/* * RSA * Copyright (c) 2006, Jouni Malinen <j@w1.fi> * * This software may be distributed under the terms of the BSD license. * See README for more details. */ #include "includes.h" #include "common.h" #include "asn1.h" #include "bignum.h" #include "rsa.h" struct crypto_rsa_key { int private_key; /* whether private key is set */ struct bignum *n; /* modulus (p * q) */ struct bignum *e; /* public exponent */ /* The following parameters are available only if private_key is set */ struct bignum *d; /* private exponent */ struct bignum *p; /* prime p (factor of n) */ struct bignum *q; /* prime q (factor of n) */ struct bignum *dmp1; /* d mod (p - 1); CRT exponent */ struct bignum *dmq1; /* d mod (q - 1); CRT exponent */ struct bignum *iqmp; /* 1 / q mod p; CRT coefficient */ }; static const u8 * crypto_rsa_parse_integer(const u8 *pos, const u8 *end, struct bignum *num) { struct asn1_hdr hdr; if (pos == NULL) return NULL; if (asn1_get_next(pos, end - pos, &hdr) < 0 || hdr.class != ASN1_CLASS_UNIVERSAL || hdr.tag != ASN1_TAG_INTEGER) { wpa_printf(MSG_DEBUG, "RSA: Expected INTEGER - found class %d " "tag 0x%x", hdr.class, hdr.tag); return NULL; } if (bignum_set_unsigned_bin(num, hdr.payload, hdr.length) < 0) { wpa_printf(MSG_DEBUG, "RSA: Failed to parse INTEGER"); return NULL; } return hdr.payload + hdr.length; } /** * crypto_rsa_import_public_key - Import an RSA public key * @buf: Key buffer (DER encoded RSA public key) * @len: Key buffer length in bytes * Returns: Pointer to the public key or %NULL on failure */ struct crypto_rsa_key * crypto_rsa_import_public_key(const u8 *buf, size_t len) { struct crypto_rsa_key *key; struct asn1_hdr hdr; const u8 *pos, *end; key = os_zalloc(sizeof(*key)); if (key == NULL) return NULL; key->n = bignum_init(); key->e = bignum_init(); if (key->n == NULL || key->e == NULL) { crypto_rsa_free(key); return NULL; } /* * PKCS #1, 7.1: * RSAPublicKey ::= SEQUENCE { * modulus INTEGER, -- n * publicExponent INTEGER -- e * } */ if (asn1_get_next(buf, len, &hdr) < 0 || hdr.class != ASN1_CLASS_UNIVERSAL || hdr.tag != ASN1_TAG_SEQUENCE) { wpa_printf(MSG_DEBUG, "RSA: Expected SEQUENCE " "(public key) - found class %d tag 0x%x", hdr.class, hdr.tag); goto error; } pos = hdr.payload; end = pos + hdr.length; pos = crypto_rsa_parse_integer(pos, end, key->n); pos = crypto_rsa_parse_integer(pos, end, key->e); if (pos == NULL) goto error; if (pos != end) { wpa_hexdump(MSG_DEBUG, "RSA: Extra data in public key SEQUENCE", pos, end - pos); goto error; } return key; error: crypto_rsa_free(key); return NULL; } /** * crypto_rsa_import_private_key - Import an RSA private key * @buf: Key buffer (DER encoded RSA private key) * @len: Key buffer length in bytes * Returns: Pointer to the private key or %NULL on failure */ struct crypto_rsa_key * crypto_rsa_import_private_key(const u8 *buf, size_t len) { struct crypto_rsa_key *key; struct bignum *zero; struct asn1_hdr hdr; const u8 *pos, *end; key = os_zalloc(sizeof(*key)); if (key == NULL) return NULL; key->private_key = 1; key->n = bignum_init(); key->e = bignum_init(); key->d = bignum_init(); key->p = bignum_init(); key->q = bignum_init(); key->dmp1 = bignum_init(); key->dmq1 = bignum_init(); key->iqmp = bignum_init(); if (key->n == NULL || key->e == NULL || key->d == NULL || key->p == NULL || key->q == NULL || key->dmp1 == NULL || key->dmq1 == NULL || key->iqmp == NULL) { crypto_rsa_free(key); return NULL; } /* * PKCS #1, 7.2: * RSAPrivateKey ::= SEQUENCE { * version Version, * modulus INTEGER, -- n * publicExponent INTEGER, -- e * privateExponent INTEGER, -- d * prime1 INTEGER, -- p * prime2 INTEGER, -- q * exponent1 INTEGER, -- d mod (p-1) * exponent2 INTEGER, -- d mod (q-1) * coefficient INTEGER -- (inverse of q) mod p * } * * Version ::= INTEGER -- shall be 0 for this version of the standard */ if (asn1_get_next(buf, len, &hdr) < 0 || hdr.class != ASN1_CLASS_UNIVERSAL || hdr.tag != ASN1_TAG_SEQUENCE) { wpa_printf(MSG_DEBUG, "RSA: Expected SEQUENCE " "(public key) - found class %d tag 0x%x", hdr.class, hdr.tag); goto error; } pos = hdr.payload; end = pos + hdr.length; zero = bignum_init(); if (zero == NULL) goto error; pos = crypto_rsa_parse_integer(pos, end, zero); if (pos == NULL || bignum_cmp_d(zero, 0) != 0) { wpa_printf(MSG_DEBUG, "RSA: Expected zero INTEGER in the " "beginning of private key; not found"); bignum_deinit(zero); goto error; } bignum_deinit(zero); pos = crypto_rsa_parse_integer(pos, end, key->n); pos = crypto_rsa_parse_integer(pos, end, key->e); pos = crypto_rsa_parse_integer(pos, end, key->d); pos = crypto_rsa_parse_integer(pos, end, key->p); pos = crypto_rsa_parse_integer(pos, end, key->q); pos = crypto_rsa_parse_integer(pos, end, key->dmp1); pos = crypto_rsa_parse_integer(pos, end, key->dmq1); pos = crypto_rsa_parse_integer(pos, end, key->iqmp); if (pos == NULL) goto error; if (pos != end) { wpa_hexdump(MSG_DEBUG, "RSA: Extra data in public key SEQUENCE", pos, end - pos); goto error; } return key; error: crypto_rsa_free(key); return NULL; } /** * crypto_rsa_get_modulus_len - Get the modulus length of the RSA key * @key: RSA key * Returns: Modulus length of the key */ size_t crypto_rsa_get_modulus_len(struct crypto_rsa_key *key) { return bignum_get_unsigned_bin_len(key->n); } /** * crypto_rsa_exptmod - RSA modular exponentiation * @in: Input data * @inlen: Input data length * @out: Buffer for output data * @outlen: Maximum size of the output buffer and used size on success * @key: RSA key * @use_private: 1 = Use RSA private key, 0 = Use RSA public key * Returns: 0 on success, -1 on failure */ int crypto_rsa_exptmod(const u8 *in, size_t inlen, u8 *out, size_t *outlen, struct crypto_rsa_key *key, int use_private) { struct bignum *tmp, *a = NULL, *b = NULL; int ret = -1; size_t modlen; if (use_private && !key->private_key) return -1; tmp = bignum_init(); if (tmp == NULL) return -1; if (bignum_set_unsigned_bin(tmp, in, inlen) < 0) goto error; if (bignum_cmp(key->n, tmp) < 0) { /* Too large input value for the RSA key modulus */ goto error; } if (use_private) { /* * Decrypt (or sign) using Chinese remainer theorem to speed * up calculation. This is equivalent to tmp = tmp^d mod n * (which would require more CPU to calculate directly). * * dmp1 = (1/e) mod (p-1) * dmq1 = (1/e) mod (q-1) * iqmp = (1/q) mod p, where p > q * m1 = c^dmp1 mod p * m2 = c^dmq1 mod q * h = q^-1 (m1 - m2) mod p * m = m2 + hq */ a = bignum_init(); b = bignum_init(); if (a == NULL || b == NULL) goto error; /* a = tmp^dmp1 mod p */ if (bignum_exptmod(tmp, key->dmp1, key->p, a) < 0) goto error; /* b = tmp^dmq1 mod q */ if (bignum_exptmod(tmp, key->dmq1, key->q, b) < 0) goto error; /* tmp = (a - b) * (1/q mod p) (mod p) */ if (bignum_sub(a, b, tmp) < 0 || bignum_mulmod(tmp, key->iqmp, key->p, tmp) < 0) goto error; /* tmp = b + q * tmp */ if (bignum_mul(tmp, key->q, tmp) < 0 || bignum_add(tmp, b, tmp) < 0) goto error; } else { /* Encrypt (or verify signature) */ /* tmp = tmp^e mod N */ if (bignum_exptmod(tmp, key->e, key->n, tmp) < 0) goto error; } modlen = crypto_rsa_get_modulus_len(key); if (modlen > *outlen) { *outlen = modlen; goto error; } if (bignum_get_unsigned_bin_len(tmp) > modlen) goto error; /* should never happen */ *outlen = modlen; os_memset(out, 0, modlen); if (bignum_get_unsigned_bin( tmp, out + (modlen - bignum_get_unsigned_bin_len(tmp)), NULL) < 0) goto error; ret = 0; error: bignum_deinit(tmp); bignum_deinit(a); bignum_deinit(b); return ret; } /** * crypto_rsa_free - Free RSA key * @key: RSA key to be freed * * This function frees an RSA key imported with either * crypto_rsa_import_public_key() or crypto_rsa_import_private_key(). */ void crypto_rsa_free(struct crypto_rsa_key *key) { if (key) { bignum_deinit(key->n); bignum_deinit(key->e); bignum_deinit(key->d); bignum_deinit(key->p); bignum_deinit(key->q); bignum_deinit(key->dmp1); bignum_deinit(key->dmq1); bignum_deinit(key->iqmp); os_free(key); } }