//===-- ValueEnumerator.cpp - Number values and types for bitcode writer --===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file implements the ValueEnumerator class. // //===----------------------------------------------------------------------===// #include "ValueEnumerator.h" #include "llvm/ADT/SmallPtrSet.h" #include "llvm/ADT/STLExtras.h" #include "llvm/Constants.h" #include "llvm/DerivedTypes.h" #include "llvm/Module.h" #include "llvm/ValueSymbolTable.h" #include "llvm/Instructions.h" #include "llvm/Support/Debug.h" #include "llvm/Support/raw_ostream.h" #include <algorithm> using namespace llvm; namespace llvm_2_9 { static bool isIntegerValue(const std::pair<const Value*, unsigned> &V) { return V.first->getType()->isIntegerTy(); } /// ValueEnumerator - Enumerate module-level information. ValueEnumerator::ValueEnumerator(const Module *M) { // Enumerate the global variables. for (Module::const_global_iterator I = M->global_begin(), E = M->global_end(); I != E; ++I) EnumerateValue(I); // Enumerate the functions. for (Module::const_iterator I = M->begin(), E = M->end(); I != E; ++I) { EnumerateValue(I); EnumerateAttributes(cast<Function>(I)->getAttributes()); } // Enumerate the aliases. for (Module::const_alias_iterator I = M->alias_begin(), E = M->alias_end(); I != E; ++I) EnumerateValue(I); // Remember what is the cutoff between globalvalue's and other constants. unsigned FirstConstant = Values.size(); // Enumerate the global variable initializers. for (Module::const_global_iterator I = M->global_begin(), E = M->global_end(); I != E; ++I) if (I->hasInitializer()) EnumerateValue(I->getInitializer()); // Enumerate the aliasees. for (Module::const_alias_iterator I = M->alias_begin(), E = M->alias_end(); I != E; ++I) EnumerateValue(I->getAliasee()); // Insert constants and metadata that are named at module level into the slot // pool so that the module symbol table can refer to them... EnumerateValueSymbolTable(M->getValueSymbolTable()); EnumerateNamedMetadata(M); SmallVector<std::pair<unsigned, MDNode*>, 8> MDs; // Enumerate types used by function bodies and argument lists. for (Module::const_iterator F = M->begin(), E = M->end(); F != E; ++F) { for (Function::const_arg_iterator I = F->arg_begin(), E = F->arg_end(); I != E; ++I) EnumerateType(I->getType()); for (Function::const_iterator BB = F->begin(), E = F->end(); BB != E; ++BB) for (BasicBlock::const_iterator I = BB->begin(), E = BB->end(); I!=E;++I){ for (User::const_op_iterator OI = I->op_begin(), E = I->op_end(); OI != E; ++OI) { if (MDNode *MD = dyn_cast<MDNode>(*OI)) if (MD->isFunctionLocal() && MD->getFunction()) // These will get enumerated during function-incorporation. continue; EnumerateOperandType(*OI); } EnumerateType(I->getType()); if (const CallInst *CI = dyn_cast<CallInst>(I)) EnumerateAttributes(CI->getAttributes()); else if (const InvokeInst *II = dyn_cast<InvokeInst>(I)) EnumerateAttributes(II->getAttributes()); // Enumerate metadata attached with this instruction. MDs.clear(); I->getAllMetadataOtherThanDebugLoc(MDs); for (unsigned i = 0, e = MDs.size(); i != e; ++i) EnumerateMetadata(MDs[i].second); if (!I->getDebugLoc().isUnknown()) { MDNode *Scope, *IA; I->getDebugLoc().getScopeAndInlinedAt(Scope, IA, I->getContext()); if (Scope) EnumerateMetadata(Scope); if (IA) EnumerateMetadata(IA); } } } // Optimize constant ordering. OptimizeConstants(FirstConstant, Values.size()); } unsigned ValueEnumerator::getInstructionID(const Instruction *Inst) const { InstructionMapType::const_iterator I = InstructionMap.find(Inst); assert(I != InstructionMap.end() && "Instruction is not mapped!"); return I->second; } void ValueEnumerator::setInstructionID(const Instruction *I) { InstructionMap[I] = InstructionCount++; } unsigned ValueEnumerator::getValueID(const Value *V) const { if (isa<MDNode>(V) || isa<MDString>(V)) { ValueMapType::const_iterator I = MDValueMap.find(V); assert(I != MDValueMap.end() && "Value not in slotcalculator!"); return I->second-1; } ValueMapType::const_iterator I = ValueMap.find(V); assert(I != ValueMap.end() && "Value not in slotcalculator!"); return I->second-1; } void ValueEnumerator::dump() const { print(dbgs(), ValueMap, "Default"); dbgs() << '\n'; print(dbgs(), MDValueMap, "MetaData"); dbgs() << '\n'; } void ValueEnumerator::print(raw_ostream &OS, const ValueMapType &Map, const char *Name) const { OS << "Map Name: " << Name << "\n"; OS << "Size: " << Map.size() << "\n"; for (ValueMapType::const_iterator I = Map.begin(), E = Map.end(); I != E; ++I) { const Value *V = I->first; if (V->hasName()) OS << "Value: " << V->getName(); else OS << "Value: [null]\n"; V->dump(); OS << " Uses(" << std::distance(V->use_begin(),V->use_end()) << "):"; for (Value::const_use_iterator UI = V->use_begin(), UE = V->use_end(); UI != UE; ++UI) { if (UI != V->use_begin()) OS << ","; if((*UI)->hasName()) OS << " " << (*UI)->getName(); else OS << " [null]"; } OS << "\n\n"; } } // Optimize constant ordering. namespace { struct CstSortPredicate { ValueEnumerator &VE; explicit CstSortPredicate(ValueEnumerator &ve) : VE(ve) {} bool operator()(const std::pair<const Value*, unsigned> &LHS, const std::pair<const Value*, unsigned> &RHS) { // Sort by plane. if (LHS.first->getType() != RHS.first->getType()) return VE.getTypeID(LHS.first->getType()) < VE.getTypeID(RHS.first->getType()); // Then by frequency. return LHS.second > RHS.second; } }; } /// OptimizeConstants - Reorder constant pool for denser encoding. void ValueEnumerator::OptimizeConstants(unsigned CstStart, unsigned CstEnd) { if (CstStart == CstEnd || CstStart+1 == CstEnd) return; CstSortPredicate P(*this); std::stable_sort(Values.begin()+CstStart, Values.begin()+CstEnd, P); // Ensure that integer constants are at the start of the constant pool. This // is important so that GEP structure indices come before gep constant exprs. std::partition(Values.begin()+CstStart, Values.begin()+CstEnd, isIntegerValue); // Rebuild the modified portion of ValueMap. for (; CstStart != CstEnd; ++CstStart) ValueMap[Values[CstStart].first] = CstStart+1; } /// EnumerateValueSymbolTable - Insert all of the values in the specified symbol /// table into the values table. void ValueEnumerator::EnumerateValueSymbolTable(const ValueSymbolTable &VST) { for (ValueSymbolTable::const_iterator VI = VST.begin(), VE = VST.end(); VI != VE; ++VI) EnumerateValue(VI->getValue()); } /// EnumerateNamedMetadata - Insert all of the values referenced by /// named metadata in the specified module. void ValueEnumerator::EnumerateNamedMetadata(const Module *M) { for (Module::const_named_metadata_iterator I = M->named_metadata_begin(), E = M->named_metadata_end(); I != E; ++I) EnumerateNamedMDNode(I); } void ValueEnumerator::EnumerateNamedMDNode(const NamedMDNode *MD) { for (unsigned i = 0, e = MD->getNumOperands(); i != e; ++i) EnumerateMetadata(MD->getOperand(i)); } /// EnumerateMDNodeOperands - Enumerate all non-function-local values /// and types referenced by the given MDNode. void ValueEnumerator::EnumerateMDNodeOperands(const MDNode *N) { for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) { if (Value *V = N->getOperand(i)) { if (isa<MDNode>(V) || isa<MDString>(V)) EnumerateMetadata(V); else if (!isa<Instruction>(V) && !isa<Argument>(V)) EnumerateValue(V); } else EnumerateType(Type::getVoidTy(N->getContext())); } } void ValueEnumerator::EnumerateMetadata(const Value *MD) { assert((isa<MDNode>(MD) || isa<MDString>(MD)) && "Invalid metadata kind"); // Enumerate the type of this value. EnumerateType(MD->getType()); const MDNode *N = dyn_cast<MDNode>(MD); // In the module-level pass, skip function-local nodes themselves, but // do walk their operands. if (N && N->isFunctionLocal() && N->getFunction()) { EnumerateMDNodeOperands(N); return; } // Check to see if it's already in! unsigned &MDValueID = MDValueMap[MD]; if (MDValueID) { // Increment use count. MDValues[MDValueID-1].second++; return; } MDValues.push_back(std::make_pair(MD, 1U)); MDValueID = MDValues.size(); // Enumerate all non-function-local operands. if (N) EnumerateMDNodeOperands(N); } /// EnumerateFunctionLocalMetadataa - Incorporate function-local metadata /// information reachable from the given MDNode. void ValueEnumerator::EnumerateFunctionLocalMetadata(const MDNode *N) { assert(N->isFunctionLocal() && N->getFunction() && "EnumerateFunctionLocalMetadata called on non-function-local mdnode!"); // Enumerate