } fclose(f); // Did not find string in the proc file. return false; } bool OS::ArmCpuHasFeature(CpuFeature feature) { const char* search_string = NULL; // Simple detection of VFP at runtime for Linux. // It is based on /proc/cpuinfo, which reveals hardware configuration // to user-space applications. According to ARM (mid 2009), no similar // facility is universally available on the ARM architectures, // so it's up to individual OSes to provide such. switch (feature) { case VFP3: search_string = "vfpv3"; break; case ARMv7: search_string = "ARMv7"; break; default: UNREACHABLE(); } if (CPUInfoContainsString(search_string)) { return true; } if (feature == VFP3) { // Some old kernels will report vfp not vfpv3. Here we make a last attempt // to detect vfpv3 by checking for vfp *and* neon, since neon is only // available on architectures with vfpv3. // Checking neon on its own is not enough as it is possible to have neon // without vfp. if (CPUInfoContainsString("vfp") && CPUInfoContainsString("neon")) { return true; } } return false; } // Simple helper function to detect whether the C code is compiled with // option -mfloat-abi=hard. The register d0 is loaded with 1.0 and the register // pair r0, r1 is loaded with 0.0. If -mfloat-abi=hard is pased to GCC then // calling this will return 1.0 and otherwise 0.0. static void ArmUsingHardFloatHelper() { asm("mov r0, #0":::"r0"); #if defined(__VFP_FP__) && !defined(__SOFTFP__) // Load 0x3ff00000 into r1 using instructions available in both ARM // and Thumb mode. asm("mov r1, #3":::"r1"); asm("mov r2, #255":::"r2"); asm("lsl r1, r1, #8":::"r1"); asm("orr r1, r1, r2":::"r1"); asm("lsl r1, r1, #20":::"r1"); // For vmov d0, r0, r1 use ARM mode. #ifdef __thumb__ asm volatile( "@ Enter ARM Mode \n\t" " adr r3, 1f \n\t" " bx r3 \n\t" " .ALIGN 4 \n\t" " .ARM \n" "1: vmov d0, r0, r1 \n\t" "@ Enter THUMB Mode\n\t" " adr r3, 2f+1 \n\t" " bx r3 \n\t" " .THUMB \n" "2: \n\t":::"r3"); #else asm("vmov d0, r0, r1"); #endif // __thumb__ #endif // defined(__VFP_FP__) && !defined(__SOFTFP__) asm("mov r1, #0":::"r1"); } bool OS::ArmUsingHardFloat() { // Cast helper function from returning void to returning double. typedef double (*F)(); F f = FUNCTION_CAST<F>(FUNCTION_ADDR(ArmUsingHardFloatHelper)); return f() == 1.0; } #endif // def __arm__ #ifdef __mips__ bool OS::MipsCpuHasFeature(CpuFeature feature) { const char* search_string = NULL; const char* file_name = "/proc/cpuinfo"; // Simple detection of FPU at runtime for Linux. // It is based on /proc/cpuinfo, which reveals hardware configuration // to user-space applications. According to MIPS (early 2010), no similar // facility is universally available on the MIPS architectures, // so it's up to individual OSes to provide such. // // This is written as a straight shot one pass parser // and not using STL string and ifstream because, // on Linux, it's reading from a (non-mmap-able) // character special device. switch (feature) { case FPU: search_string = "FPU"; break; default: UNREACHABLE(); } FILE* f = NULL; const char* what = search_string; if (NULL == (f = fopen(file_name, "r"))) return false; int k; while (EOF != (k = fgetc(f))) { if (k == *what) { ++what; while ((*what != '\0') && (*what == fgetc(f))) { ++what; } if (*what == '\0') { fclose(f); return true; } else { what = search_string; } } } fclose(f); // Did not find string in the proc file. return false; } #endif // def __mips__ int OS::ActivationFrameAlignment() { #ifdef V8_TARGET_ARCH_ARM // On EABI ARM targets this is required