/*
* Copyright (C) 2009 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "Dalvik.h"
#include "libdex/DexOpcodes.h"
#include "../../CompilerInternals.h"
#include "ArmLIR.h"
#include "Codegen.h"
#include <sys/mman.h> /* for protection change */
#define MAX_ASSEMBLER_RETRIES 10
/*
* opcode: ArmOpcode enum
* skeleton: pre-designated bit-pattern for this opcode
* k0: key to applying ds/de
* ds: dest start bit position
* de: dest end bit position
* k1: key to applying s1s/s1e
* s1s: src1 start bit position
* s1e: src1 end bit position
* k2: key to applying s2s/s2e
* s2s: src2 start bit position
* s2e: src2 end bit position
* operands: number of operands (for sanity check purposes)
* name: mnemonic name
* fmt: for pretty-printing
*/
#define ENCODING_MAP(opcode, skeleton, k0, ds, de, k1, s1s, s1e, k2, s2s, s2e, \
k3, k3s, k3e, flags, name, fmt, size) \
{skeleton, {{k0, ds, de}, {k1, s1s, s1e}, {k2, s2s, s2e}, \
{k3, k3s, k3e}}, opcode, flags, name, fmt, size}
/* Instruction dump string format keys: !pf, where "!" is the start
* of the key, "p" is which numeric operand to use and "f" is the
* print format.
*
* [p]ositions:
* 0 -> operands[0] (dest)
* 1 -> operands[1] (src1)
* 2 -> operands[2] (src2)
* 3 -> operands[3] (extra)
*
* [f]ormats:
* h -> 4-digit hex
* d -> decimal
* E -> decimal*4
* F -> decimal*2
* c -> branch condition (beq, bne, etc.)
* t -> pc-relative target
* u -> 1st half of bl[x] target
* v -> 2nd half ob bl[x] target
* R -> register list
* s -> single precision floating point register
* S -> double precision floating point register
* m -> Thumb2 modified immediate
* n -> complimented Thumb2 modified immediate
* M -> Thumb2 16-bit zero-extended immediate
* b -> 4-digit binary
* B -> dmb option string (sy, st, ish, ishst, nsh, hshst)
* H -> operand shift
*
* [!] escape. To insert "!", use "!!"
*/
/* NOTE: must be kept in sync with enum ArmOpcode from ArmLIR.h */
ArmEncodingMap EncodingMap[kArmLast] = {
ENCODING_MAP(kArm16BitData, 0x0000,
kFmtBitBlt, 15, 0, kFmtUnused, -1, -1, kFmtUnused, -1, -1,
kFmtUnused, -1, -1, IS_UNARY_OP, "data", "0x!0h(!0d)", 1),
ENCODING_MAP(kThumbAdcRR, 0x4140,
kFmtBitBlt, 2, 0, kFmtBitBlt, 5, 3, kFmtUnused, -1, -1,
kFmtUnused, -1, -1,
IS_BINARY_OP | REG_DEF0_USE01 | SETS_CCODES | USES_CCODES,
"adcs", "r!0d, r!1d", 1),
ENCODING_MAP(kThumbAddRRI3, 0x1c00,
kFmtBitBlt, 2, 0, kFmtBitBlt, 5, 3, kFmtBitBlt, 8, 6,
kFmtUnused, -1, -1,
IS_TERTIARY_OP | REG_DEF0_USE1 | SETS_CCODES,
"adds", "r!0d, r!1d, #!2d", 1),
ENCODING_MAP(kThumbAddRI8, 0x3000,
kFmtBitBlt, 10, 8, kFmtBitBlt, 7, 0, kFmtUnused, -1, -1,
kFmtUnused, -1, -1,
IS_BINARY_OP | REG_DEF0_USE0 | SETS_CCODES,
"adds", "r!0d, r!0d, #!1d", 1),
ENCODING_MAP(kThumbAddRRR, 0x1800,
kFmtBitBlt, 2, 0, kFmtBitBlt, 5, 3, kFmtBitBlt, 8, 6,
kFmtUnused, -1, -1,
IS_TERTIARY_OP | REG_DEF0_USE12 | SETS_CCODES,
"adds", "r!0d, r!1d, r!2d", 1),
ENCODING_MAP(kThumbAddRRLH, 0x4440,
kFmtBitBlt, 2, 0, kFmtBitBlt, 5, 3, kFmtUnused, -1, -1,
kFmtUnused, -1, -1, IS_BINARY_OP | REG_DEF0_USE01,
"add", "r!0d, r!1d", 1),
ENCODING_MAP(kThumbAddRRHL, 0x4480,
kFmtBitBlt, 2, 0, kFmtBitBlt, 5, 3, kFmtUnused, -1, -1,
kFmtUnused, -1, -1, IS_BINARY_OP | REG_DEF0_USE01,
"add", "r!0d, r!1d", 1),
ENCODING_MAP(kThumbAddRRHH, 0x44c0,
kFmtBitBlt, 2, 0, kFmtBitBlt, 5, 3, kFmtUnused, -1, -1,
kFmtUnused, -1, -1, IS_BINARY_OP | REG_DEF0_USE01,
"add", "r!0d, r!1d", 1),
ENCODING_MAP(kThumbAddPcRel, 0xa000,
kFmtBitBlt, 10, 8, kFmtBitBlt, 7, 0, kFmtUnused, -1, -1,
kFmtUnused, -1, -1, IS_TERTIARY_OP | IS_BRANCH,
"add", "r!0d, pc, #!1E", 1),
ENCODING_MAP(kThumbAddSpRel, 0xa800,
kFmtBitBlt, 10, 8, kFmtUnused, -1, -1, kFmtBitBlt, 7, 0,
kFmtUnused, -1, -1, IS_TERTIARY_OP | REG_DEF_SP | REG_USE_SP,
"add", "r!0d, sp, #!2E", 1),
ENCODING_MAP(kThumbAddSpI7, 0xb000,
kFmtBitBlt, 6, 0, kFmtUnused, -1, -1, kFmtUnused, -1, -1,
kFmtUnused, -1, -1, IS_UNARY_OP | REG_DEF_SP | REG_USE_SP,
"add", "sp, #!0d*4", 1),
ENCODING_MAP(kThumbAndRR, 0x4000,
