/* * Copyright (C) 2008, 2009, 2010 Apple Inc. All rights reserved. * Copyright (C) 2008 Cameron Zwarich <cwzwarich@uwaterloo.ca> * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. Neither the name of Apple Computer, Inc. ("Apple") nor the names of * its contributors may be used to endorse or promote products derived * from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY APPLE AND ITS CONTRIBUTORS "AS IS" AND ANY * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE * DISCLAIMED. IN NO EVENT SHALL APPLE OR ITS CONTRIBUTORS BE LIABLE FOR ANY * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #ifndef CodeBlock_h #define CodeBlock_h #include "EvalCodeCache.h" #include "Instruction.h" #include "JITCode.h" #include "JSGlobalObject.h" #include "JumpTable.h" #include "Nodes.h" #include "RegExp.h" #include "UString.h" #include <wtf/FastAllocBase.h> #include <wtf/PassOwnPtr.h> #include <wtf/RefPtr.h> #include <wtf/Vector.h> #if ENABLE(JIT) #include "StructureStubInfo.h" #endif // Register numbers used in bytecode operations have different meaning according to their ranges: // 0x80000000-0xFFFFFFFF Negative indices from the CallFrame pointer are entries in the call frame, see RegisterFile.h. // 0x00000000-0x3FFFFFFF Forwards indices from the CallFrame pointer are local vars and temporaries with the function's callframe. // 0x40000000-0x7FFFFFFF Positive indices from 0x40000000 specify entries in the constant pool on the CodeBlock. static const int FirstConstantRegisterIndex = 0x40000000; namespace JSC { enum HasSeenShouldRepatch { hasSeenShouldRepatch }; class ExecState; enum CodeType { GlobalCode, EvalCode, FunctionCode }; inline int unmodifiedArgumentsRegister(int argumentsRegister) { return argumentsRegister - 1; } static ALWAYS_INLINE int missingThisObjectMarker() { return std::numeric_limits<int>::max(); } struct HandlerInfo { uint32_t start; uint32_t end; uint32_t target; uint32_t scopeDepth; #if ENABLE(JIT) CodeLocationLabel nativeCode; #endif }; struct ExpressionRangeInfo { enum { MaxOffset = (1 << 7) - 1, MaxDivot = (1 << 25) - 1 }; uint32_t instructionOffset : 25; uint32_t divotPoint : 25; uint32_t startOffset : 7; uint32_t endOffset : 7; }; struct LineInfo { uint32_t instructionOffset; int32_t lineNumber; }; #if ENABLE(JIT) struct CallLinkInfo { CallLinkInfo() : hasSeenShouldRepatch(false) { } CodeLocationNearCall callReturnLocation; CodeLocationDataLabelPtr hotPathBegin; CodeLocationNearCall hotPathOther; WriteBarrier<JSFunction> callee; bool hasSeenShouldRepatch; void setUnlinked() { callee.clear(); } bool isLinked() { return callee; } bool seenOnce() { return hasSeenShouldRepatch; } void setSeen() { hasSeenShouldRepatch = true; } }; struct MethodCallLinkInfo { MethodCallLinkInfo() { } bool seenOnce() { ASSERT(!cachedStructure); return cachedPrototypeStructure; } void setSeen() { ASSERT(!cachedStructure && !cachedPrototypeStructure); // We use the values of cachedStructure & cachedPrototypeStructure to indicate the // current state. // - In the initial state, both are null. // - Once this transition has been taken once, cachedStructure is // null and cachedPrototypeStructure is set to a nun-null value. // - Once the call is linked both structures are set to non-null values. cachedPrototypeStructure.setWithoutWriteBarrier((Structure*)1); } CodeLocationCall callReturnLocation; CodeLocationDataLabelPtr structureLabel; WriteBarrier<Structure> cachedStructure; WriteBarrier<Structure> cachedPrototypeStructure; }; struct GlobalResolveInfo { GlobalResolveInfo(unsigned