/* * Copyright (C) 2012 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include <cstring> // for memset() #include <stdint.h> #define LOG_TAG "LatinIME: proximity_info_state.cpp" #include "defines.h" #include "geometry_utils.h" #include "proximity_info.h" #include "proximity_info_state.h" namespace latinime { const int ProximityInfoState::NORMALIZED_SQUARED_DISTANCE_SCALING_FACTOR_LOG_2 = 10; const int ProximityInfoState::NORMALIZED_SQUARED_DISTANCE_SCALING_FACTOR = 1 << NORMALIZED_SQUARED_DISTANCE_SCALING_FACTOR_LOG_2; const float ProximityInfoState::NOT_A_DISTANCE_FLOAT = -1.0f; const int ProximityInfoState::NOT_A_CODE = -1; void ProximityInfoState::initInputParams(const int pointerId, const float maxPointToKeyLength, const ProximityInfo *proximityInfo, const int32_t *const inputCodes, const int inputSize, const int *const xCoordinates, const int *const yCoordinates, const int *const times, const int *const pointerIds, const bool isGeometric) { if (isGeometric) { mIsContinuationPossible = checkAndReturnIsContinuationPossible( inputSize, xCoordinates, yCoordinates, times); } else { mIsContinuationPossible = false; } mProximityInfo = proximityInfo; mHasTouchPositionCorrectionData = proximityInfo->hasTouchPositionCorrectionData(); mMostCommonKeyWidthSquare = proximityInfo->getMostCommonKeyWidthSquare(); mLocaleStr = proximityInfo->getLocaleStr(); mKeyCount = proximityInfo->getKeyCount(); mCellHeight = proximityInfo->getCellHeight(); mCellWidth = proximityInfo->getCellWidth(); mGridHeight = proximityInfo->getGridWidth(); mGridWidth = proximityInfo->getGridHeight(); memset(mInputCodes, 0, sizeof(mInputCodes)); if (!isGeometric && pointerId == 0) { // Initialize // - mInputCodes // - mNormalizedSquaredDistances // TODO: Merge for (int i = 0; i < inputSize; ++i) { const int32_t primaryKey = inputCodes[i]; const int x = xCoordinates[i]; const int y = yCoordinates[i]; int *proximities = &mInputCodes[i * MAX_PROXIMITY_CHARS_SIZE_INTERNAL]; mProximityInfo->calculateNearbyKeyCodes(x, y, primaryKey, proximities); } if (DEBUG_PROXIMITY_CHARS) { for (int i = 0; i < inputSize; ++i) { AKLOGI("---"); for (int j = 0; j < MAX_PROXIMITY_CHARS_SIZE_INTERNAL; ++j) { int icc = mInputCodes[i * MAX_PROXIMITY_CHARS_SIZE_INTERNAL + j]; int icfjc = inputCodes[i * MAX_PROXIMITY_CHARS_SIZE_INTERNAL + j]; icc += 0; icfjc += 0; AKLOGI("--- (%d)%c,%c", i, icc, icfjc); AKLOGI("--- A<%d>,B<%d>", icc, icfjc); } } } } /////////////////////// // Setup touch points int pushTouchPointStartIndex = 0; int lastSavedInputSize = 0; mMaxPointToKeyLength = maxPointToKeyLength; if (mIsContinuationPossible && mInputIndice.size() > 1) { // Just update difference. // Two points prior is never skipped. Thus, we pop 2 input point data here. pushTouchPointStartIndex = mInputIndice[mInputIndice.size() - 2]; popInputData(); popInputData(); lastSavedInputSize = mInputXs.size(); } else { // Clear all data. mInputXs.clear(); mInputYs.clear(); mTimes.clear(); mInputIndice.clear(); mLengthCache.clear(); mDistanceCache.clear(); mNearKeysVector.clear(); mRelativeSpeeds.clear(); } if (DEBUG_GEO_FULL) { AKLOGI("Init ProximityInfoState: reused points = %d, last input size = %d", pushTouchPointStartIndex, lastSavedInputSize); } mInputSize = 0; if (xCoordinates && yCoordinates) { const bool proximityOnly = !isGeometric && (xCoordinates[0] < 0 || yCoordinates[0] < 0); int lastInputIndex = pushTouchPointStartIndex; for (int i = lastInputIndex; i < inputSize; ++i) { const int pid = pointerIds ? pointerIds[i] : 0; if (pointerId == pid) { lastInputIndex = i; } } if (DEBUG_GEO_FULL) { AKLOGI("Init ProximityInfoState: last input index = %d", lastInputIndex); } // Working space to save near keys distances for current, prev and prevprev input point. NearKeysDistanceMap nearKeysDistances[3]; // These pointers are swapped for each inputs points. NearKeysDistanceMap *currentNearKeysDistances = &nearKeysDistances[0]; NearKeysDistanceMap *prevNearKeysDistances = &nearKeysDistances[1]; NearKeysDistanceMap *prevPrevNearKeysDistances = &nearKeysDistances[2]; for (int i = pushTouchPointStartIndex; i <= lastInputIndex; ++i) { // Assuming pointerId == 0 if pointerIds is null. const int pid = pointerIds ? pointerIds[i] : 0; if (DEBUG_GEO_FULL) { AKLOGI("Init ProximityInfoState: (%d)PID = %d", i, pid); } if (pointerId == pid) { const int c = isGeometric ? NOT_A_COORDINATE : getPrimaryCharAt(i); const int x = proximityOnly ? NOT_A_COORDINATE : xCoordinates[i]; const int y = proximityOnly ? NOT_A_COORDINATE : yCoordinates[i]; const int time = times ? times[i] : -1; if (pushTouchPoint(i, c, x, y, time, isGeometric /* do sampling */, i == lastInputIndex, currentNearKeysDistances, prevNearKeysDistances, prevPrevNearKeysDistances)) { // Previous point information was popped. NearKeysDistanceMap *tmp = prevNearKeysDistances; prevNearKeysDistances = currentNearKeysDistances; currentNearKeysDistances = tmp; } else { NearKeysDistanceMap *tmp = prevPrevNearKeysDistances; prevPrevNearKeysDistances = prevNearKeysDistances; prevNearKeysDistances = currentNearKeysDistances; currentNearKeysDistances = tmp; } } } mInputSize = mInputXs.size(); } if (mInputSize > 0 && isGeometric) { int sumDuration = mTimes.back() - mTimes.front(); int sumLength = mLengthCache.back() - mLengthCache.front(); float averageSpeed = static_cast<float>(sumLength) / static_cast<float>(sumDuration); mRelativeSpeeds.resize(mInputSize); for (int i = lastSavedInputSize; i < mInputSize; ++i) { const int index = mInputIndice[i]; int length = 0; int duration = 0; if (index == 0 && index < inputSize - 1) { length = getDistanceInt(xCoordinates[index], yCoordinates[index], xCoordinates[index + 1], yCoordinates[index + 1]); duration = times[index + 1] - times[index]; } else if (index == inputSize - 1 && index > 0) { length = getDistanceInt(xCoordinates[index - 1], yCoordinates[index - 1], xCoordinates[index], yCoordinates[index]); duration = times[index] - times[index - 1]; } else if (0 < index && index < inputSize - 1) { length = getDistanceInt(xCoordinates[index - 1], yCoordinates[index - 1], xCoordinates[index], yCoordinates[index]) + getDistanceInt(xCoordinates[index], yCoordinates[index], xCoordinates[index + 1], yCoordinates[index + 1]); duration = times[index + 1] - times[index - 1]; } else { length = 0; duration = 1; } const float speed = static_cast<float>(length) / static_cast<float>(duration); mRelativeSpeeds[i] = speed / averageSpeed; } } if (mInputSize > 0) { const int keyCount = mProximityInfo->getKeyCount(); mNearKeysVector.resize(mInputSize); mDistanceCache.resize(mInputSize * keyCount); for (int i = lastSavedInputSize; i < mInputSize; ++i) { mNearKeysVector[i].reset(); static const float NEAR_KEY_NORMALIZED_SQUARED_THRESHOLD = 4.0f; for (int k = 0; k < keyCount; ++k) { const int index = i * keyCount + k; const int x = mInputXs[i]; const int y = mInputYs[i]; const float normalizedSquaredDistance = mProximityInfo->getNormalizedSquaredDistanceFromCenterFloatG(k, x, y); mDistanceCache[index] = normalizedSquaredDistance; if (normalizedSquaredDistance < NEAR_KEY_NORMALIZED_SQUARED_THRESHOLD) { mNearKeysVector[i].set(k, 1); } } } static const float READ_FORWORD_LENGTH_SCALE = 0.95f; const int readForwordLength = static_cast<int>( hypotf(mProximityInfo->getKeyboardWidth(), mProximityInfo->getKeyboardHeight()) * READ_FORWORD_LENGTH_SCALE); for (int i = 0; i < mInputSize; ++i) { if (DEBUG_GEO_FULL) { AKLOGI("Sampled(%d): x = %d, y = %d, time = %d", i, mInputXs[i], mInputYs[i], mTimes[i]); } for (int j = max(i + 1, lastSavedInputSize); j < mInputSize; ++j) { if (mLengthCache[j] - mLengthCache[i] >= readForwordLength) { break; } mNearKeysVector[i] |= mNearKeysVector[j]; } } } // end /////////////////////// memset(mNormalizedSquaredDistances, NOT_A_DISTANCE, sizeof(mNormalizedSquaredDistances)); memset(mPrimaryInputWord, 0, sizeof(mPrimaryInputWord)); mTouchPositionCorrectionEnabled = mInputSize > 0 && mHasTouchPositionCorrectionData && xCoordinates && yCoordinates; if (!isGeometric && pointerId == 0) { for (int i = 0; i < inputSize; ++i) { mPrimaryInputWord[i] = getPrimaryCharAt(i); } for (int i = 0; i < mInputSize && mTouchPositionCorrectionEnabled; ++i) { const int *proximityChars = getProximityCharsAt(i); const int primaryKey = proximityChars[0]; const int x = xCoordinates[i]; const int y = yCoordinates[i]; if (DEBUG_PROXIMITY_CHARS) { int a = x + y + primaryKey; a += 0; AKLOGI("--- Primary = %c, x = %d, y = %d", primaryKey, x, y); } for (int j = 0; j < MAX_PROXIMITY_CHARS_SIZE_INTERNAL && proximityChars[j] > 0; ++j) { const int currentChar = proximityChars[j]; const float squaredDistance = hasInputCoordinates() ? calculateNormalizedSquaredDistance( mProximityInfo->getKeyIndexOf(currentChar), i) : NOT_A_DISTANCE_FLOAT; if (squaredDistance >= 0.0f) { mNormalizedSquaredDistances[i * MAX_PROXIMITY_CHARS_SIZE_INTERNAL + j] = (int) (squaredDistance * NORMALIZED_SQUARED_DISTANCE_SCALING_FACTOR); } else { mNormalizedSquaredDistances[i * MAX_PROXIMITY_CHARS_SIZE_INTERNAL + j] = (j == 0) ? EQUIVALENT_CHAR_WITHOUT_DISTANCE_INFO : PROXIMITY_CHAR_WITHOUT_DISTANCE_INFO; } if (DEBUG_PROXIMITY_CHARS) { AKLOGI("--- Proximity (%d) = %c", j, currentChar); } } } } if (DEBUG_GEO_FULL) { AKLOGI("ProximityState init finished: %d points out of %d", mInputSize, inputSize); } } bool ProximityInfoState::checkAndReturnIsContinuationPossible(const int inputSize, const int *const xCoordinates, const int *const yCoordinates, const int *const times) { for (int i = 0; i < mInputSize; ++i) { const int index = mInputIndice[i]; if (index > inputSize || xCoordinates[index] != mInputXs[i] || yCoordinates[index] != mInputYs[i] || times[index] != mTimes[i]) { return