kFmtBitBlt, 2, 0, kFmtBitBlt, 5, 3, kFmtUnused, -1, -1,
kFmtUnused, -1, -1,
IS_BINARY_OP | REG_DEF0_USE01 | SETS_CCODES,
"ands", "r!0d, r!1d", 1),
ENCODING_MAP(kThumbAsrRRI5, 0x1000,
kFmtBitBlt, 2, 0, kFmtBitBlt, 5, 3, kFmtBitBlt, 10, 6,
kFmtUnused, -1, -1,
IS_TERTIARY_OP | REG_DEF0_USE1 | SETS_CCODES,
"asrs", "r!0d, r!1d, #!2d", 1),
ENCODING_MAP(kThumbAsrRR, 0x4100,
kFmtBitBlt, 2, 0, kFmtBitBlt, 5, 3, kFmtUnused, -1, -1,
kFmtUnused, -1, -1,
IS_BINARY_OP | REG_DEF0_USE01 | SETS_CCODES,
"asrs", "r!0d, r!1d", 1),
ENCODING_MAP(kThumbBCond, 0xd000,
kFmtBitBlt, 7, 0, kFmtBitBlt, 11, 8, kFmtUnused, -1, -1,
kFmtUnused, -1, -1, IS_BINARY_OP | IS_BRANCH | USES_CCODES,
"b!1c", "!0t", 1),
ENCODING_MAP(kThumbBUncond, 0xe000,
kFmtBitBlt, 10, 0, kFmtUnused, -1, -1, kFmtUnused, -1, -1,
kFmtUnused, -1, -1, NO_OPERAND | IS_BRANCH,
"b", "!0t", 1),
ENCODING_MAP(kThumbBicRR, 0x4380,
kFmtBitBlt, 2, 0, kFmtBitBlt, 5, 3, kFmtUnused, -1, -1,
kFmtUnused, -1, -1,
IS_BINARY_OP | REG_DEF0_USE01 | SETS_CCODES,
"bics", "r!0d, r!1d", 1),
ENCODING_MAP(kThumbBkpt, 0xbe00,
kFmtBitBlt, 7, 0, kFmtUnused, -1, -1, kFmtUnused, -1, -1,
kFmtUnused, -1, -1, IS_UNARY_OP | IS_BRANCH,
"bkpt", "!0d", 1),
ENCODING_MAP(kThumbBlx1, 0xf000,
kFmtBitBlt, 10, 0, kFmtUnused, -1, -1, kFmtUnused, -1, -1,
kFmtUnused, -1, -1, IS_BINARY_OP | IS_BRANCH | REG_DEF_LR,
"blx_1", "!0u", 1),
ENCODING_MAP(kThumbBlx2, 0xe800,
kFmtBitBlt, 10, 0, kFmtUnused, -1, -1, kFmtUnused, -1, -1,
kFmtUnused, -1, -1, IS_BINARY_OP | IS_BRANCH | REG_DEF_LR,
"blx_2", "!0v", 1),
ENCODING_MAP(kThumbBl1, 0xf000,
kFmtBitBlt, 10, 0, kFmtUnused, -1, -1, kFmtUnused, -1, -1,
kFmtUnused, -1, -1, IS_UNARY_OP | IS_BRANCH | REG_DEF_LR,
"bl_1", "!0u", 1),
ENCODING_MAP(kThumbBl2, 0xf800,
kFmtBitBlt, 10, 0, kFmtUnused, -1, -1, kFmtUnused, -1, -1,
kFmtUnused, -1, -1, IS_UNARY_OP | IS_BRANCH | REG_DEF_LR,
"bl_2", "!0v", 1),
ENCODING_MAP(kThumbBlxR, 0x4780,
kFmtBitBlt, 6, 3, kFmtUnused, -1, -1, kFmtUnused, -1, -1,
kFmtUnused, -1, -1,
IS_UNARY_OP | REG_USE0 | IS_BRANCH | REG_DEF_LR,
"blx", "r!0d", 1),
ENCODING_MAP(kThumbBx, 0x4700,
kFmtBitBlt, 6, 3, kFmtUnused, -1, -1, kFmtUnused, -1, -1,
kFmtUnused, -1, -1, IS_UNARY_OP | IS_BRANCH,
"bx", "r!0d", 1),
ENCODING_MAP(kThumbCmnRR, 0x42c0,
kFmtBitBlt, 2, 0, kFmtBitBlt, 5, 3, kFmtUnused, -1, -1,
kFmtUnused, -1, -1, IS_BINARY_OP | REG_USE01 | SETS_CCODES,
"cmn", "r!0d, r!1d", 1),
ENCODING_MAP(kThumbCmpRI8, 0x2800,
kFmtBitBlt, 10, 8, kFmtBitBlt, 7, 0, kFmtUnused, -1, -1,
kFmtUnused, -1, -1, IS_BINARY_OP | REG_USE0 | SETS_CCODES,
"cmp", "r!0d, #!1d", 1),
ENCODING_MAP(kThumbCmpRR, 0x4280,
kFmtBitBlt, 2, 0, kFmtBitBlt, 5, 3, kFmtUnused, -1, -1,
kFmtUnused, -1, -1, IS_BINARY_OP | REG_USE01 | SETS_CCODES,
"cmp", "r!0d, r!1d", 1),
ENCODING_MAP(kThumbCmpLH, 0x4540,
kFmtBitBlt, 2, 0, kFmtBitBlt, 5, 3, kFmtUnused, -1, -1,
kFmtUnused, -1, -1, IS_BINARY_OP | REG_USE01 | SETS_CCODES,
"cmp", "r!0d, r!1d", 1),
ENCODING_MAP(kThumbCmpHL, 0x4580,
kFmtBitBlt, 2, 0, kFmtBitBlt, 5, 3, kFmtUnused, -1, -1,
kFmtUnused, -1, -1, IS_BINARY_OP | REG_USE01 | SETS_CCODES,
"cmp", "r!0d, r!1d", 1),
ENCODING_MAP(kThumbCmpHH, 0x45c0,
kFmtBitBlt, 2, 0, kFmtBitBlt, 5, 3, kFmtUnused, -1, -1,
kFmtUnused, -1, -1, IS_BINARY_OP | REG_USE01 | SETS_CCODES,
"cmp", "r!0d, r!1d", 1),
ENCODING_MAP(kThumbEorRR, 0x4040,
kFmtBitBlt, 2, 0, kFmtBitBlt, 5, 3, kFmtUnused, -1, -1,
kFmtUnused, -1, -1,
IS_BINARY_OP | REG_DEF0_USE01 | SETS_CCODES,
"eors", "r!0d, r!1d", 1),
ENCODING_MAP(kThumbLdmia, 0xc800,
kFmtBitBlt, 10, 8, kFmtBitBlt, 7, 0, kFmtUnused, -1, -1,
kFmtUnused, -1, -1,
IS_BINARY_OP | REG_DEF0_USE0 | REG_DEF_LIST1 | IS_LOAD,
"ldmia", "r!0d!!, <!1R>", 1),
ENCODING_MAP(kThumbLdrRRI5, 0x6800,
kFmtBitBlt, 2, 0, kFmtBitBlt, 5, 3, kFmtBitBlt, 10, 6,
kFmtUnused, -1, -1, IS_TERTIARY_OP | REG_DEF0_USE1 | IS_LOAD,
"ldr", "r!0d, [r!1d, #!2E]", 1),
ENCODING_MAP(kThumbLdrRRR, 0x5800,
kFmtBitBlt, 2, 0, kFmtBitBlt, 5, 3, kFmtBitBlt, 8, 6,