bytecodeOffset) : offset(0) , bytecodeOffset(bytecodeOffset) { } WriteBarrier<Structure> structure; unsigned offset; unsigned bytecodeOffset; }; // This structure is used to map from a call return location // (given as an offset in bytes into the JIT code) back to // the bytecode index of the corresponding bytecode operation. // This is then used to look up the corresponding handler. struct CallReturnOffsetToBytecodeOffset { CallReturnOffsetToBytecodeOffset(unsigned callReturnOffset, unsigned bytecodeOffset) : callReturnOffset(callReturnOffset) , bytecodeOffset(bytecodeOffset) { } unsigned callReturnOffset; unsigned bytecodeOffset; }; // valueAtPosition helpers for the binarySearch algorithm. inline void* getStructureStubInfoReturnLocation(StructureStubInfo* structureStubInfo) { return structureStubInfo->callReturnLocation.executableAddress(); } inline void* getCallLinkInfoReturnLocation(CallLinkInfo* callLinkInfo) { return callLinkInfo->callReturnLocation.executableAddress(); } inline void* getMethodCallLinkInfoReturnLocation(MethodCallLinkInfo* methodCallLinkInfo) { return methodCallLinkInfo->callReturnLocation.executableAddress(); } inline unsigned getCallReturnOffset(CallReturnOffsetToBytecodeOffset* pc) { return pc->callReturnOffset; } #endif class CodeBlock { WTF_MAKE_FAST_ALLOCATED; friend class JIT; protected: CodeBlock(ScriptExecutable* ownerExecutable, CodeType, JSGlobalObject*, PassRefPtr<SourceProvider>, unsigned sourceOffset, SymbolTable* symbolTable, bool isConstructor); WriteBarrier<JSGlobalObject> m_globalObject; Heap* m_heap; public: virtual ~CodeBlock(); void markAggregate(MarkStack&); static void dumpStatistics(); #if !defined(NDEBUG) || ENABLE_OPCODE_SAMPLING void dump(ExecState*) const; void printStructures(const Instruction*) const; void printStructure(const char* name, const Instruction*, int operand) const; #endif bool isStrictMode() const { return m_isStrictMode; } inline bool isKnownNotImmediate(int index) { if (index == m_thisRegister && !m_isStrictMode) return true; if (isConstantRegisterIndex(index)) return getConstant(index).isCell(); return false; } ALWAYS_INLINE bool isTemporaryRegisterIndex(int index) { return index >= m_numVars; } HandlerInfo* handlerForBytecodeOffset(unsigned bytecodeOffset); int lineNumberForBytecodeOffset(unsigned bytecodeOffset); void expressionRangeForBytecodeOffset(unsigned bytecodeOffset, int& divot, int& startOffset, int& endOffset); #if ENABLE(JIT) StructureStubInfo& getStubInfo(ReturnAddressPtr returnAddress) { return *(binarySearch<StructureStubInfo, void*, getStructureStubInfoReturnLocation>(m_structureStubInfos.begin(), m_structureStubInfos.size(), returnAddress.value())); } CallLinkInfo& getCallLinkInfo(ReturnAddressPtr returnAddress) { return *(binarySearch<CallLinkInfo, void*, getCallLinkInfoReturnLocation>(m_callLinkInfos.begin(), m_callLinkInfos.size(), returnAddress.value())); } MethodCallLinkInfo& getMethodCallLinkInfo(ReturnAddressPtr returnAddress) { return *(binarySearch<MethodCallLinkInfo, void*, getMethodCallLinkInfoReturnLocation>(m_methodCallLinkInfos.begin(), m_methodCallLinkInfos.size(), returnAddress.value())); } unsigned bytecodeOffset(ReturnAddressPtr returnAddress) { if (!m_rareData) return 1; Vector<CallReturnOffsetToBytecodeOffset>& callIndices = m_rareData->m_callReturnIndexVector; if (!callIndices.size()) return 1; return binarySearch<CallReturnOffsetToBytecodeOffset, unsigned, getCallReturnOffset>(callIndices.begin(), callIndices.size(), getJITCode().offsetOf(returnAddress.value()))->bytecodeOffset; } #endif #if ENABLE(INTERPRETER) unsigned bytecodeOffset(Instruction* returnAddress) { return