for fp correctness in the // runtime system. return 8; #elif V8_TARGET_ARCH_MIPS return 8; #endif // With gcc 4.4 the tree vectorization optimizer can generate code // that requires 16 byte alignment such as movdqa on x86. return 16; } void OS::ReleaseStore(volatile AtomicWord* ptr, AtomicWord value) { #if (defined(V8_TARGET_ARCH_ARM) && defined(__arm__)) || \ (defined(V8_TARGET_ARCH_MIPS) && defined(__mips__)) // Only use on ARM or MIPS hardware. MemoryBarrier(); #else __asm__ __volatile__("" : : : "memory"); // An x86 store acts as a release barrier. #endif *ptr = value; } const char* OS::LocalTimezone(double time) { if (isnan(time)) return ""; time_t tv = static_cast<time_t>(floor(time/msPerSecond)); struct tm* t = localtime(&tv); if (NULL == t) return ""; return t->tm_zone; } double OS::LocalTimeOffset() { time_t tv = time(NULL); struct tm* t = localtime(&tv); // tm_gmtoff includes any daylight savings offset, so subtract it. return static_cast<double>(t->tm_gmtoff * msPerSecond - (t->tm_isdst > 0 ? 3600 * msPerSecond : 0)); } // We keep the lowest and highest addresses mapped as a quick way of // determining that pointers are outside the heap (used mostly in assertions // and verification). The estimate is conservative, i.e., not all addresses in // 'allocated' space are actually allocated to our heap. The range is // [lowest, highest), inclusive on the low and and exclusive on the high end. static void* lowest_ever_allocated = reinterpret_cast<void*>(-1); static void* highest_ever_allocated = reinterpret_cast<void*>(0); static void UpdateAllocatedSpaceLimits(void* address, int size) { ASSERT(limit_mutex != NULL); ScopedLock lock(limit_mutex); lowest_ever_allocated = Min(lowest_ever_allocated, address); highest_ever_allocated = Max(highest_ever_allocated, reinterpret_cast<void*>(reinterpret_cast<char*>(address) + size)); } bool OS::IsOutsideAllocatedSpace(void* address) { return address < lowest_ever_allocated || address >= highest_ever_allocated; } size_t OS::AllocateAlignment() { return sysconf(_SC_PAGESIZE); } void* OS::Allocate(const size_t requested, size_t* allocated, bool is_executable) { const size_t msize = RoundUp(requested, AllocateAlignment()); int prot = PROT_READ | PROT_WRITE | (is_executable ? PROT_EXEC : 0); void* addr = OS::GetRandomMmapAddr(); void* mbase = mmap(addr, msize, prot, MAP_PRIVATE | MAP_ANONYMOUS, -1, 0); if (mbase == MAP_FAILED) { LOG(i::Isolate::Current(), StringEvent("OS::Allocate", "mmap failed")); return NULL; } *allocated = msize; UpdateAllocatedSpaceLimits(mbase, msize); return mbase; } void OS::Free(void* address, const size_t size) { // TODO(1240712): munmap has a return value which is ignored here. int result = munmap(address, size); USE(result); ASSERT(result == 0); } void OS::Sleep(int milliseconds) { unsigned int ms = static_cast<unsigned int>(milliseconds); usleep(1000 * ms); } void OS::Abort() { // Redirect to std abort to signal abnormal program termination. if (FLAG_break_on_abort) { DebugBreak(); } abort(); } void OS::DebugBreak() { // TODO(lrn): Introduce processor define for runtime system (!