kFmtUnused, -1, -1, IS_TERTIARY_OP | REG_DEF0_USE12 | IS_LOAD,
"ldr", "r!0d, [r!1d, r!2d]", 1),
ENCODING_MAP(kThumbLdrPcRel, 0x4800,
kFmtBitBlt, 10, 8, kFmtBitBlt, 7, 0, kFmtUnused, -1, -1,
kFmtUnused, -1, -1, IS_TERTIARY_OP | REG_DEF0 | REG_USE_PC
| IS_LOAD, "ldr", "r!0d, [pc, #!1E]", 1),
ENCODING_MAP(kThumbLdrSpRel, 0x9800,
kFmtBitBlt, 10, 8, kFmtUnused, -1, -1, kFmtBitBlt, 7, 0,
kFmtUnused, -1, -1, IS_TERTIARY_OP | REG_DEF0 | REG_USE_SP
| IS_LOAD, "ldr", "r!0d, [sp, #!2E]", 1),
ENCODING_MAP(kThumbLdrbRRI5, 0x7800,
kFmtBitBlt, 2, 0, kFmtBitBlt, 5, 3, kFmtBitBlt, 10, 6,
kFmtUnused, -1, -1, IS_TERTIARY_OP | REG_DEF0_USE1 | IS_LOAD,
"ldrb", "r!0d, [r!1d, #2d]", 1),
ENCODING_MAP(kThumbLdrbRRR, 0x5c00,
kFmtBitBlt, 2, 0, kFmtBitBlt, 5, 3, kFmtBitBlt, 8, 6,
kFmtUnused, -1, -1, IS_TERTIARY_OP | REG_DEF0_USE12 | IS_LOAD,
"ldrb", "r!0d, [r!1d, r!2d]", 1),
ENCODING_MAP(kThumbLdrhRRI5, 0x8800,
kFmtBitBlt, 2, 0, kFmtBitBlt, 5, 3, kFmtBitBlt, 10, 6,
kFmtUnused, -1, -1, IS_TERTIARY_OP | REG_DEF0_USE1 | IS_LOAD,
"ldrh", "r!0d, [r!1d, #!2F]", 1),
ENCODING_MAP(kThumbLdrhRRR, 0x5a00,
kFmtBitBlt, 2, 0, kFmtBitBlt, 5, 3, kFmtBitBlt, 8, 6,
kFmtUnused, -1, -1, IS_TERTIARY_OP | REG_DEF0_USE12 | IS_LOAD,
"ldrh", "r!0d, [r!1d, r!2d]", 1),
ENCODING_MAP(kThumbLdrsbRRR, 0x5600,
kFmtBitBlt, 2, 0, kFmtBitBlt, 5, 3, kFmtBitBlt, 8, 6,
kFmtUnused, -1, -1, IS_TERTIARY_OP | REG_DEF0_USE12 | IS_LOAD,
"ldrsb", "r!0d, [r!1d, r!2d]", 1),
ENCODING_MAP(kThumbLdrshRRR, 0x5e00,
kFmtBitBlt, 2, 0, kFmtBitBlt, 5, 3, kFmtBitBlt, 8, 6,
kFmtUnused, -1, -1, IS_TERTIARY_OP | REG_DEF0_USE12 | IS_LOAD,
"ldrsh", "r!0d, [r!1d, r!2d]", 1),
ENCODING_MAP(kThumbLslRRI5, 0x0000,
kFmtBitBlt, 2, 0, kFmtBitBlt, 5, 3, kFmtBitBlt, 10, 6,
kFmtUnused, -1, -1,
IS_TERTIARY_OP | REG_DEF0_USE1 | SETS_CCODES,
"lsls", "r!0d, r!1d, #!2d", 1),
ENCODING_MAP(kThumbLslRR, 0x4080,
kFmtBitBlt, 2, 0, kFmtBitBlt, 5, 3, kFmtUnused, -1, -1,
kFmtUnused, -1, -1,
IS_BINARY_OP | REG_DEF0_USE01 | SETS_CCODES,
"lsls", "r!0d, r!1d", 1),
ENCODING_MAP(kThumbLsrRRI5, 0x0800,
kFmtBitBlt, 2, 0, kFmtBitBlt, 5, 3, kFmtBitBlt, 10, 6,
kFmtUnused, -1, -1,
IS_TERTIARY_OP | REG_DEF0_USE1 | SETS_CCODES,
"lsrs", "r!0d, r!1d, #!2d", 1),
ENCODING_MAP(kThumbLsrRR, 0x40c0,
kFmtBitBlt, 2, 0, kFmtBitBlt, 5, 3, kFmtUnused, -1, -1,
kFmtUnused, -1, -1,
IS_BINARY_OP | REG_DEF0_USE01 | SETS_CCODES,
"lsrs", "r!0d, r!1d", 1),
ENCODING_MAP(kThumbMovImm, 0x2000,
kFmtBitBlt, 10, 8, kFmtBitBlt, 7, 0, kFmtUnused, -1, -1,
kFmtUnused, -1, -1,
IS_BINARY_OP | REG_DEF0 | SETS_CCODES,
"movs", "r!0d, #!1d", 1),
ENCODING_MAP(kThumbMovRR, 0x1c00,
kFmtBitBlt, 2, 0, kFmtBitBlt, 5, 3, kFmtUnused, -1, -1,
kFmtUnused, -1, -1,
IS_BINARY_OP | REG_DEF0_USE1 | SETS_CCODES,
"movs", "r!0d, r!1d", 1),
ENCODING_MAP(kThumbMovRR_H2H, 0x46c0,
kFmtBitBlt, 2, 0, kFmtBitBlt, 5, 3, kFmtUnused, -1, -1,
kFmtUnused, -1, -1, IS_BINARY_OP | REG_DEF0_USE1,
"mov", "r!0d, r!1d", 1),
ENCODING_MAP(kThumbMovRR_H2L, 0x4640,
kFmtBitBlt, 2, 0, kFmtBitBlt, 5, 3, kFmtUnused, -1, -1,
kFmtUnused, -1, -1, IS_BINARY_OP | REG_DEF0_USE1,
"mov", "r!0d, r!1d", 1),
ENCODING_MAP(kThumbMovRR_L2H, 0x4680,
kFmtBitBlt, 2, 0, kFmtBitBlt, 5, 3, kFmtUnused, -1, -1,
kFmtUnused, -1, -1, IS_BINARY_OP | REG_DEF0_USE1,
"mov", "r!0d, r!1d", 1),
ENCODING_MAP(kThumbMul, 0x4340,
kFmtBitBlt, 2, 0, kFmtBitBlt, 5, 3, kFmtUnused, -1, -1,
kFmtUnused, -1, -1,
IS_BINARY_OP | REG_DEF0_USE01 | SETS_CCODES,
"muls", "r!0d, r!1d", 1),
ENCODING_MAP(kThumbMvn, 0x43c0,
kFmtBitBlt, 2, 0, kFmtBitBlt, 5, 3, kFmtUnused, -1, -1,
kFmtUnused, -1, -1,
IS_BINARY_OP | REG_DEF0_USE1 | SETS_CCODES,
"mvns", "r!0d, r!1d", 1),
ENCODING_MAP(kThumbNeg, 0x4240,
kFmtBitBlt, 2, 0, kFmtBitBlt, 5, 3, kFmtUnused, -1, -1,
kFmtUnused, -1, -1,
IS_BINARY_OP | REG_DEF0_USE1 | SETS_CCODES,
"negs", "r!0d, r!1d", 1),
ENCODING_MAP(kThumbOrr, 0x4300,
kFmtBitBlt, 2, 0, kFmtBitBlt, 5, 3, kFmtUnused, -1, -1,
kFmtUnused, -1, -1,
IS_BINARY_OP | REG_DEF0_USE01 | SETS_CCODES,
"orrs", "r!0d, r!1d", 1),
ENCODING_MAP(kThumbPop, 0xbc00,
