/* ** Copyright 2011, The Android Open Source Project ** ** Licensed under the Apache License, Version 2.0 (the "License"); ** you may not use this file except in compliance with the License. ** You may obtain a copy of the License at ** ** http://www.apache.org/licenses/LICENSE-2.0 ** ** Unless required by applicable law or agreed to in writing, software ** distributed under the License is distributed on an "AS IS" BASIS, ** WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. ** See the License for the specific language governing permissions and ** limitations under the License. */ #define LOG_TAG "BlobCache" //#define LOG_NDEBUG 0 #include <stdlib.h> #include <string.h> #include <utils/BlobCache.h> #include <utils/Errors.h> #include <utils/Log.h> namespace android { // BlobCache::Header::mMagicNumber value static const uint32_t blobCacheMagic = '_Bb$'; // BlobCache::Header::mBlobCacheVersion value static const uint32_t blobCacheVersion = 1; // BlobCache::Header::mDeviceVersion value static const uint32_t blobCacheDeviceVersion = 1; BlobCache::BlobCache(size_t maxKeySize, size_t maxValueSize, size_t maxTotalSize): mMaxKeySize(maxKeySize), mMaxValueSize(maxValueSize), mMaxTotalSize(maxTotalSize), mTotalSize(0) { nsecs_t now = systemTime(SYSTEM_TIME_MONOTONIC); #ifdef _WIN32 srand(now); #else mRandState[0] = (now >> 0) & 0xFFFF; mRandState[1] = (now >> 16) & 0xFFFF; mRandState[2] = (now >> 32) & 0xFFFF; #endif ALOGV("initializing random seed using %lld", now); } void BlobCache::set(const void* key, size_t keySize, const void* value, size_t valueSize) { if (mMaxKeySize < keySize) { ALOGV("set: not caching because the key is too large: %d (limit: %d)", keySize, mMaxKeySize); return; } if (mMaxValueSize < valueSize) { ALOGV("set: not caching because the value is too large: %d (limit: %d)", valueSize, mMaxValueSize); return; } if (mMaxTotalSize < keySize + valueSize) { ALOGV("set: not caching because the combined key/value size is too " "large: %d (limit: %d)", keySize + valueSize, mMaxTotalSize); return; } if (keySize == 0) { ALOGW("set: not caching because keySize is 0"); return; } if (valueSize <= 0) { ALOGW("set: not caching because valueSize is 0"); return; } sp<Blob> dummyKey(new Blob(key, keySize, false)); CacheEntry dummyEntry(dummyKey, NULL); while (true) { ssize_t index = mCacheEntries.indexOf(dummyEntry); if (index < 0) { // Create a new cache entry. sp<Blob> keyBlob(new Blob(key, keySize, true)); sp<Blob> valueBlob(new Blob(value, valueSize, true)); size_t newTotalSize = mTotalSize + keySize + valueSize; if (mMaxTotalSize < newTotalSize) { if (isCleanable()) { // Clean the cache and try again. clean(); continue; } else { ALOGV("set: not caching new key/value pair because the " "total cache size limit would be exceeded: %d " "(limit: %d)", keySize + valueSize, mMaxTotalSize); break; } } mCacheEntries.add(CacheEntry(keyBlob, valueBlob)); mTotalSize = newTotalSize; ALOGV("set: created new cache entry with %d byte key and %d byte value", keySize, valueSize); } else { // Update the existing cache entry. sp<Blob> valueBlob(new Blob(value, valueSize, true)); sp<Blob> oldValueBlob(mCacheEntries[index].getValue()); size_t newTotalSize = mTotalSize + valueSize - oldValueBlob->getSize(); if (mMaxTotalSize < newTotalSize) { if (isCleanable()) { // Clean the cache and try again. clean(); continue; } else { ALOGV("set: not caching new value because the total cache " "size limit would be exceeded: %d (limit: %d)", keySize + valueSize, mMaxTotalSize); break; } } mCacheEntries.editItemAt(index).setValue(valueBlob); mTotalSize = newTotalSize; ALOGV("set: updated existing cache entry with %d byte key and %d byte " "value", keySize, valueSize); } break; } } size_t BlobCache::get(const void* key, size_t keySize, void* value, size_t valueSize) { if (mMaxKeySize < keySize) { ALOGV("get: not searching because the key is too large: %d (limit %d)", keySize, mMaxKeySize); return 0; } sp<Blob> dummyKey(new Blob(key, keySize, false)); CacheEntry dummyEntry(dummyKey, NULL); ssize_t index = mCacheEntries.indexOf(dummyEntry); if (index < 0) { ALOGV("get: no cache entry found for key of size %d", keySize); return 0; } // The key was found. Return the value if the caller's buffer is large // enough. sp<Blob> valueBlob(mCacheEntries[index].getValue()); size_t valueBlobSize = valueBlob->getSize(); if (valueBlobSize <= valueSize) { ALOGV("get: copying %d bytes to caller's buffer", valueBlobSize); memcpy(value, valueBlob->getData(), valueBlobSize); } else { ALOGV("get: caller's buffer is too small for value: %d (needs %d)", valueSize, valueBlobSize); } return valueBlobSize; } static inline size_t align4(size_t size) { return (size + 3) & ~3; } size_t BlobCache::getFlattenedSize() const { size_t size = sizeof(Header); for (size_t i = 0; i < mCacheEntries.size(); i++) { const CacheEntry& e(mCacheEntries[i]); sp<Blob> keyBlob = e.getKey(); sp<Blob> valueBlob = e.getValue(); size = align4(size); size += sizeof(EntryHeader) + keyBlob->getSize() + valueBlob->getSize(); } return size; } size_t BlobCache::getFdCount() const { return 0; } status_t BlobCache::flatten(void* buffer, size_t size, int fds[], size_t count) const { if (count != 0) { ALOGE("flatten: nonzero fd count: %zu", count); return BAD_VALUE; } // Write the cache header if (size < sizeof(Header)) { ALOGE("flatten: not enough room for cache header"); return BAD_VALUE; } Header* header = reinterpret_cast<Header*>(buffer); header->mMagicNumber = blobCacheMagic; header->mBlobCacheVersion = blobCacheVersion; header->mDeviceVersion = blobCacheDeviceVersion; header->mNumEntries = mCacheEntries.size(); // Write cache entries uint8_t* byteBuffer = reinterpret_cast<uint8_t*>(buffer); off_t byteOffset = align4(sizeof(Header)); for (size_t i = 0; i < mCacheEntries.size(); i++) { const CacheEntry& e(mCacheEntries[i]); sp<Blob> keyBlob = e.getKey(); sp<Blob> valueBlob = e.getValue(); size_t keySize = keyBlob->getSize(); size_t valueSize = valueBlob->getSize(); size_t entrySize = sizeof(EntryHeader) + keySize + valueSize; if (byteOffset + entrySize > size) { ALOGE("flatten: not enough room for cache entries"); return BAD_VALUE; } EntryHeader* eheader = reinterpret_cast<EntryHeader*>( &byteBuffer[byteOffset]); eheader->mKeySize = keySize; eheader->mValueSize = valueSize; memcpy(eheader->mData, keyBlob->getData(), keySize); memcpy(eheader->mData + keySize, valueBlob->getData(), valueSize); byteOffset += align4(entrySize); } return OK; } status_t BlobCache::unflatten(void const* buffer, size_t size, int fds[], size_t count) { // All errors should result in the BlobCache being in an empty state. mCacheEntries.clear(); if (count != 0) { ALOGE("unflatten: nonzero fd count: %zu", count); return BAD_VALUE; } // Read the cache header if (size < sizeof(Header)) { ALOGE("unflatten: not enough room for cache header"); return BAD_VALUE; } const Header* header = reinterpret_cast<const Header*>(buffer); if (header->mMagicNumber != blobCacheMagic) { ALOGE("unflatten: bad magic number: %d", header->mMagicNumber); return BAD_VALUE; } if (header->mBlobCacheVersion != blobCacheVersion || header->mDeviceVersion != blobCacheDeviceVersion) { // We treat version mismatches as an empty cache. return OK; } // Read cache entries const uint8_t* byteBuffer = reinterpret_cast<const uint8_t*>(buffer); off_t byteOffset = align4(sizeof(Header)); size_t numEntries = header->mNumEntries; for (size_t i = 0; i < numEntries; i++) { if (byteOffset + sizeof(EntryHeader) > size) { mCacheEntries.clear(); ALOGE("unflatten: not enough room for cache entry headers"); return BAD_VALUE; } const EntryHeader* eheader = reinterpret_cast<const EntryHeader*>( &byteBuffer[byteOffset]); size_t keySize = eheader->mKeySize; size_t valueSize = eheader->mValueSize; size_t entrySize = sizeof(EntryHeader) + keySize + valueSize; if (byteOffset + entrySize > size) { mCacheEntries.clear(); ALOGE("unflatten: not enough room for cache entry headers"); return BAD_VALUE; } const uint8_t* data = eheader->mData; set(data, keySize, data + keySize, valueSize); byteOffset += align4(entrySize); } return OK; } long int BlobCache::blob_random() { #ifdef _WIN32 return rand(); #else return nrand48(mRandState); #endif } void BlobCache::clean() { // Remove a random cache entry until the total cache size gets below half // the maximum total cache size. while (mTotalSize > mMaxTotalSize / 2) { size_t i = size_t(blob_random() % (mCacheEntries.size())); const CacheEntry& entry(mCacheEntries[i]); mTotalSize -= entry.getKey()->getSize() + entry.getValue()->getSize(); mCacheEntries.removeAt(i); } } bool BlobCache::isCleanable() const { return mTotalSize > mMaxTotalSize / 2; } BlobCache::Blob::Blob(const void* data, size_t size, bool copyData): mData(copyData ? malloc(size) : data), mSize(size), mOwnsData(copyData) { if (data != NULL && copyData) { memcpy(const_cast<void*>(mData), data, size); } } BlobCache::Blob::~Blob() { if (mOwnsData) { free(const_cast<void*>(mData)); } } bool BlobCache::Blob::operator<(const Blob& rhs) const { if (mSize == rhs.mSize) { return memcmp(mData, rhs.mData, mSize) < 0; } else { return mSize < rhs.mSize; } } const void* BlobCache::Blob::getData() const { return mData; } size_t BlobCache::Blob::getSize() const { return mSize; } BlobCache::CacheEntry::CacheEntry() { } BlobCache::CacheEntry::CacheEntry(const sp<Blob>& key, const sp<Blob>& value): mKey(key), mValue(value) { } BlobCache::CacheEntry::CacheEntry(const CacheEntry& ce): mKey(ce.mKey), mValue(ce.mValue) { } bool BlobCache::CacheEntry::operator<(const CacheEntry& rhs) const { return *mKey < *rhs.mKey; } const BlobCache::CacheEntry& BlobCache::CacheEntry::operator=(const CacheEntry& rhs) { mKey = rhs.mKey; mValue = rhs.mValue; return *this; } sp<BlobCache::Blob> BlobCache::CacheEntry::getKey() const { return mKey; } sp<BlobCache::Blob> BlobCache::CacheEntry::getValue() const { return mValue; } void BlobCache::CacheEntry::setValue(const sp<Blob>& value) { mValue = value; } } // namespace android