= V8_ARCH_x, // which is the architecture of generated code). #if (defined(__arm__) || defined(__thumb__)) # if defined(CAN_USE_ARMV5_INSTRUCTIONS) asm("bkpt 0"); # endif #elif defined(__mips__) asm("break"); #else asm("int $3"); #endif } class PosixMemoryMappedFile : public OS::MemoryMappedFile { public: PosixMemoryMappedFile(FILE* file, void* memory, int size) : file_(file), memory_(memory), size_(size) { } virtual ~PosixMemoryMappedFile(); virtual void* memory() { return memory_; } virtual int size() { return size_; } private: FILE* file_; void* memory_; int size_; }; OS::MemoryMappedFile* OS::MemoryMappedFile::open(const char* name) { FILE* file = fopen(name, "r+"); if (file == NULL) return NULL; fseek(file, 0, SEEK_END); int size = ftell(file); void* memory = mmap(OS::GetRandomMmapAddr(), size, PROT_READ | PROT_WRITE, MAP_SHARED, fileno(file), 0); return new PosixMemoryMappedFile(file, memory, size); } OS::MemoryMappedFile* OS::MemoryMappedFile::create(const char* name, int size, void* initial) { FILE* file = fopen(name, "w+"); if (file == NULL) return NULL; int result = fwrite(initial, size, 1, file); if (result < 1) { fclose(file); return NULL; } void* memory = mmap(OS::GetRandomMmapAddr(), size, PROT_READ | PROT_WRITE, MAP_SHARED, fileno(file), 0); return new PosixMemoryMappedFile(file, memory, size); } PosixMemoryMappedFile::~PosixMemoryMappedFile() { if (memory_) OS::Free(memory_, size_); fclose(file_); } void OS::LogSharedLibraryAddresses() { // This function assumes that the layout of the file is as follows: // hex_start_addr-hex_end_addr rwxp <unused data> [binary_file_name] // If we encounter an unexpected situation we abort scanning further entries. FILE* fp = fopen("/proc/self/maps", "r"); if (fp == NULL) return; // Allocate enough room to be able to store a full file name. const int kLibNameLen = FILENAME_MAX + 1; char* lib_name = reinterpret_cast<char*>(malloc(kLibNameLen)); i::Isolate* isolate = ISOLATE; // This loop will terminate once the scanning hits an EOF. while (true) { uintptr_t start, end; char attr_r, attr_w, attr_x, attr_p; // Parse the addresses and permission bits at the beginning of the line. if (fscanf(fp, "%" V8PRIxPTR "-%" V8PRIxPTR, &start, &end) != 2) break; if (fscanf(fp, " %c%c%c%c", &attr_r, &attr_w, &attr_x, &attr_p) != 4) break; int c; if (attr_r == 'r' && attr_w != 'w' && attr_x == 'x') { // Found a read-only executable entry. Skip characters until we reach // the beginning of the filename or the end of the line. do { c = getc(fp); } while ((c != EOF) && (c != '\n') && (c != '/')); if (c == EOF) break; // EOF: Was unexpected, just exit. // Process the filename if found. if (c == '/') { ungetc(c, fp); // Push the '/' back into the stream to be read below. // Read to the end of the line. Exit if the read fails. if (fgets(lib_name, kLibNameLen, fp) == NULL) break; // Drop the newline character read by fgets. We do not need to check // for a zero-length string because we know that we at least read the // '/' character. lib_name[strlen(lib_name) - 1] = '\0'; } else { // No library name found, just record the raw address range. snprintf(lib_name, kLibNameLen, "%08" V8PRIxPTR "-%08" V8PRIxPTR, start, end); } LOG(isolate, SharedLibraryEvent(lib_name, start, end)); } else { // Entry not describing executable data. Skip to end of line to set up // reading the next entry. do { c = getc(fp); } while ((c != EOF) && (c != '\n')); if (c == EOF) break; } } free(lib_name); fclose(fp); } static const char kGCFakeMmap[] = "/tmp/__v8_gc__"; void OS::SignalCodeMovingGC() { // Support for ll_prof.py. // // The Linux profiler built into the kernel logs all mmap's with // PROT_EXEC so that analysis tools can properly attribute ticks. We // do a mmap with a name known by ll_prof.py and immediately munmap // it. This injects a GC marker into the stream of events generated // by the kernel and allows us to synchronize V8 code log and the // kernel