kFmtBitBlt, 8, 0, kFmtUnused, -1, -1, kFmtUnused, -1, -1,
kFmtUnused, -1, -1,
IS_UNARY_OP | REG_DEF_SP | REG_USE_SP | REG_DEF_LIST0
| IS_LOAD, "pop", "<!0R>", 1),
ENCODING_MAP(kThumbPush, 0xb400,
kFmtBitBlt, 8, 0, kFmtUnused, -1, -1, kFmtUnused, -1, -1,
kFmtUnused, -1, -1,
IS_UNARY_OP | REG_DEF_SP | REG_USE_SP | REG_USE_LIST0
| IS_STORE, "push", "<!0R>", 1),
ENCODING_MAP(kThumbRorRR, 0x41c0,
kFmtBitBlt, 2, 0, kFmtBitBlt, 5, 3, kFmtUnused, -1, -1,
kFmtUnused, -1, -1,
IS_BINARY_OP | REG_DEF0_USE01 | SETS_CCODES,
"rors", "r!0d, r!1d", 1),
ENCODING_MAP(kThumbSbc, 0x4180,
kFmtBitBlt, 2, 0, kFmtBitBlt, 5, 3, kFmtUnused, -1, -1,
kFmtUnused, -1, -1,
IS_BINARY_OP | REG_DEF0_USE01 | USES_CCODES | SETS_CCODES,
"sbcs", "r!0d, r!1d", 1),
ENCODING_MAP(kThumbStmia, 0xc000,
kFmtBitBlt, 10, 8, kFmtBitBlt, 7, 0, kFmtUnused, -1, -1,
kFmtUnused, -1, -1,
IS_BINARY_OP | REG_DEF0 | REG_USE0 | REG_USE_LIST1 | IS_STORE,
"stmia", "r!0d!!, <!1R>", 1),
ENCODING_MAP(kThumbStrRRI5, 0x6000,
kFmtBitBlt, 2, 0, kFmtBitBlt, 5, 3, kFmtBitBlt, 10, 6,
kFmtUnused, -1, -1, IS_TERTIARY_OP | REG_USE01 | IS_STORE,
"str", "r!0d, [r!1d, #!2E]", 1),
ENCODING_MAP(kThumbStrRRR, 0x5000,
kFmtBitBlt, 2, 0, kFmtBitBlt, 5, 3, kFmtBitBlt, 8, 6,
kFmtUnused, -1, -1, IS_TERTIARY_OP | REG_USE012 | IS_STORE,
"str", "r!0d, [r!1d, r!2d]", 1),
ENCODING_MAP(kThumbStrSpRel, 0x9000,
kFmtBitBlt, 10, 8, kFmtUnused, -1, -1, kFmtBitBlt, 7, 0,
kFmtUnused, -1, -1, IS_TERTIARY_OP | REG_USE0 | REG_USE_SP
| IS_STORE, "str", "r!0d, [sp, #!2E]", 1),
ENCODING_MAP(kThumbStrbRRI5, 0x7000,
kFmtBitBlt, 2, 0, kFmtBitBlt, 5, 3, kFmtBitBlt, 10, 6,
kFmtUnused, -1, -1, IS_TERTIARY_OP | REG_USE01 | IS_STORE,
"strb", "r!0d, [r!1d, #!2d]", 1),
ENCODING_MAP(kThumbStrbRRR, 0x5400,
kFmtBitBlt, 2, 0, kFmtBitBlt, 5, 3, kFmtBitBlt, 8, 6,
kFmtUnused, -1, -1, IS_TERTIARY_OP | REG_USE012 | IS_STORE,
"strb", "r!0d, [r!1d, r!2d]", 1),
ENCODING_MAP(kThumbStrhRRI5, 0x8000,
kFmtBitBlt, 2, 0, kFmtBitBlt, 5, 3, kFmtBitBlt, 10, 6,
kFmtUnused, -1, -1, IS_TERTIARY_OP | REG_USE01 | IS_STORE,
"strh", "r!0d, [r!1d, #!2F]", 1),
ENCODING_MAP(kThumbStrhRRR, 0x5200,
kFmtBitBlt, 2, 0, kFmtBitBlt, 5, 3, kFmtBitBlt, 8, 6,
kFmtUnused, -1, -1, IS_TERTIARY_OP | REG_USE012 | IS_STORE,
"strh", "r!0d, [r!1d, r!2d]", 1),
ENCODING_MAP(kThumbSubRRI3, 0x1e00,
kFmtBitBlt, 2, 0, kFmtBitBlt, 5, 3, kFmtBitBlt, 8, 6,
kFmtUnused, -1, -1,
IS_TERTIARY_OP | REG_DEF0_USE1 | SETS_CCODES,
"subs", "r!0d, r!1d, #!2d]", 1),
ENCODING_MAP(kThumbSubRI8, 0x3800,
kFmtBitBlt, 10, 8, kFmtBitBlt, 7, 0, kFmtUnused, -1, -1,
kFmtUnused, -1, -1,
IS_BINARY_OP | REG_DEF0_USE0 | SETS_CCODES,
"subs", "r!0d, #!1d", 1),
ENCODING_MAP(kThumbSubRRR, 0x1a00,
kFmtBitBlt, 2, 0, kFmtBitBlt, 5, 3, kFmtBitBlt, 8, 6,
kFmtUnused, -1, -1,
IS_TERTIARY_OP | REG_DEF0_USE12 | SETS_CCODES,
"subs", "r!0d, r!1d, r!2d", 1),
ENCODING_MAP(kThumbSubSpI7, 0xb080,
kFmtBitBlt, 6, 0, kFmtUnused, -1, -1, kFmtUnused, -1, -1,
kFmtUnused, -1, -1,
IS_UNARY_OP | REG_DEF_SP | REG_USE_SP,
"sub", "sp, #!0d", 1),
ENCODING_MAP(kThumbSwi, 0xdf00,
kFmtBitBlt, 7, 0, kFmtUnused, -1, -1, kFmtUnused, -1, -1, kFmtUnused, -1, -1, IS_UNARY_OP | IS_BRANCH,
"swi", "!0d", 1),
ENCODING_MAP(kThumbTst, 0x4200,
kFmtBitBlt, 2, 0, kFmtBitBlt, 5, 3, kFmtUnused, -1, -1,
kFmtUnused, -1, -1, IS_UNARY_OP | REG_USE01 | SETS_CCODES,
"tst", "r!0d, r!1d", 1),
ENCODING_MAP(kThumb2Vldrs, 0xed900a00,
kFmtSfp, 22, 12, kFmtBitBlt, 19, 16, kFmtBitBlt, 7, 0,
kFmtUnused, -1, -1, IS_TERTIARY_OP | REG_DEF0_USE1 | IS_LOAD,
"vldr", "!0s, [r!1d, #!2E]", 2),
ENCODING_MAP(kThumb2Vldrd, 0xed900b00,
kFmtDfp, 22, 12, kFmtBitBlt, 19, 16, kFmtBitBlt, 7, 0,
kFmtUnused, -1, -1, IS_TERTIARY_OP | REG_DEF0_USE1 | IS_LOAD,
"vldr", "!0S, [r!1d, #!2E]", 2),
ENCODING_MAP(kThumb2Vmuls, 0xee200a00,
kFmtSfp, 22, 12, kFmtSfp, 7, 16, kFmtSfp, 5, 0,
kFmtUnused, -1, -1,
IS_TERTIARY_OP | REG_DEF0_USE12,
"vmuls", "!0s, !1s, !2s", 2),
ENCODING_MAP(kThumb2Vmuld, 0xee200b00,
kFmtDfp, 22, 12, kFmtDfp, 7, 16, kFmtDfp, 5, 0,