static_cast<Instruction*>(returnAddress) - instructions().begin(); } #endif void setIsNumericCompareFunction(bool isNumericCompareFunction) { m_isNumericCompareFunction = isNumericCompareFunction; } bool isNumericCompareFunction() { return m_isNumericCompareFunction; } Vector<Instruction>& instructions() { return m_instructions; } void discardBytecode() { m_instructions.clear(); } #ifndef NDEBUG unsigned instructionCount() { return m_instructionCount; } void setInstructionCount(unsigned instructionCount) { m_instructionCount = instructionCount; } #endif #if ENABLE(JIT) JITCode& getJITCode() { return m_isConstructor ? ownerExecutable()->generatedJITCodeForConstruct() : ownerExecutable()->generatedJITCodeForCall(); } ExecutablePool* executablePool() { return getJITCode().getExecutablePool(); } #endif ScriptExecutable* ownerExecutable() const { return m_ownerExecutable.get(); } void setGlobalData(JSGlobalData* globalData) { m_globalData = globalData; } void setThisRegister(int thisRegister) { m_thisRegister = thisRegister; } int thisRegister() const { return m_thisRegister; } void setNeedsFullScopeChain(bool needsFullScopeChain) { m_needsFullScopeChain = needsFullScopeChain; } bool needsFullScopeChain() const { return m_needsFullScopeChain; } void setUsesEval(bool usesEval) { m_usesEval = usesEval; } bool usesEval() const { return m_usesEval; } void setArgumentsRegister(int argumentsRegister) { ASSERT(argumentsRegister != -1); m_argumentsRegister = argumentsRegister; ASSERT(usesArguments()); } int argumentsRegister() { ASSERT(usesArguments()); return m_argumentsRegister; } void setActivationRegister(int activationRegister) { m_activationRegister = activationRegister; } int activationRegister() { ASSERT(needsFullScopeChain()); return m_activationRegister; } bool usesArguments() const { return m_argumentsRegister != -1; } CodeType codeType() const { return m_codeType; } SourceProvider* source() const { return m_source.get(); } unsigned sourceOffset() const { return m_sourceOffset; } size_t numberOfJumpTargets() const { return m_jumpTargets.size(); } void addJumpTarget(unsigned jumpTarget) { m_jumpTargets.append(jumpTarget); } unsigned jumpTarget(int index) const { return m_jumpTargets[index]; } unsigned lastJumpTarget() const { return m_jumpTargets.last(); } void createActivation(CallFrame*); #if ENABLE(INTERPRETER) void addPropertyAccessInstruction(unsigned propertyAccessInstruction) { m_propertyAccessInstructions.append(propertyAccessInstruction); } void addGlobalResolveInstruction(unsigned globalResolveInstruction) { m_globalResolveInstructions.append(globalResolveInstruction); } bool hasGlobalResolveInstructionAtBytecodeOffset(unsigned bytecodeOffset); #endif #if ENABLE(JIT) size_t numberOfStructureStubInfos() const { return m_structureStubInfos.size(); } void addStructureStubInfo(const StructureStubInfo& stubInfo) { m_structureStubInfos.append(stubInfo); } StructureStubInfo& structureStubInfo(int index) { return m_structureStubInfos[index]; } void addGlobalResolveInfo(unsigned globalResolveInstruction) { m_globalResolveInfos.append(GlobalResolveInfo(globalResolveInstruction)); } GlobalResolveInfo& globalResolveInfo(int index) { return m_globalResolveInfos[index]; } bool hasGlobalResolveInfoAtBytecodeOffset(unsigned bytecodeOffset); size_t numberOfCallLinkInfos() const { return m_callLinkInfos.size(); } void addCallLinkInfo() { m_callLinkInfos.append(CallLinkInfo()); } CallLinkInfo& callLinkInfo(int index) { return m_callLinkInfos[index]; } void addMethodCallLinkInfos(unsigned