log. int size = sysconf(_SC_PAGESIZE); FILE* f = fopen(kGCFakeMmap, "w+"); void* addr = mmap(OS::GetRandomMmapAddr(), size, PROT_READ | PROT_EXEC, MAP_PRIVATE, fileno(f), 0); ASSERT(addr != MAP_FAILED); OS::Free(addr, size); fclose(f); } int OS::StackWalk(Vector<OS::StackFrame> frames) { // backtrace is a glibc extension. #ifdef __GLIBC__ int frames_size = frames.length(); ScopedVector<void*> addresses(frames_size); int frames_count = backtrace(addresses.start(), frames_size); char** symbols = backtrace_symbols(addresses.start(), frames_count); if (symbols == NULL) { return kStackWalkError; } for (int i = 0; i < frames_count; i++) { frames[i].address = addresses[i]; // Format a text representation of the frame based on the information // available. SNPrintF(MutableCStrVector(frames[i].text, kStackWalkMaxTextLen), "%s", symbols[i]); // Make sure line termination is in place. frames[i].text[kStackWalkMaxTextLen - 1] = '\0'; } free(symbols); return frames_count; #else // ndef __GLIBC__ return 0; #endif // ndef __GLIBC__ } // Constants used for mmap. static const int kMmapFd = -1; static const int kMmapFdOffset = 0; VirtualMemory::VirtualMemory() : address_(NULL), size_(0) { } VirtualMemory::VirtualMemory(size_t size) { address_ = ReserveRegion(size); size_ = size; } VirtualMemory::VirtualMemory(size_t size, size_t alignment) : address_(NULL), size_(0) { ASSERT(IsAligned(alignment, static_cast<intptr_t>(OS::AllocateAlignment()))); size_t request_size = RoundUp(size + alignment, static_cast<intptr_t>(OS::AllocateAlignment())); void* reservation = mmap(OS::GetRandomMmapAddr(), request_size, PROT_NONE, MAP_PRIVATE | MAP_ANONYMOUS | MAP_NORESERVE, kMmapFd, kMmapFdOffset); if (reservation == MAP_FAILED) return; Address base = static_cast<Address>(reservation); Address aligned_base = RoundUp(base, alignment); ASSERT_LE(base, aligned_base); // Unmap extra memory reserved before and after the desired block. if (aligned_base != base) { size_t prefix_size = static_cast<size_t>(aligned_base - base); OS::Free(base, prefix_size); request_size -= prefix_size; } size_t aligned_size = RoundUp(size, OS::AllocateAlignment()); ASSERT_LE(aligned_size, request_size); if (aligned_size != request_size) { size_t suffix_size = request_size - aligned_size; OS::Free(aligned_base + aligned_size, suffix_size); request_size -= suffix_size; } ASSERT(aligned_size == request_size); address_ = static_cast<void*>(aligned_base); size_ = aligned_size; } VirtualMemory::~VirtualMemory() { if (IsReserved()) { bool result = ReleaseRegion(address(), size()); ASSERT(result); USE(result); } } bool VirtualMemory::IsReserved() { return address_ != NULL; } void VirtualMemory::Reset() { address_ = NULL; size_ = 0; } bool VirtualMemory::Commit(void* address, size_t size, bool is_executable) { return CommitRegion(address, size, is_executable); } bool VirtualMemory::Uncommit(void* address, size_t size) { return UncommitRegion(address, size); } bool VirtualMemory::Guard(void* address) { OS::Guard(address, OS::CommitPageSize()); return true; } void* VirtualMemory::ReserveRegion(size_t size) { void* result = mmap(OS::GetRandomMmapAddr(), size, PROT_NONE, MAP_PRIVATE | MAP_ANONYMOUS | MAP_NORESERVE, kMmapFd, kMmapFdOffset); if (result == MAP_FAILED) return NULL; return result; } bool VirtualMemory::CommitRegion(void* base, size_t size, bool is_executable) { int prot = PROT_READ | PROT_WRITE | (is_executable ? PROT_EXEC : 0); if (MAP_FAILED == mmap(base, size, prot, MAP_PRIVATE | MAP_ANONYMOUS | MAP_FIXED, kMmapFd, kMmapFdOffset)) { return