kFmtUnused, -1, -1, IS_TERTIARY_OP | REG_DEF0_USE12,
"vmuld", "!0S, !1S, !2S", 2),
ENCODING_MAP(kThumb2Vstrs, 0xed800a00,
kFmtSfp, 22, 12, kFmtBitBlt, 19, 16, kFmtBitBlt, 7, 0,
kFmtUnused, -1, -1, IS_TERTIARY_OP | REG_USE01 | IS_STORE,
"vstr", "!0s, [r!1d, #!2E]", 2),
ENCODING_MAP(kThumb2Vstrd, 0xed800b00,
kFmtDfp, 22, 12, kFmtBitBlt, 19, 16, kFmtBitBlt, 7, 0,
kFmtUnused, -1, -1, IS_TERTIARY_OP | REG_USE01 | IS_STORE,
"vstr", "!0S, [r!1d, #!2E]", 2),
ENCODING_MAP(kThumb2Vsubs, 0xee300a40,
kFmtSfp, 22, 12, kFmtSfp, 7, 16, kFmtSfp, 5, 0,
kFmtUnused, -1, -1, IS_TERTIARY_OP | REG_DEF0_USE12,
"vsub", "!0s, !1s, !2s", 2),
ENCODING_MAP(kThumb2Vsubd, 0xee300b40,
kFmtDfp, 22, 12, kFmtDfp, 7, 16, kFmtDfp, 5, 0,
kFmtUnused, -1, -1, IS_TERTIARY_OP | REG_DEF0_USE12,
"vsub", "!0S, !1S, !2S", 2),
ENCODING_MAP(kThumb2Vadds, 0xee300a00,
kFmtSfp, 22, 12, kFmtSfp, 7, 16, kFmtSfp, 5, 0,
kFmtUnused, -1, -1, IS_TERTIARY_OP | REG_DEF0_USE12,
"vadd", "!0s, !1s, !2s", 2),
ENCODING_MAP(kThumb2Vaddd, 0xee300b00,
kFmtDfp, 22, 12, kFmtDfp, 7, 16, kFmtDfp, 5, 0,
kFmtUnused, -1, -1, IS_TERTIARY_OP | REG_DEF0_USE12,
"vadd", "!0S, !1S, !2S", 2),
ENCODING_MAP(kThumb2Vdivs, 0xee800a00,
kFmtSfp, 22, 12, kFmtSfp, 7, 16, kFmtSfp, 5, 0,
kFmtUnused, -1, -1, IS_TERTIARY_OP | REG_DEF0_USE12,
"vdivs", "!0s, !1s, !2s", 2),
ENCODING_MAP(kThumb2Vdivd, 0xee800b00,
kFmtDfp, 22, 12, kFmtDfp, 7, 16, kFmtDfp, 5, 0,
kFmtUnused, -1, -1, IS_TERTIARY_OP | REG_DEF0_USE12,
"vdivd", "!0S, !1S, !2S", 2),
ENCODING_MAP(kThumb2VcvtIF, 0xeeb80ac0,
kFmtSfp, 22, 12, kFmtSfp, 5, 0, kFmtUnused, -1, -1,
kFmtUnused, -1, -1, IS_BINARY_OP | REG_DEF0_USE1,
"vcvt.f32", "!0s, !1s", 2),
ENCODING_MAP(kThumb2VcvtID, 0xeeb80bc0,
kFmtDfp, 22, 12, kFmtSfp, 5, 0, kFmtUnused, -1, -1,
kFmtUnused, -1, -1, IS_BINARY_OP | REG_DEF0_USE1,
"vcvt.f64", "!0S, !1s", 2),
ENCODING_MAP(kThumb2VcvtFI, 0xeebd0ac0,
kFmtSfp, 22, 12, kFmtSfp, 5, 0, kFmtUnused, -1, -1,
kFmtUnused, -1, -1, IS_BINARY_OP | REG_DEF0_USE1,
"vcvt.s32.f32 ", "!0s, !1s", 2),
ENCODING_MAP(kThumb2VcvtDI, 0xeebd0bc0,
kFmtSfp, 22, 12, kFmtDfp, 5, 0, kFmtUnused, -1, -1,
kFmtUnused, -1, -1, IS_BINARY_OP | REG_DEF0_USE1,
"vcvt.s32.f64 ", "!0s, !1S", 2),
ENCODING_MAP(kThumb2VcvtFd, 0xeeb70ac0,
kFmtDfp, 22, 12, kFmtSfp, 5, 0, kFmtUnused, -1, -1,
kFmtUnused, -1, -1, IS_BINARY_OP | REG_DEF0_USE1,
"vcvt.f64.f32 ", "!0S, !1s", 2),
ENCODING_MAP(kThumb2VcvtDF, 0xeeb70bc0,
kFmtSfp, 22, 12, kFmtDfp, 5, 0, kFmtUnused, -1, -1,
kFmtUnused, -1, -1, IS_BINARY_OP | REG_DEF0_USE1,
"vcvt.f32.f64 ", "!0s, !1S", 2),
ENCODING_MAP(kThumb2Vsqrts, 0xeeb10ac0,
kFmtSfp, 22, 12, kFmtSfp, 5, 0, kFmtUnused, -1, -1,
kFmtUnused, -1, -1, IS_BINARY_OP | REG_DEF0_USE1,
"vsqrt.f32 ", "!0s, !1s", 2),
ENCODING_MAP(kThumb2Vsqrtd, 0xeeb10bc0,
kFmtDfp, 22, 12, kFmtDfp, 5, 0, kFmtUnused, -1, -1,
kFmtUnused, -1, -1, IS_BINARY_OP | REG_DEF0_USE1,
"vsqrt.f64 ", "!0S, !1S", 2),
ENCODING_MAP(kThumb2MovImmShift, 0xf04f0000, /* no setflags encoding */
kFmtBitBlt, 11, 8, kFmtModImm, -1, -1, kFmtUnused, -1, -1,
kFmtUnused, -1, -1, IS_BINARY_OP | REG_DEF0,
"mov", "r!0d, #!1m", 2),
ENCODING_MAP(kThumb2MovImm16, 0xf2400000,
kFmtBitBlt, 11, 8, kFmtImm16, -1, -1, kFmtUnused, -1, -1,
kFmtUnused, -1, -1, IS_BINARY_OP | REG_DEF0,
"mov", "r!0d, #!1M", 2),
ENCODING_MAP(kThumb2StrRRI12, 0xf8c00000,
kFmtBitBlt, 15, 12, kFmtBitBlt, 19, 16, kFmtBitBlt, 11, 0,
kFmtUnused, -1, -1, IS_TERTIARY_OP | REG_USE01 | IS_STORE,
"str", "r!0d, [r!1d, #!2d]", 2),
ENCODING_MAP(kThumb2LdrRRI12, 0xf8d00000,
kFmtBitBlt, 15, 12, kFmtBitBlt, 19, 16, kFmtBitBlt, 11, 0,
kFmtUnused, -1, -1, IS_TERTIARY_OP | REG_DEF0_USE1 | IS_LOAD,
"ldr", "r!0d, [r!1d, #!2d]", 2),
ENCODING_MAP(kThumb2StrRRI8Predec, 0xf8400c00,
kFmtBitBlt, 15, 12, kFmtBitBlt, 19, 16, kFmtBitBlt, 8, 0,
kFmtUnused, -1, -1, IS_TERTIARY_OP | REG_USE01 | IS_STORE,
"str", "r!0d, [r!1d, #-!2d]", 2),
ENCODING_MAP(kThumb2LdrRRI8Predec, 0xf8500c00,
kFmtBitBlt, 15, 12, kFmtBitBlt, 19, 16, kFmtBitBlt, 8, 0,