n) { m_methodCallLinkInfos.grow(n); } MethodCallLinkInfo& methodCallLinkInfo(int index) { return m_methodCallLinkInfos[index]; } #endif // Exception handling support size_t numberOfExceptionHandlers() const { return m_rareData ? m_rareData->m_exceptionHandlers.size() : 0; } void addExceptionHandler(const HandlerInfo& hanler) { createRareDataIfNecessary(); return m_rareData->m_exceptionHandlers.append(hanler); } HandlerInfo& exceptionHandler(int index) { ASSERT(m_rareData); return m_rareData->m_exceptionHandlers[index]; } void addExpressionInfo(const ExpressionRangeInfo& expressionInfo) { createRareDataIfNecessary(); m_rareData->m_expressionInfo.append(expressionInfo); } void addLineInfo(unsigned bytecodeOffset, int lineNo) { createRareDataIfNecessary(); Vector<LineInfo>& lineInfo = m_rareData->m_lineInfo; if (!lineInfo.size() || lineInfo.last().lineNumber != lineNo) { LineInfo info = { bytecodeOffset, lineNo }; lineInfo.append(info); } } bool hasExpressionInfo() { return m_rareData && m_rareData->m_expressionInfo.size(); } bool hasLineInfo() { return m_rareData && m_rareData->m_lineInfo.size(); } // We only generate exception handling info if the user is debugging // (and may want line number info), or if the function contains exception handler. bool needsCallReturnIndices() { return m_rareData && (m_rareData->m_expressionInfo.size() || m_rareData->m_lineInfo.size() || m_rareData->m_exceptionHandlers.size()); } #if ENABLE(JIT) Vector<CallReturnOffsetToBytecodeOffset>& callReturnIndexVector() { createRareDataIfNecessary(); return m_rareData->m_callReturnIndexVector; } #endif // Constant Pool size_t numberOfIdentifiers() const { return m_identifiers.size(); } void addIdentifier(const Identifier& i) { return m_identifiers.append(i); } Identifier& identifier(int index) { return m_identifiers[index]; } size_t numberOfConstantRegisters() const { return m_constantRegisters.size(); } void addConstant(JSValue v) { m_constantRegisters.append(WriteBarrier<Unknown>()); m_constantRegisters.last().set(m_globalObject->globalData(), m_ownerExecutable.get(), v); } WriteBarrier<Unknown>& constantRegister(int index) { return m_constantRegisters[index - FirstConstantRegisterIndex]; } ALWAYS_INLINE bool isConstantRegisterIndex(int index) const { return index >= FirstConstantRegisterIndex; } ALWAYS_INLINE JSValue getConstant(int index) const { return m_constantRegisters[index - FirstConstantRegisterIndex].get(); } unsigned addFunctionDecl(FunctionExecutable* n) { unsigned size = m_functionDecls.size(); m_functionDecls.append(WriteBarrier<FunctionExecutable>()); m_functionDecls.last().set(m_globalObject->globalData(), m_ownerExecutable.get(), n); return size; } FunctionExecutable* functionDecl(int index) { return m_functionDecls[index].get(); } int numberOfFunctionDecls() { return m_functionDecls.size(); } unsigned addFunctionExpr(FunctionExecutable* n) { unsigned size = m_functionExprs.size(); m_functionExprs.append(WriteBarrier<FunctionExecutable>()); m_functionExprs.last().set(m_globalObject->globalData(), m_ownerExecutable.get(), n); return size; } FunctionExecutable* functionExpr(int index) { return m_functionExprs[index].get(); } unsigned addRegExp(PassRefPtr<RegExp> r) { createRareDataIfNecessary(); unsigned size = m_rareData->m_regexps.size(); m_rareData->m_regexps.append(r); return size; } RegExp* regexp(int index) const { ASSERT(m_rareData); return m_rareData->m_regexps[index].get(); } JSGlobalObject* globalObject() { return m_globalObject.get(); } // Jump Tables size_t numberOfImmediateSwitchJumpTables() const { return m_rareData ? m_rareData->m_immediateSwitchJumpTables.size() : 0; } SimpleJumpTable& addImmediateSwitchJumpTable() { createRareDataIfNecessary(); m_rareData->m_immediateSwitchJumpTables.append(SimpleJumpTable()); return m_rareData->m_immediateSwitchJumpTables.last(); } SimpleJumpTable& immediateSwitchJumpTable(int tableIndex) { ASSERT(m_rareData); return m_rareData->m_immediateSwitchJumpTables[tableIndex]; } size_t numberOfCharacterSwitchJumpTables() const { return m_rareData ? m_rareData->m_characterSwitchJumpTables.size() : 0; } SimpleJumpTable& addCharacterSwitchJumpTable() { createRareDataIfNecessary(); m_rareData->m_characterSwitchJumpTables.append(SimpleJumpTable()); return m_rareData->m_characterSwitchJumpTables.last(); } SimpleJumpTable& characterSwitchJumpTable(int tableIndex) { ASSERT(m_rareData); return m_rareData->m_characterSwitchJumpTables[tableIndex]; } size_t numberOfStringSwitchJumpTables() const { return m_rareData ? m_rareData->m_stringSwitchJumpTables.size() : 0; } StringJumpTable& addStringSwitchJumpTable() { createRareDataIfNecessary(); m_rareData->m_stringSwitchJumpTables.append(StringJumpTable()); return m_rareData->m_stringSwitchJumpTables.last(); } StringJumpTable& stringSwitchJumpTable(int tableIndex) { ASSERT(m_rareData); return m_rareData->m_stringSwitchJumpTables[tableIndex]; } SymbolTable* symbolTable() { return m_symbolTable; } SharedSymbolTable* sharedSymbolTable() { ASSERT(m_codeType == FunctionCode); return static_cast<SharedSymbolTable*>(m_symbolTable); } EvalCodeCache& evalCodeCache() { createRareDataIfNecessary(); return m_rareData->m_evalCodeCache; } void shrinkToFit(); // FIXME: Make these remaining members private. int m_numCalleeRegisters; int m_numVars; int m_numCapturedVars; int m_numParameters; bool m_isConstructor; private: #if !defined(NDEBUG) || ENABLE(OPCODE_SAMPLING) void dump(ExecState*, const Vector<Instruction>::const_iterator& begin, Vector<Instruction>::const_iterator&) const; CString registerName(ExecState*, int r) const; void printUnaryOp(ExecState*, int location, Vector<Instruction>::const_iterator&, const char* op) const; void printBinaryOp(ExecState*, int location, Vector<Instruction>::const_iterator&, const char* op) const; void printConditionalJump(ExecState*, const Vector<Instruction>::const_iterator&, Vector<Instruction>::const_iterator&, int location, const char* op) const; void printGetByIdOp(ExecState*, int location, Vector<Instruction>::const_iterator&, const char* op) const; void printPutByIdOp(ExecState*, int location, Vector<Instruction>::const_iterator&, const char* op) const; #endif void markStructures(MarkStack&, Instruction* vPC) const; void createRareDataIfNecessary() { if (!m_rareData) m_rareData = adoptPtr(new RareData); } WriteBarrier<ScriptExecutable> m_ownerExecutable; JSGlobalData* m_globalData; Vector<Instruction> m_instructions; #ifndef NDEBUG unsigned m_instructionCount; #endif int m_thisRegister; int m_argumentsRegister; int m_activationRegister; bool m_needsFullScopeChain; bool m_usesEval; bool m_isNumericCompareFunction; bool m_isStrictMode; CodeType m_codeType; RefPtr<SourceProvider> m_source; unsigned m_sourceOffset; #if ENABLE(INTERPRETER) Vector<unsigned> m_propertyAccessInstructions; Vector<unsigned> m_globalResolveInstructions; #endif #if ENABLE(JIT) Vector<StructureStubInfo> m_structureStubInfos; Vector<GlobalResolveInfo> m_globalResolveInfos; Vector<CallLinkInfo> m_callLinkInfos; Vector<MethodCallLinkInfo> m_methodCallLinkInfos; #endif Vector<unsigned> m_jumpTargets; // Constant Pool