false; } UpdateAllocatedSpaceLimits(base, size); return true; } bool VirtualMemory::UncommitRegion(void* base, size_t size) { return mmap(base, size, PROT_NONE, MAP_PRIVATE | MAP_ANONYMOUS | MAP_NORESERVE | MAP_FIXED, kMmapFd, kMmapFdOffset) != MAP_FAILED; } bool VirtualMemory::ReleaseRegion(void* base, size_t size) { return munmap(base, size) == 0; } class Thread::PlatformData : public Malloced { public: PlatformData() : thread_(kNoThread) {} pthread_t thread_; // Thread handle for pthread. }; Thread::Thread(const Options& options) : data_(new PlatformData()), stack_size_(options.stack_size()) { set_name(options.name()); } Thread::~Thread() { delete data_; } static void* ThreadEntry(void* arg) { Thread* thread = reinterpret_cast<Thread*>(arg); // This is also initialized by the first argument to pthread_create() but we // don't know which thread will run first (the original thread or the new // one) so we initialize it here too. #ifdef PR_SET_NAME prctl(PR_SET_NAME, reinterpret_cast<unsigned long>(thread->name()), // NOLINT 0, 0, 0); #endif thread->data()->thread_ = pthread_self(); ASSERT(thread->data()->thread_ != kNoThread); thread->Run(); return NULL; } void Thread::set_name(const char* name) { strncpy(name_, name, sizeof(name_)); name_[sizeof(name_) - 1] = '\0'; } void Thread::Start() { pthread_attr_t* attr_ptr = NULL; pthread_attr_t attr; if (stack_size_ > 0) { pthread_attr_init(&attr); pthread_attr_setstacksize(&attr, static_cast<size_t>(stack_size_)); attr_ptr = &attr; } int result = pthread_create(&data_->thread_, attr_ptr, ThreadEntry, this); CHECK_EQ(0, result); ASSERT(data_->thread_ != kNoThread); } void Thread::Join() { pthread_join(data_->thread_, NULL); } Thread::LocalStorageKey Thread::CreateThreadLocalKey() { pthread_key_t key; int result = pthread_key_create(&key, NULL); USE(result); ASSERT(result == 0); return static_cast<LocalStorageKey>(key); } void Thread::DeleteThreadLocalKey(LocalStorageKey key) { pthread_key_t pthread_key = static_cast<pthread_key_t>(key); int result = pthread_key_delete(pthread_key); USE(result); ASSERT(result == 0); } void* Thread::GetThreadLocal(LocalStorageKey key) { pthread_key_t pthread_key = static_cast<pthread_key_t>(key); return pthread_getspecific(pthread_key); } void Thread::SetThreadLocal(LocalStorageKey key, void* value) { pthread_key_t pthread_key = static_cast<pthread_key_t>(key); pthread_setspecific(pthread_key, value); } void Thread::YieldCPU() { sched_yield(); } class LinuxMutex : public Mutex { public: LinuxMutex() { pthread_mutexattr_t attrs; int result = pthread_mutexattr_init(&attrs); ASSERT(result == 0); result = pthread_mutexattr_settype(&attrs, PTHREAD_MUTEX_RECURSIVE); ASSERT(result == 0); result = pthread_mutex_init(&mutex_, &attrs); ASSERT(result == 0); USE(result); } virtual ~LinuxMutex() { pthread_mutex_destroy(&mutex_); } virtual int Lock() { int result = pthread_mutex_lock(&mutex_); return result; } virtual int Unlock() { int result = pthread_mutex_unlock(&mutex_); return result; } virtual bool TryLock() { int result = pthread_mutex_trylock(&mutex_); // Return false if the lock is busy and locking failed. if (result == EBUSY) { return false; } ASSERT(result == 0); // Verify no other errors. return true; } private: pthread_mutex_t mutex_; // Pthread mutex for POSIX platforms. }; Mutex* OS::CreateMutex() { return new LinuxMutex(); } class LinuxSemaphore : public Semaphore { public: explicit LinuxSemaphore(int count) { sem_init(&sem_, 0, count); } virtual ~LinuxSemaphore() { sem_destroy(&sem_); } virtual void Wait(); virtual bool Wait(int timeout); virtual void Signal() { sem_post(&sem_); } private: sem_t sem_; }; void LinuxSemaphore::Wait() { while (true) { int result = sem_wait(&sem_); if (result == 0) return; // Successfully got semaphore. CHECK(result == -1 && errno == EINTR); // Signal caused spurious wakeup. } } #ifndef TIMEVAL_TO_TIMESPEC #define TIMEVAL_TO_TIMESPEC(tv, ts) do { \ (ts)->tv_sec = (tv)->tv_sec; \ (ts)->tv_nsec = (tv)->tv_usec * 1000; \ } while (false) #endif bool LinuxSemaphore::Wait(int timeout) { const long kOneSecondMicros = 1000000; // NOLINT // Split timeout into second and nanosecond parts. struct timeval delta; delta.tv_usec = timeout % kOneSecondMicros; delta.tv_sec = timeout / kOneSecondMicros; struct timeval current_time; // Get the current time. if (gettimeofday(¤t_time, NULL) == -1) { return false; } // Calculate time for end of timeout. struct timeval end_time; timeradd(¤t_time, &delta, &end_time); struct timespec ts; TIMEVAL_TO_TIMESPEC(&end_time, &ts); // Wait for semaphore signalled or timeout. while (true) { int result = sem_timedwait(&sem_, &ts); if (result == 0) return true; // Successfully got semaphore. if (result > 0) { // For glibc prior to 2.3.4 sem_timedwait returns the error instead of -1. errno = result; result = -1; } if (result == -1 && errno == ETIMEDOUT) return false; // Timeout. CHECK(result == -1 && errno == EINTR); // Signal caused spurious wakeup. } } Semaphore* OS::CreateSemaphore(int count) { return new LinuxSemaphore(count); } #if !defined(__GLIBC__) && (defined(__arm__) || defined(__thumb__)) // Android runs a fairly new Linux kernel, so signal info is there, // but the C library doesn't have the structs defined. struct sigcontext { uint32_t trap_no; uint32_t error_code; uint32_t oldmask; uint32_t gregs[16]; uint32_t arm_cpsr; uint32_t fault_address; }; typedef uint32_t __sigset_t; typedef struct sigcontext mcontext_t; typedef struct ucontext { uint32_t uc_flags; struct ucontext* uc_link; stack_t uc_stack; mcontext_t uc_mcontext; __sigset_t uc_sigmask; } ucontext_t; enum ArmRegisters {R15 = 15, R13 = 13, R11 = 11}; #elif !defined(__GLIBC__) && defined(__mips__) // MIPS version of sigcontext, for Android bionic. struct sigcontext { uint32_t regmask; uint32_t status; uint64_t pc; uint64_t gregs[32]; uint64_t fpregs[32]; uint32_t acx; uint32_t fpc_csr; uint32_t fpc_eir; uint32_t used_math; uint32_t dsp; uint64_t mdhi; uint64_t mdlo; uint32_t hi1; uint32_t lo1; uint32_t hi2; uint32_t lo2; uint32_t hi3; uint32_t lo3; }; typedef uint32_t __sigset_t; typedef struct sigcontext mcontext_t; typedef struct ucontext { uint32_t uc_flags; struct ucontext* uc_link; stack_t uc_stack; mcontext_t uc_mcontext; __sigset_t uc_sigmask; } ucontext_t; #elif !defined(__GLIBC__) && defined(__i386__) // x86 version for Android. struct sigcontext { uint32_t gregs[19]; void* fpregs; uint32_t oldmask; uint32_t cr2; }; typedef uint32_t __sigset_t; typedef struct sigcontext mcontext_t; typedef struct ucontext { uint32_t uc_flags; struct ucontext* uc_link; stack_t uc_stack; mcontext_t uc_mcontext; __sigset_t uc_sigmask; } ucontext_t; enum { REG_EBP = 6, REG_ESP = 7, REG_EIP = 14 }; #endif static int GetThreadID() { // Glibc doesn't provide a wrapper for gettid(2). #if defined(ANDROID) return syscall(__NR_gettid); #else return syscall(SYS_gettid); #endif } static void ProfilerSignalHandler(int signal, siginfo_t* info, void* context) { USE(info); if (signal != SIGPROF) return; Isolate* isolate = Isolate::UncheckedCurrent(); if (isolate == NULL || !isolate->IsInitialized() || !isolate->IsInUse()) { // We require a fully initialized and entered isolate. return; } if (v8::Locker::IsActive() && !isolate->thread_manager()->IsLockedByCurrentThread()) { return; } Sampler* sampler = isolate->logger()->sampler(); if (sampler == NULL || !sampler->IsActive()) return; TickSample sample_obj; TickSample* sample = CpuProfiler::TickSampleEvent(isolate); if (sample == NULL) sample = &sample_obj; // Extracting the sample from the context is extremely machine dependent. ucontext_t* ucontext = reinterpret_cast<ucontext_t*>(context); mcontext_t& mcontext = ucontext->uc_mcontext; sample->state = isolate->current_vm_state(); #if V8_HOST_ARCH_IA32 sample->pc = reinterpret_cast<Address>(mcontext.gregs[REG_EIP]); sample->sp = reinterpret_cast<Address>(mcontext.gregs[REG_ESP]); sample->fp = reinterpret_cast<Address>(mcontext.gregs[REG_EBP]); #elif V8_HOST_ARCH_X64 sample->pc = reinterpret_cast<Address>(mcontext.gregs[REG_RIP]); sample->sp = reinterpret_cast<Address>(mcontext.gregs[REG_RSP]); sample->fp = reinterpret_cast<Address>(mcontext.gregs[REG_RBP]); #elif V8_HOST_ARCH_ARM // An undefined macro evaluates to 0, so this applies to Android's Bionic also. #if (__GLIBC__ < 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ <= 3)) sample->pc = reinterpret_cast<Address>(mcontext.gregs[R15]); sample->sp = reinterpret_cast<Address>(mcontext.gregs[R13]); sample->fp = reinterpret_cast<Address>(mcontext.gregs[R11]); #else sample->pc = reinterpret_cast<Address>(mcontext.arm_pc); sample->sp = reinterpret_cast<Address>(mcontext.arm_sp); sample->fp = reinterpret_cast<Address>(mcontext.arm_fp); #endif // (__GLIBC__ < 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ <= 3)) #elif V8_HOST_ARCH_MIPS sample->pc = reinterpret_cast<Address>(mcontext.pc); sample->sp = reinterpret_cast<Address>(mcontext.gregs[29]); sample->fp = reinterpret_cast<Address>(mcontext.gregs[30]); #endif // V8_HOST_ARCH_* sampler->SampleStack(sample); sampler->Tick(sample); } class Sampler::PlatformData : public Malloced { public: PlatformData() : vm_tid_(GetThreadID()) {} int vm_tid() const { return vm_tid_; } private: const int vm_tid_; }; class SignalSender : public Thread { public: enum SleepInterval { HALF_INTERVAL, FULL_INTERVAL }; static const int kSignalSenderStackSize = 64 * KB; explicit SignalSender(int interval) : Thread(Thread::Options("SignalSender", kSignalSenderStackSize)), vm_tgid_(getpid()), interval_(interval) {} static void InstallSignalHandler() { struct sigaction sa; sa.sa_sigaction = ProfilerSignalHandler; sigemptyset(&sa.sa_mask); sa.sa_flags = SA_RESTART | SA_SIGINFO; signal_handler_installed_ = (sigaction(SIGPROF, &sa, &old_signal_handler_) == 0); } static void RestoreSignalHandler() { if (signal_handler_installed_) { sigaction(SIGPROF, &old_signal_handler_, 0); signal_handler_installed_ = false; } } static void AddActiveSampler(Sampler* sampler) { ScopedLock lock(mutex_.Pointer()); SamplerRegistry::AddActiveSampler(sampler); if (instance_ == NULL) { // Start a thread that will send SIGPROF signal to VM threads, // when CPU profiling will be enabled. instance_ = new SignalSender(sampler->interval()); instance_->Start(); } else { ASSERT(instance_->interval_ == sampler->interval()); } } static void RemoveActiveSampler(Sampler* sampler) { ScopedLock lock(mutex_.Pointer()); SamplerRegistry::RemoveActiveSampler(sampler); if (SamplerRegistry::GetState() == SamplerRegistry::HAS_NO_SAMPLERS) { RuntimeProfiler::StopRuntimeProfilerThreadBeforeShutdown(instance_); delete instance_; instance_ = NULL; RestoreSignalHandler(); } } // Implement Thread::Run(). virtual void Run() { SamplerRegistry::State state; while ((state = SamplerRegistry::GetState()) != SamplerRegistry::HAS_NO_SAMPLERS) { bool cpu_profiling_enabled = (state == SamplerRegistry::HAS_CPU_PROFILING_SAMPLERS); bool runtime_profiler_enabled = RuntimeProfiler::IsEnabled(); if (cpu_profiling_enabled && !signal_handler_installed_) { InstallSignalHandler(); } else if (!cpu_profiling_enabled && signal_handler_installed_) { RestoreSignalHandler(); } // When CPU profiling is enabled both JavaScript and C++ code is // profiled. We must not suspend. if (!cpu_profiling_enabled) { if (rate_limiter_.SuspendIfNecessary()) continue; } if (cpu_profiling_enabled && runtime_profiler_enabled) { if (!SamplerRegistry::IterateActiveSamplers(&DoCpuProfile, this)) { return; } Sleep(HALF_INTERVAL); if (!SamplerRegistry::IterateActiveSamplers(&DoRuntimeProfile, NULL)) { return; } Sleep(HALF_INTERVAL); } else { if (cpu_profiling_enabled) { if (!SamplerRegistry::IterateActiveSamplers(&DoCpuProfile, this)) { return; } } if (runtime_profiler_enabled) { if (!SamplerRegistry::IterateActiveSamplers(&DoRuntimeProfile, NULL)) { return; } } Sleep(FULL_INTERVAL); } } } static void DoCpuProfile(Sampler* sampler, void* raw_sender) { if (!sampler->IsProfiling()) return; SignalSender* sender = reinterpret_cast<SignalSender*>(raw_sender); sender->SendProfilingSignal(sampler->platform_data()->vm_tid()); } static void DoRuntimeProfile(Sampler* sampler, void* ignored) { if (!sampler->isolate()->IsInitialized()) return; sampler->isolate()->runtime_profiler()->NotifyTick(); } void SendProfilingSignal(int tid) { if (!signal_handler_installed_) return; // Glibc doesn't provide a wrapper for tgkill(2). #if defined(ANDROID) syscall(__NR_tgkill, vm_tgid_, tid, SIGPROF); #else syscall(SYS_tgkill, vm_tgid_, tid, SIGPROF); #endif } void Sleep(SleepInterval full_or_half) { // Convert ms to us and subtract 100 us to compensate delays // occuring during signal delivery. useconds_t interval = interval_ * 1000 - 100; if (full_or_half == HALF_INTERVAL) interval /= 2; #if defined(ANDROID) usleep(interval); #else int result = usleep(interval); #ifdef DEBUG if (result != 0 && errno != EINTR) { fprintf(stderr, "SignalSender usleep error; interval = %u, errno = %d\n", interval, errno); ASSERT(result == 0 || errno == EINTR); } #endif // DEBUG USE(result); #endif // ANDROID } const int vm_tgid_; const int interval_; RuntimeProfilerRateLimiter rate_limiter_; // Protects the process wide state below. static LazyMutex mutex_; static SignalSender* instance_; static bool signal_handler_installed_; static struct sigaction old_signal_handler_; private: DISALLOW_COPY_AND_ASSIGN(SignalSender); }; LazyMutex SignalSender::mutex_ = LAZY_MUTEX_INITIALIZER; SignalSender* SignalSender::instance_ = NULL; struct sigaction SignalSender::old_signal_handler_; bool SignalSender::signal_handler_installed_ = false; Sampler::Sampler(Isolate* isolate, int interval) : isolate_(isolate), interval_(interval), profiling_(false), active_(false), samples_taken_(0) { data_ = new PlatformData; } Sampler::~Sampler() { ASSERT(!IsActive()); delete data_; } void Sampler::Start() { ASSERT(!IsActive()); SetActive(true); SignalSender::AddActiveSampler(this); } void Sampler::Stop() { ASSERT(IsActive()); SignalSender::RemoveActiveSampler(this); SetActive(false); } } } // namespace v8::internal