kFmtUnused, -1, -1, IS_TERTIARY_OP | REG_DEF0_USE1 | IS_LOAD,
"ldr", "r!0d, [r!1d, #-!2d]", 2),
ENCODING_MAP(kThumb2Cbnz, 0xb900, /* Note: does not affect flags */
kFmtBitBlt, 2, 0, kFmtImm6, -1, -1, kFmtUnused, -1, -1,
kFmtUnused, -1, -1, IS_BINARY_OP | REG_USE0 | IS_BRANCH,
"cbnz", "r!0d,!1t", 1),
ENCODING_MAP(kThumb2Cbz, 0xb100, /* Note: does not affect flags */
kFmtBitBlt, 2, 0, kFmtImm6, -1, -1, kFmtUnused, -1, -1,
kFmtUnused, -1, -1, IS_BINARY_OP | REG_USE0 | IS_BRANCH,
"cbz", "r!0d,!1t", 1),
ENCODING_MAP(kThumb2AddRRI12, 0xf2000000,
kFmtBitBlt, 11, 8, kFmtBitBlt, 19, 16, kFmtImm12, -1, -1,
kFmtUnused, -1, -1,
IS_TERTIARY_OP | REG_DEF0_USE1,/* Note: doesn't affect flags */
"add", "r!0d,r!1d,#!2d", 2),
ENCODING_MAP(kThumb2MovRR, 0xea4f0000, /* no setflags encoding */
kFmtBitBlt, 11, 8, kFmtBitBlt, 3, 0, kFmtUnused, -1, -1,
kFmtUnused, -1, -1, IS_BINARY_OP | REG_DEF0_USE1,
"mov", "r!0d, r!1d", 2),
ENCODING_MAP(kThumb2Vmovs, 0xeeb00a40,
kFmtSfp, 22, 12, kFmtSfp, 5, 0, kFmtUnused, -1, -1,
kFmtUnused, -1, -1, IS_BINARY_OP | REG_DEF0_USE1,
"vmov.f32 ", " !0s, !1s", 2),
ENCODING_MAP(kThumb2Vmovd, 0xeeb00b40,
kFmtDfp, 22, 12, kFmtDfp, 5, 0, kFmtUnused, -1, -1,
kFmtUnused, -1, -1, IS_BINARY_OP | REG_DEF0_USE1,
"vmov.f64 ", " !0S, !1S", 2),
ENCODING_MAP(kThumb2Ldmia, 0xe8900000,
kFmtBitBlt, 19, 16, kFmtBitBlt, 15, 0, kFmtUnused, -1, -1,
kFmtUnused, -1, -1,
IS_BINARY_OP | REG_DEF0_USE0 | REG_DEF_LIST1 | IS_LOAD,
"ldmia", "r!0d!!, <!1R>", 2),
ENCODING_MAP(kThumb2Stmia, 0xe8800000,
kFmtBitBlt, 19, 16, kFmtBitBlt, 15, 0, kFmtUnused, -1, -1,
kFmtUnused, -1, -1,
IS_BINARY_OP | REG_DEF0_USE0 | REG_USE_LIST1 | IS_STORE,
"stmia", "r!0d!!, <!1R>", 2),
ENCODING_MAP(kThumb2AddRRR, 0xeb100000, /* setflags encoding */
kFmtBitBlt, 11, 8, kFmtBitBlt, 19, 16, kFmtBitBlt, 3, 0,
kFmtShift, -1, -1,
IS_QUAD_OP | REG_DEF0_USE12 | SETS_CCODES,
"adds", "r!0d, r!1d, r!2d!3H", 2),
ENCODING_MAP(kThumb2SubRRR, 0xebb00000, /* setflags enconding */
kFmtBitBlt, 11, 8, kFmtBitBlt, 19, 16, kFmtBitBlt, 3, 0,
kFmtShift, -1, -1,
IS_QUAD_OP | REG_DEF0_USE12 | SETS_CCODES,
"subs", "r!0d, r!1d, r!2d!3H", 2),
ENCODING_MAP(kThumb2SbcRRR, 0xeb700000, /* setflags encoding */
kFmtBitBlt, 11, 8, kFmtBitBlt, 19, 16, kFmtBitBlt, 3, 0,
kFmtShift, -1, -1,
IS_QUAD_OP | REG_DEF0_USE12 | USES_CCODES | SETS_CCODES,
"sbcs", "r!0d, r!1d, r!2d!3H", 2),
ENCODING_MAP(kThumb2CmpRR, 0xebb00f00,
kFmtBitBlt, 19, 16, kFmtBitBlt, 3, 0, kFmtShift, -1, -1,
kFmtUnused, -1, -1,
IS_TERTIARY_OP | REG_USE01 | SETS_CCODES,
"cmp", "r!0d, r!1d", 2),
ENCODING_MAP(kThumb2SubRRI12, 0xf2a00000,
kFmtBitBlt, 11, 8, kFmtBitBlt, 19, 16, kFmtImm12, -1, -1,
kFmtUnused, -1, -1,
IS_TERTIARY_OP | REG_DEF0_USE1,/* Note: doesn't affect flags */
"sub", "r!0d,r!1d,#!2d", 2),
ENCODING_MAP(kThumb2MvnImmShift, 0xf06f0000, /* no setflags encoding */
kFmtBitBlt, 11, 8, kFmtModImm, -1, -1, kFmtUnused, -1, -1,
kFmtUnused, -1, -1, IS_BINARY_OP | REG_DEF0,
"mvn", "r!0d, #!1n", 2),
ENCODING_MAP(kThumb2Sel, 0xfaa0f080,
kFmtBitBlt, 11, 8, kFmtBitBlt, 19, 16, kFmtBitBlt, 3, 0,
kFmtUnused, -1, -1,
IS_TERTIARY_OP | REG_DEF0_USE12 | USES_CCODES,
"sel", "r!0d, r!1d, r!2d", 2),
ENCODING_MAP(kThumb2Ubfx, 0xf3c00000,
kFmtBitBlt, 11, 8, kFmtBitBlt, 19, 16, kFmtLsb, -1, -1,
kFmtBWidth, 4, 0, IS_QUAD_OP | REG_DEF0_USE1,
"ubfx", "r!0d, r!1d, #!2d, #!3d", 2),
ENCODING_MAP(kThumb2Sbfx, 0xf3400000,
kFmtBitBlt, 11, 8, kFmtBitBlt, 19, 16, kFmtLsb, -1, -1,
kFmtBWidth, 4, 0, IS_QUAD_OP | REG_DEF0_USE1,
"sbfx", "r!0d, r!1d, #!2d, #!3d", 2),
ENCODING_MAP(kThumb2LdrRRR, 0xf8500000,
kFmtBitBlt, 15, 12, kFmtBitBlt, 19, 16, kFmtBitBlt, 3, 0,
kFmtBitBlt, 5, 4, IS_QUAD_OP | REG_DEF0_USE12 | IS_LOAD,
"ldr", "r!0d, [r!1d, r!2d, LSL #!3d]", 2),
ENCODING_MAP(kThumb2LdrhRRR, 0xf8300000,
kFmtBitBlt, 15, 12, kFmtBitBlt, 19, 16, kFmtBitBlt, 3, 0,
kFmtBitBlt, 5, 4, IS_QUAD_OP | REG_DEF0_USE12 | IS_LOAD,
"ldrh", "r!0d, [r!1d, r!2d, LSL #!3d]", 2),
ENCODING_MAP(kThumb2LdrshRRR, 0xf9300000,