Vector<Identifier> m_identifiers; COMPILE_ASSERT(sizeof(Register) == sizeof(WriteBarrier<Unknown>), Register_must_be_same_size_as_WriteBarrier_Unknown); Vector<WriteBarrier<Unknown> > m_constantRegisters; Vector<WriteBarrier<FunctionExecutable> > m_functionDecls; Vector<WriteBarrier<FunctionExecutable> > m_functionExprs; SymbolTable* m_symbolTable; struct RareData { WTF_MAKE_FAST_ALLOCATED; public: Vector<HandlerInfo> m_exceptionHandlers; // Rare Constants Vector<RefPtr<RegExp> > m_regexps; // Jump Tables Vector<SimpleJumpTable> m_immediateSwitchJumpTables; Vector<SimpleJumpTable> m_characterSwitchJumpTables; Vector<StringJumpTable> m_stringSwitchJumpTables; EvalCodeCache m_evalCodeCache; // Expression info - present if debugging. Vector<ExpressionRangeInfo> m_expressionInfo; // Line info - present if profiling or debugging. Vector<LineInfo> m_lineInfo; #if ENABLE(JIT) Vector<CallReturnOffsetToBytecodeOffset> m_callReturnIndexVector; #endif }; #if COMPILER(MSVC) friend void WTF::deleteOwnedPtr<RareData>(RareData*); #endif OwnPtr<RareData> m_rareData; }; // Program code is not marked by any function, so we make the global object // responsible for marking it. class GlobalCodeBlock : public CodeBlock { public: GlobalCodeBlock(ScriptExecutable* ownerExecutable, CodeType codeType, JSGlobalObject* globalObject, PassRefPtr<SourceProvider> sourceProvider, unsigned sourceOffset) : CodeBlock(ownerExecutable, codeType, globalObject, sourceProvider, sourceOffset, &m_unsharedSymbolTable, false) { } private: SymbolTable m_unsharedSymbolTable; }; class ProgramCodeBlock : public GlobalCodeBlock { public: ProgramCodeBlock(ProgramExecutable* ownerExecutable, CodeType codeType, JSGlobalObject* globalObject, PassRefPtr<SourceProvider> sourceProvider) : GlobalCodeBlock(ownerExecutable, codeType, globalObject, sourceProvider, 0) { } }; class EvalCodeBlock : public GlobalCodeBlock { public: EvalCodeBlock(EvalExecutable* ownerExecutable, JSGlobalObject* globalObject, PassRefPtr<SourceProvider> sourceProvider, int baseScopeDepth) : GlobalCodeBlock(ownerExecutable, EvalCode, globalObject, sourceProvider, 0) , m_baseScopeDepth(baseScopeDepth) { } int baseScopeDepth() const { return m_baseScopeDepth; } const Identifier& variable(unsigned index) { return m_variables[index]; } unsigned numVariables() { return m_variables.size(); } void adoptVariables(Vector<Identifier>& variables) { ASSERT(m_variables.isEmpty()); m_variables.swap(variables); } private: int m_baseScopeDepth; Vector<Identifier> m_variables; }; class FunctionCodeBlock : public CodeBlock { public: // Rather than using the usual RefCounted::create idiom for SharedSymbolTable we just use new // as we need to initialise the CodeBlock before we could initialise any RefPtr to hold the shared // symbol table, so we just pass as a raw pointer with a ref count of 1. We then manually deref // in the destructor. FunctionCodeBlock(FunctionExecutable* ownerExecutable, CodeType codeType, JSGlobalObject* globalObject, PassRefPtr<SourceProvider> sourceProvider, unsigned sourceOffset, bool isConstructor) : CodeBlock(ownerExecutable, codeType, globalObject, sourceProvider, sourceOffset, SharedSymbolTable::create().leakRef(), isConstructor) { } ~FunctionCodeBlock() { sharedSymbolTable()->deref(); } }; inline Register& ExecState::r(int index) { CodeBlock* codeBlock = this->codeBlock(); if (codeBlock->isConstantRegisterIndex(index)) return *reinterpret_cast<Register*>(&codeBlock->constantRegister(index)); return this[index]; } inline Register& ExecState::uncheckedR(int index) { ASSERT(index < FirstConstantRegisterIndex); return this[index]; } } // namespace JSC #endif // CodeBlock_h