the type of this value. EnumerateType(N->getType()); // Check to see if it's already in! unsigned &MDValueID = MDValueMap[N]; if (MDValueID) { // Increment use count. MDValues[MDValueID-1].second++; return; } MDValues.push_back(std::make_pair(N, 1U)); MDValueID = MDValues.size(); // To incoroporate function-local information visit all function-local // MDNodes and all function-local values they reference. for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) if (Value *V = N->getOperand(i)) { if (MDNode *O = dyn_cast<MDNode>(V)) { if (O->isFunctionLocal() && O->getFunction()) EnumerateFunctionLocalMetadata(O); } else if (isa<Instruction>(V) || isa<Argument>(V)) EnumerateValue(V); } // Also, collect all function-local MDNodes for easy access. FunctionLocalMDs.push_back(N); } void ValueEnumerator::EnumerateValue(const Value *V) { assert(!V->getType()->isVoidTy() && "Can't insert void values!"); assert(!isa<MDNode>(V) && !isa<MDString>(V) && "EnumerateValue doesn't handle Metadata!"); // Check to see if it's already in! unsigned &ValueID = ValueMap[V]; if (ValueID) { // Increment use count. Values[ValueID-1].second++; return; } // Enumerate the type of this value. EnumerateType(V->getType()); if (const Constant *C = dyn_cast<Constant>(V)) { if (isa<GlobalValue>(C)) { // Initializers for globals are handled explicitly elsewhere. } else if (C->getNumOperands()) { // If a constant has operands, enumerate them. This makes sure that if a // constant has uses (for example an array of const ints), that they are // inserted also. // We prefer to enumerate them with values before we enumerate the user // itself. This makes it more likely that we can avoid forward references // in the reader. We know that there can be no cycles in the constants // graph that don't go through a global variable. for (User::const_op_iterator I = C->op_begin(), E = C->op_end(); I != E; ++I) if (!isa<BasicBlock>(*I)) // Don't enumerate BB operand to BlockAddress. EnumerateValue(*I); // Finally, add the value. Doing this could make the ValueID reference be // dangling, don't reuse it. Values.push_back(std::make_pair(V, 1U)); ValueMap[V] = Values.size(); return; } else if (const ConstantDataSequential *CDS = dyn_cast<ConstantDataSequential>(C)) { // For our legacy handling of the new ConstantDataSequential type, we // need to enumerate the individual elements, as well as mark the // outer constant as used. for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) EnumerateValue(CDS->getElementAsConstant(i)); Values.push_back(std::make_pair(V, 1U)); ValueMap[V] = Values.size(); return; } } // Add the value. Values.push_back(std::make_pair(V, 1U)); ValueID = Values.size(); } void ValueEnumerator::EnumerateType(Type *Ty) { unsigned *TypeID = &TypeMap[Ty]; // We've already seen this type. if (*TypeID) return; // If it is a non-anonymous struct, mark the type as being visited so that we // don't recursively visit it. This is safe because we allow forward // references of these in the bitcode reader. if (StructType *STy = dyn_cast<StructType>(Ty)) if (!STy->isLiteral()) *TypeID = ~0U; // Enumerate all of the subtypes before we enumerate this type. This ensures // that the type will be enumerated in an order that can be directly built. for (Type::subtype_iterator I = Ty->subtype_begin(), E = Ty->subtype_end(); I != E; ++I) EnumerateType(*I); // Refresh the TypeID pointer in case the table rehashed. TypeID = &TypeMap[Ty]; // Check to see if we got the pointer another way. This can happen when // enumerating recursive types that hit the base case deeper than they start. // // If this is actually a struct that we are treating as forward ref'able, // then emit the definition now that all of its contents are available. if (*TypeID && *TypeID != ~0U) return; // Add this type now that its contents are all happily enumerated. Types.push_back(Ty); *TypeID = Types.size(); } // Enumerate the types for the specified value. If the value is a constant, // walk through it, enumerating the types of the constant. void ValueEnumerator::EnumerateOperandType(const Value *V) { EnumerateType(V->getType()); if (const Constant *C = dyn_cast<Constant>(V)) { // If this constant is already