kFmtBitBlt, 15, 12, kFmtBitBlt, 19, 16, kFmtBitBlt, 3, 0,
kFmtBitBlt, 5, 4, IS_QUAD_OP | REG_DEF0_USE12 | IS_LOAD,
"ldrsh", "r!0d, [r!1d, r!2d, LSL #!3d]", 2),
ENCODING_MAP(kThumb2LdrbRRR, 0xf8100000,
kFmtBitBlt, 15, 12, kFmtBitBlt, 19, 16, kFmtBitBlt, 3, 0,
kFmtBitBlt, 5, 4, IS_QUAD_OP | REG_DEF0_USE12 | IS_LOAD,
"ldrb", "r!0d, [r!1d, r!2d, LSL #!3d]", 2),
ENCODING_MAP(kThumb2LdrsbRRR, 0xf9100000,
kFmtBitBlt, 15, 12, kFmtBitBlt, 19, 16, kFmtBitBlt, 3, 0,
kFmtBitBlt, 5, 4, IS_QUAD_OP | REG_DEF0_USE12 | IS_LOAD,
"ldrsb", "r!0d, [r!1d, r!2d, LSL #!3d]", 2),
ENCODING_MAP(kThumb2StrRRR, 0xf8400000,
kFmtBitBlt, 15, 12, kFmtBitBlt, 19, 16, kFmtBitBlt, 3, 0,
kFmtBitBlt, 5, 4, IS_QUAD_OP | REG_USE012 | IS_STORE,
"str", "r!0d, [r!1d, r!2d, LSL #!3d]", 2),
ENCODING_MAP(kThumb2StrhRRR, 0xf8200000,
kFmtBitBlt, 15, 12, kFmtBitBlt, 19, 16, kFmtBitBlt, 3, 0,
kFmtBitBlt, 5, 4, IS_QUAD_OP | REG_USE012 | IS_STORE,
"strh", "r!0d, [r!1d, r!2d, LSL #!3d]", 2),
ENCODING_MAP(kThumb2StrbRRR, 0xf8000000,
kFmtBitBlt, 15, 12, kFmtBitBlt, 19, 16, kFmtBitBlt, 3, 0,
kFmtBitBlt, 5, 4, IS_QUAD_OP | REG_USE012 | IS_STORE,
"strb", "r!0d, [r!1d, r!2d, LSL #!3d]", 2),
ENCODING_MAP(kThumb2LdrhRRI12, 0xf8b00000,
kFmtBitBlt, 15, 12, kFmtBitBlt, 19, 16, kFmtBitBlt, 11, 0,
kFmtUnused, -1, -1, IS_TERTIARY_OP | REG_DEF0_USE1 | IS_LOAD,
"ldrh", "r!0d, [r!1d, #!2d]", 2),
ENCODING_MAP(kThumb2LdrshRRI12, 0xf9b00000,
kFmtBitBlt, 15, 12, kFmtBitBlt, 19, 16, kFmtBitBlt, 11, 0,
kFmtUnused, -1, -1, IS_TERTIARY_OP | REG_DEF0_USE1 | IS_LOAD,
"ldrsh", "r!0d, [r!1d, #!2d]", 2),
ENCODING_MAP(kThumb2LdrbRRI12, 0xf8900000,
kFmtBitBlt, 15, 12, kFmtBitBlt, 19, 16, kFmtBitBlt, 11, 0,
kFmtUnused, -1, -1, IS_TERTIARY_OP | REG_DEF0_USE1 | IS_LOAD,
"ldrb", "r!0d, [r!1d, #!2d]", 2),
ENCODING_MAP(kThumb2LdrsbRRI12, 0xf9900000,
kFmtBitBlt, 15, 12, kFmtBitBlt, 19, 16, kFmtBitBlt, 11, 0,
kFmtUnused, -1, -1, IS_TERTIARY_OP | REG_DEF0_USE1 | IS_LOAD,
"ldrsb", "r!0d, [r!1d, #!2d]", 2),
ENCODING_MAP(kThumb2StrhRRI12, 0xf8a00000,
kFmtBitBlt, 15, 12, kFmtBitBlt, 19, 16, kFmtBitBlt, 11, 0,
kFmtUnused, -1, -1, IS_TERTIARY_OP | REG_USE01 | IS_STORE,
"strh", "r!0d, [r!1d, #!2d]", 2),
ENCODING_MAP(kThumb2StrbRRI12, 0xf8800000,
kFmtBitBlt, 15, 12, kFmtBitBlt, 19, 16, kFmtBitBlt, 11, 0,
kFmtUnused, -1, -1, IS_TERTIARY_OP | REG_USE01 | IS_STORE,
"strb", "r!0d, [r!1d, #!2d]", 2),
ENCODING_MAP(kThumb2Pop, 0xe8bd0000,
kFmtBitBlt, 15, 0, kFmtUnused, -1, -1, kFmtUnused, -1, -1,
kFmtUnused, -1, -1,
IS_UNARY_OP | REG_DEF_SP | REG_USE_SP | REG_DEF_LIST0
| IS_LOAD, "pop", "<!0R>", 2),
ENCODING_MAP(kThumb2Push, 0xe92d0000,
kFmtBitBlt, 15, 0, kFmtUnused, -1, -1, kFmtUnused, -1, -1,
kFmtUnused, -1, -1,
IS_UNARY_OP | REG_DEF_SP | REG_USE_SP | REG_USE_LIST0
| IS_STORE, "push", "<!0R>", 2),
ENCODING_MAP(kThumb2CmpRI8, 0xf1b00f00,
kFmtBitBlt, 19, 16, kFmtModImm, -1, -1, kFmtUnused, -1, -1,
kFmtUnused, -1, -1,
IS_BINARY_OP | REG_USE0 | SETS_CCODES,
"cmp", "r!0d, #!1m", 2),
ENCODING_MAP(kThumb2AdcRRR, 0xeb500000, /* setflags encoding */
kFmtBitBlt, 11, 8, kFmtBitBlt, 19, 16, kFmtBitBlt, 3, 0,
kFmtShift, -1, -1,
IS_QUAD_OP | REG_DEF0_USE12 | SETS_CCODES,
"adcs", "r!0d, r!1d, r!2d!3H", 2),
ENCODING_MAP(kThumb2AndRRR, 0xea000000,
kFmtBitBlt, 11, 8, kFmtBitBlt, 19, 16, kFmtBitBlt, 3, 0,
kFmtShift, -1, -1, IS_QUAD_OP | REG_DEF0_USE12,
"and", "r!0d, r!1d, r!2d!3H", 2),
ENCODING_MAP(kThumb2BicRRR, 0xea200000,
kFmtBitBlt, 11, 8, kFmtBitBlt, 19, 16, kFmtBitBlt, 3, 0,
kFmtShift, -1, -1, IS_QUAD_OP | REG_DEF0_USE12,
"bic", "r!0d, r!1d, r!2d!3H", 2),
ENCODING_MAP(kThumb2CmnRR, 0xeb000000,
kFmtBitBlt, 19, 16, kFmtBitBlt, 3, 0, kFmtShift, -1, -1,
kFmtUnused, -1, -1,
IS_TERTIARY_OP | REG_DEF0_USE1 | SETS_CCODES,
"cmn", "r!0d, r!1d, shift !2d", 2),
ENCODING_MAP(kThumb2EorRRR, 0xea800000,
kFmtBitBlt, 11, 8, kFmtBitBlt, 19, 16, kFmtBitBlt, 3, 0,
kFmtShift, -1, -1, IS_QUAD_OP | REG_DEF0_USE12,
"eor", "r!0d, r!1d, r!2d!3H", 2),
ENCODING_MAP(kThumb2MulRRR, 0xfb00f000,