false; } } return true; } // Calculating point to key distance for all near keys and returning the distance between // the given point and the nearest key position. float ProximityInfoState::updateNearKeysDistances(const int x, const int y, NearKeysDistanceMap *const currentNearKeysDistances) { static const float NEAR_KEY_THRESHOLD = 4.0f; currentNearKeysDistances->clear(); const int keyCount = mProximityInfo->getKeyCount(); float nearestKeyDistance = mMaxPointToKeyLength; for (int k = 0; k < keyCount; ++k) { const float dist = mProximityInfo->getNormalizedSquaredDistanceFromCenterFloatG(k, x, y); if (dist < NEAR_KEY_THRESHOLD) { currentNearKeysDistances->insert(std::pair<int, float>(k, dist)); } if (nearestKeyDistance > dist) { nearestKeyDistance = dist; } } return nearestKeyDistance; } // Check if previous point is at local minimum position to near keys. bool ProximityInfoState::isPrevLocalMin(const NearKeysDistanceMap *const currentNearKeysDistances, const NearKeysDistanceMap *const prevNearKeysDistances, const NearKeysDistanceMap *const prevPrevNearKeysDistances) const { static const float MARGIN = 0.01f; for (NearKeysDistanceMap::const_iterator it = prevNearKeysDistances->begin(); it != prevNearKeysDistances->end(); ++it) { NearKeysDistanceMap::const_iterator itPP = prevPrevNearKeysDistances->find(it->first); NearKeysDistanceMap::const_iterator itC = currentNearKeysDistances->find(it->first); if ((itPP == prevPrevNearKeysDistances->end() || itPP->second > it->second + MARGIN) && (itC == currentNearKeysDistances->end() || itC->second > it->second + MARGIN)) { return true; } } return false; } // Calculating a point score that indicates usefulness of the point. float ProximityInfoState::getPointScore( const int x, const int y, const int time, const bool lastPoint, const float nearest, const NearKeysDistanceMap *const currentNearKeysDistances, const NearKeysDistanceMap *const prevNearKeysDistances, const NearKeysDistanceMap *const prevPrevNearKeysDistances) const { static const int DISTANCE_BASE_SCALE = 100; static const int SAVE_DISTANCE_SCALE = 200; static const int SKIP_DISTANCE_SCALE = 25; static const int CHECK_LOCALMIN_DISTANCE_THRESHOLD_SCALE = 40; static const int STRAIGHT_SKIP_DISTANCE_THRESHOLD_SCALE = 50; static const int CORNER_CHECK_DISTANCE_THRESHOLD_SCALE = 27; static const float SAVE_DISTANCE_SCORE = 2.0f; static const float SKIP_DISTANCE_SCORE = -1.0f; static const float CHECK_LOCALMIN_DISTANCE_SCORE = -1.0f; static const float STRAIGHT_ANGLE_THRESHOLD = M_PI_F / 36.0f; static const float STRAIGHT_SKIP_NEAREST_DISTANCE_THRESHOLD = 0.5f; static const float STRAIGHT_SKIP_SCORE = -1.0f; static const float CORNER_ANGLE_THRESHOLD = M_PI_F / 2.0f; static const float CORNER_SCORE = 1.0f; const std::size_t size = mInputXs.size(); if (size <= 1) { return 0.0f; } const int baseSampleRate = mProximityInfo->getMostCommonKeyWidth(); const int distNext = getDistanceInt(x, y, mInputXs.back(), mInputYs.back()) * DISTANCE_BASE_SCALE; const int distPrev = getDistanceInt(mInputXs.back(), mInputYs.back(), mInputXs[size - 2], mInputYs[size - 2]) * DISTANCE_BASE_SCALE; float score = 0.0f; // Sum of distances if (distPrev + distNext > baseSampleRate * SAVE_DISTANCE_SCALE) { score += SAVE_DISTANCE_SCORE; } // Distance if (distPrev < baseSampleRate * SKIP_DISTANCE_SCALE) { score += SKIP_DISTANCE_SCORE; } // Location if (distPrev < baseSampleRate * CHECK_LOCALMIN_DISTANCE_THRESHOLD_SCALE) { if (!isPrevLocalMin(currentNearKeysDistances, prevNearKeysDistances, prevPrevNearKeysDistances)) { score += CHECK_LOCALMIN_DISTANCE_SCORE; } } // Angle const float angle1 = getAngle(x, y, mInputXs.back(), mInputYs.back()); const float angle2 = getAngle(mInputXs.back(), mInputYs.back(), mInputXs[size - 2], mInputYs[size - 2]); const float angleDiff = getAngleDiff(angle1, angle2); // Skip straight if (nearest > STRAIGHT_SKIP_NEAREST_DISTANCE_THRESHOLD && distPrev < baseSampleRate * STRAIGHT_SKIP_DISTANCE_THRESHOLD_SCALE && angleDiff < STRAIGHT_ANGLE_THRESHOLD) { score += STRAIGHT_SKIP_SCORE; } // Save corner if (distPrev > baseSampleRate * CORNER_CHECK_DISTANCE_THRESHOLD_SCALE && angleDiff > CORNER_ANGLE_THRESHOLD) { score += CORNER_SCORE; } return score; } // Sampling touch point and pushing information to vectors. // Returning if previous point is popped or not. bool ProximityInfoState::pushTouchPoint(const int inputIndex, const int nodeChar, int x, int y, const int time, const bool sample, const bool isLastPoint, NearKeysDistanceMap *const currentNearKeysDistances, const NearKeysDistanceMap *const prevNearKeysDistances, const NearKeysDistanceMap *const prevPrevNearKeysDistances) { static const float LAST_POINT_SKIP_DISTANCE_SCALE = 0.25f; size_t size = mInputXs.size(); bool popped = false; if (nodeChar < 0 && sample) { const float nearest = updateNearKeysDistances(x, y, currentNearKeysDistances); const float score = getPointScore(x, y, time, isLastPoint, nearest, currentNearKeysDistances, prevNearKeysDistances, prevPrevNearKeysDistances); if (score < 0) { // Pop previous point because it would be useless. popInputData(); size = mInputXs.size(); popped = true; } else { popped = false; } // Check if the last point should be skipped. if (isLastPoint) { if (size > 0 && getDistanceFloat(x, y, mInputXs.back(), mInputYs.back()) < mProximityInfo->getMostCommonKeyWidth() * LAST_POINT_SKIP_DISTANCE_SCALE) { if (DEBUG_GEO_FULL) { AKLOGI("p0: size = %zd, x = %d, y = %d, lx = %d, ly = %d, dist = %f, " "width = %f", size, x, y, mInputXs.back(), mInputYs.back(), getDistanceFloat(x, y, mInputXs.back(), mInputYs.back()), mProximityInfo->getMostCommonKeyWidth() * LAST_POINT_SKIP_DISTANCE_SCALE); } return popped; } else if (size > 1) { int minChar = 0; float minDist = mMaxPointToKeyLength; for (NearKeysDistanceMap::const_iterator it = currentNearKeysDistances->begin(); it != currentNearKeysDistances->end(); ++it) { if (minDist > it->second) { minChar = it->first; minDist = it->second; } } NearKeysDistanceMap::const_iterator itPP = prevNearKeysDistances->find(minChar); if (itPP != prevNearKeysDistances->end() && minDist > itPP->second) { if (DEBUG_GEO_FULL) { AKLOGI("p1: char = %c, minDist = %f, prevNear key minDist = %f", minChar, itPP->second, minDist); } return popped; } } } } if (nodeChar >= 0 && (x < 0 || y < 0)) { const int keyId = mProximityInfo->getKeyIndexOf(nodeChar); if (keyId >= 0) { x = mProximityInfo->getKeyCenterXOfKeyIdG(keyId); y = mProximityInfo->getKeyCenterYOfKeyIdG(keyId); } } // Pushing point information. if (size > 0) { mLengthCache.push_back( mLengthCache.back() + getDistanceInt(x, y, mInputXs.back(), mInputYs.back())); } else { mLengthCache.push_back(0); } mInputXs.push_back(x); mInputYs.push_back(y); mTimes.push_back(time); mInputIndice.push_back(inputIndex); if (DEBUG_GEO_FULL) { AKLOGI("pushTouchPoint: x = %03d, y = %03d, time = %d, index = %d, popped ? %01d", x, y, time, inputIndex, popped); } return popped; } float ProximityInfoState::calculateNormalizedSquaredDistance( const int keyIndex, const int inputIndex) const { if (keyIndex == NOT_AN_INDEX) { return NOT_A_DISTANCE_FLOAT; } if (!mProximityInfo->hasSweetSpotData(keyIndex)) { return NOT_A_DISTANCE_FLOAT; } if (NOT_A_COORDINATE == mInputXs[inputIndex]) { return NOT_A_DISTANCE_FLOAT; } const float squaredDistance = calculateSquaredDistanceFromSweetSpotCenter( keyIndex, inputIndex); const float squaredRadius = square(mProximityInfo->getSweetSpotRadiiAt(keyIndex)); return squaredDistance / squaredRadius; } int ProximityInfoState::getDuration(const int index) const { if (index >= 0 && index < mInputSize - 1) { return mTimes[index + 1] - mTimes[index]; } return 0; } float ProximityInfoState::getPointToKeyLength(const int inputIndex, const int codePoint, const float scale) const { const int keyId = mProximityInfo->getKeyIndexOf(codePoint); if (keyId != NOT_AN_INDEX) { const int index = inputIndex * mProximityInfo->getKeyCount() + keyId; return min(mDistanceCache[index] * scale, mMaxPointToKeyLength); } if (isSkippableChar(codePoint)) { return 0.0f; } // If the char is not a key on the keyboard then return the max length. return MAX_POINT_TO_KEY_LENGTH; } int ProximityInfoState::getSpaceY() const { const int keyId = mProximityInfo->getKeyIndexOf(' '); return mProximityInfo->getKeyCenterYOfKeyIdG(keyId); } float ProximityInfoState::calculateSquaredDistanceFromSweetSpotCenter( const int keyIndex, const int inputIndex) const { const float sweetSpotCenterX = mProximityInfo->getSweetSpotCenterXAt(keyIndex); const float sweetSpotCenterY = mProximityInfo->getSweetSpotCenterYAt(keyIndex); const float inputX = static_cast<float>(mInputXs[inputIndex]); const float inputY = static_cast<float>(mInputYs[inputIndex]); return square(inputX - sweetSpotCenterX) + square(inputY - sweetSpotCenterY); } // Puts possible characters into filter and returns new filter size. int32_t ProximityInfoState::getAllPossibleChars( const size_t index, int32_t *const filter, const int32_t filterSize) const { if (index >= mInputXs.size()) { return filterSize; } int newFilterSize = filterSize; for (int j = 0; j < mProximityInfo->getKeyCount(); ++j) { if (mNearKeysVector[index].test(j)) { const int32_t keyCodePoint = mProximityInfo->getCodePointOf(j); bool insert = true; // TODO: Avoid linear search for (int k = 0; k < filterSize; ++k) { if (filter[k] == keyCodePoint) { insert = false; break; } } if (insert) { filter[newFilterSize++] = keyCodePoint; } } } return newFilterSize; } void ProximityInfoState::popInputData() { mInputXs.pop_back(); mInputYs.pop_back(); mTimes.pop_back(); mLengthCache.pop_back(); mInputIndice.pop_back(); } } // namespace latinime