enumerated, ignore it, we know its type must // be enumerated. if (ValueMap.count(V)) return; // This constant may have operands, make sure to enumerate the types in // them. for (unsigned i = 0, e = C->getNumOperands(); i != e; ++i) { const Value *Op = C->getOperand(i); // Don't enumerate basic blocks here, this happens as operands to // blockaddress. if (isa<BasicBlock>(Op)) continue; EnumerateOperandType(Op); } if (const MDNode *N = dyn_cast<MDNode>(V)) { for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) if (Value *Elem = N->getOperand(i)) EnumerateOperandType(Elem); } } else if (isa<MDString>(V) || isa<MDNode>(V)) EnumerateMetadata(V); } void ValueEnumerator::EnumerateAttributes(const AttrListPtr &PAL) { if (PAL.isEmpty()) return; // null is always 0. // Do a lookup. unsigned &Entry = AttributeMap[PAL.getRawPointer()]; if (Entry == 0) { // Never saw this before, add it. Attributes.push_back(PAL); Entry = Attributes.size(); } } void ValueEnumerator::incorporateFunction(const Function &F) { InstructionCount = 0; NumModuleValues = Values.size(); NumModuleMDValues = MDValues.size(); // Adding function arguments to the value table. for (Function::const_arg_iterator I = F.arg_begin(), E = F.arg_end(); I != E; ++I) EnumerateValue(I); FirstFuncConstantID = Values.size(); // Add all function-level constants to the value table. for (Function::const_iterator BB = F.begin(), E = F.end(); BB != E; ++BB) { for (BasicBlock::const_iterator I = BB->begin(), E = BB->end(); I!=E; ++I) for (User::const_op_iterator OI = I->op_begin(), E = I->op_end(); OI != E; ++OI) { if ((isa<Constant>(*OI) && !isa<GlobalValue>(*OI)) || isa<InlineAsm>(*OI)) EnumerateValue(*OI); } BasicBlocks.push_back(BB); ValueMap[BB] = BasicBlocks.size(); } // Optimize the constant layout. OptimizeConstants(FirstFuncConstantID, Values.size()); // Add the function's parameter attributes so they are available for use in // the function's instruction. EnumerateAttributes(F.getAttributes()); FirstInstID = Values.size(); SmallVector<MDNode *, 8> FnLocalMDVector; // Add all of the instructions. for (Function::const_iterator BB = F.begin(), E = F.end(); BB != E; ++BB) { for (BasicBlock::const_iterator I = BB->begin(), E = BB->end(); I!=E; ++I) { for (User::const_op_iterator OI = I->op_begin(), E = I->op_end(); OI != E; ++OI) { if (MDNode *MD = dyn_cast<MDNode>(*OI)) if (MD->isFunctionLocal() && MD->getFunction()) // Enumerate metadata after the instructions they might refer to. FnLocalMDVector.push_back(MD); } SmallVector<std::pair<unsigned, MDNode*>, 8> MDs; I->getAllMetadataOtherThanDebugLoc(MDs); for (unsigned i = 0, e = MDs.size(); i != e; ++i) { MDNode *N = MDs[i].second; if (N->isFunctionLocal() && N->getFunction()) FnLocalMDVector.push_back(N); } if (!I->getType()->isVoidTy()) EnumerateValue(I); } } // Add all of the function-local metadata. for (unsigned i = 0, e = FnLocalMDVector.size(); i != e; ++i) EnumerateFunctionLocalMetadata(FnLocalMDVector[i]); } void ValueEnumerator::purgeFunction() { /// Remove purged values from the ValueMap. for (unsigned i = NumModuleValues, e = Values.size(); i != e; ++i) ValueMap.erase(Values[i].first); for (unsigned i = NumModuleMDValues, e = MDValues.size(); i != e; ++i) MDValueMap.erase(MDValues[i].first); for (unsigned i = 0, e = BasicBlocks.size(); i != e; ++i) ValueMap.erase(BasicBlocks[i]); Values.resize(NumModuleValues); MDValues.resize(NumModuleMDValues); BasicBlocks.clear(); FunctionLocalMDs.clear(); } static void IncorporateFunctionInfoGlobalBBIDs(const Function *F, DenseMap<const BasicBlock*, unsigned> &IDMap) { unsigned Counter = 0; for (Function::const_iterator BB = F->begin(), E = F->end(); BB != E; ++BB) IDMap[BB] = ++Counter; } /// getGlobalBasicBlockID - This returns the function-specific ID for the /// specified basic block. This is relatively expensive information, so it /// should only be used by rare constructs such as address-of-label. unsigned ValueEnumerator::getGlobalBasicBlockID(const BasicBlock *BB) const { unsigned &Idx = GlobalBasicBlockIDs[BB]; if (Idx != 0) return Idx-1; IncorporateFunctionInfoGlobalBBIDs(BB->getParent(), GlobalBasicBlockIDs); return getGlobalBasicBlockID(BB); } } // end llvm_2_9 namespace