kFmtBitBlt, 11, 8, kFmtBitBlt, 19, 16, kFmtBitBlt, 3, 0,
kFmtUnused, -1, -1, IS_TERTIARY_OP | REG_DEF0_USE12,
"mul", "r!0d, r!1d, r!2d", 2),
ENCODING_MAP(kThumb2MnvRR, 0xea6f0000,
kFmtBitBlt, 11, 8, kFmtBitBlt, 3, 0, kFmtShift, -1, -1,
kFmtUnused, -1, -1, IS_TERTIARY_OP | REG_DEF0_USE1,
"mvn", "r!0d, r!1d, shift !2d", 2),
ENCODING_MAP(kThumb2RsubRRI8, 0xf1d00000,
kFmtBitBlt, 11, 8, kFmtBitBlt, 19, 16, kFmtModImm, -1, -1,
kFmtUnused, -1, -1,
IS_TERTIARY_OP | REG_DEF0_USE1 | SETS_CCODES,
"rsb", "r!0d,r!1d,#!2m", 2),
ENCODING_MAP(kThumb2NegRR, 0xf1d00000, /* instance of rsub */
kFmtBitBlt, 11, 8, kFmtBitBlt, 19, 16, kFmtUnused, -1, -1,
kFmtUnused, -1, -1,
IS_BINARY_OP | REG_DEF0_USE1 | SETS_CCODES,
"neg", "r!0d,r!1d", 2),
ENCODING_MAP(kThumb2OrrRRR, 0xea400000,
kFmtBitBlt, 11, 8, kFmtBitBlt, 19, 16, kFmtBitBlt, 3, 0,
kFmtShift, -1, -1, IS_QUAD_OP | REG_DEF0_USE12,
"orr", "r!0d, r!1d, r!2d!3H", 2),
ENCODING_MAP(kThumb2TstRR, 0xea100f00,
kFmtBitBlt, 19, 16, kFmtBitBlt, 3, 0, kFmtShift, -1, -1,
kFmtUnused, -1, -1,
IS_TERTIARY_OP | REG_USE01 | SETS_CCODES,
"tst", "r!0d, r!1d, shift !2d", 2),
ENCODING_MAP(kThumb2LslRRR, 0xfa00f000,
kFmtBitBlt, 11, 8, kFmtBitBlt, 19, 16, kFmtBitBlt, 3, 0,
kFmtUnused, -1, -1, IS_TERTIARY_OP | REG_DEF0_USE12,
"lsl", "r!0d, r!1d, r!2d", 2),
ENCODING_MAP(kThumb2LsrRRR, 0xfa20f000,
kFmtBitBlt, 11, 8, kFmtBitBlt, 19, 16, kFmtBitBlt, 3, 0,
kFmtUnused, -1, -1, IS_TERTIARY_OP | REG_DEF0_USE12,
"lsr", "r!0d, r!1d, r!2d", 2),
ENCODING_MAP(kThumb2AsrRRR, 0xfa40f000,
kFmtBitBlt, 11, 8, kFmtBitBlt, 19, 16, kFmtBitBlt, 3, 0,
kFmtUnused, -1, -1, IS_TERTIARY_OP | REG_DEF0_USE12,
"asr", "r!0d, r!1d, r!2d", 2),
ENCODING_MAP(kThumb2RorRRR, 0xfa60f000,
kFmtBitBlt, 11, 8, kFmtBitBlt, 19, 16, kFmtBitBlt, 3, 0,
kFmtUnused, -1, -1, IS_TERTIARY_OP | REG_DEF0_USE12,
"ror", "r!0d, r!1d, r!2d", 2),
ENCODING_MAP(kThumb2LslRRI5, 0xea4f0000,
kFmtBitBlt, 11, 8, kFmtBitBlt, 3, 0, kFmtShift5, -1, -1,
kFmtUnused, -1, -1, IS_TERTIARY_OP | REG_DEF0_USE1,
"lsl", "r!0d, r!1d, #!2d", 2),
ENCODING_MAP(kThumb2LsrRRI5, 0xea4f0010,
kFmtBitBlt, 11, 8, kFmtBitBlt, 3, 0, kFmtShift5, -1, -1,
kFmtUnused, -1, -1, IS_TERTIARY_OP | REG_DEF0_USE1,
"lsr", "r!0d, r!1d, #!2d", 2),
ENCODING_MAP(kThumb2AsrRRI5, 0xea4f0020,
kFmtBitBlt, 11, 8, kFmtBitBlt, 3, 0, kFmtShift5, -1, -1,
kFmtUnused, -1, -1, IS_TERTIARY_OP | REG_DEF0_USE1,
"asr", "r!0d, r!1d, #!2d", 2),
ENCODING_MAP(kThumb2RorRRI5, 0xea4f0030,
kFmtBitBlt, 11, 8, kFmtBitBlt, 3, 0, kFmtShift5, -1, -1,
kFmtUnused, -1, -1, IS_TERTIARY_OP | REG_DEF0_USE1,
"ror", "r!0d, r!1d, #!2d", 2),
ENCODING_MAP(kThumb2BicRRI8, 0xf0200000,
kFmtBitBlt, 11, 8, kFmtBitBlt, 19, 16, kFmtModImm, -1, -1,
kFmtUnused, -1, -1, IS_TERTIARY_OP | REG_DEF0_USE1,
"bic", "r!0d, r!1d, #!2m", 2),
ENCODING_MAP(kThumb2AndRRI8, 0xf0000000,
kFmtBitBlt, 11, 8, kFmtBitBlt, 19, 16, kFmtModImm, -1, -1,
kFmtUnused, -1, -1, IS_TERTIARY_OP | REG_DEF0_USE1,
"and", "r!0d, r!1d, #!2m", 2),
ENCODING_MAP(kThumb2OrrRRI8, 0xf0400000,
kFmtBitBlt, 11, 8, kFmtBitBlt, 19, 16, kFmtModImm, -1, -1,
kFmtUnused, -1, -1, IS_TERTIARY_OP | REG_DEF0_USE1,
"orr", "r!0d, r!1d, #!2m", 2),
ENCODING_MAP(kThumb2EorRRI8, 0xf0800000,
kFmtBitBlt, 11, 8, kFmtBitBlt, 19, 16, kFmtModImm, -1, -1,
kFmtUnused, -1, -1, IS_TERTIARY_OP | REG_DEF0_USE1,
"eor", "r!0d, r!1d, #!2m", 2),
ENCODING_MAP(kThumb2AddRRI8, 0xf1100000,
kFmtBitBlt, 11, 8, kFmtBitBlt, 19, 16, kFmtModImm, -1, -1,
kFmtUnused, -1, -1,
IS_TERTIARY_OP | REG_DEF0_USE1 | SETS_CCODES,
"adds", "r!0d, r!1d, #!2m", 2),
ENCODING_MAP(kThumb2AdcRRI8, 0xf1500000,
kFmtBitBlt, 11, 8, kFmtBitBlt, 19, 16, kFmtModImm, -1, -1,
kFmtUnused, -1, -1,
IS_TERTIARY_OP | REG_DEF0_USE1 | SETS_CCODES | USES_CCODES,
"adcs", "r!0d, r!1d, #!2m", 2),
ENCODING_MAP(kThumb2SubRRI8, 0xf1b00000,
kFmtBitBlt, 11, 8, kFmtBitBlt, 19, 16, kFmtModImm, -1, -1,
kFmtUnused, -1, -1,
IS_TERTIARY_OP | REG_DEF0_USE1 | SETS_CCODES,
"subs", "r!0d, r!1d, #!2m", 2),
ENCODING_MAP(kThumb2SbcRRI8, 0xf1700000,
kFmtBitBlt, 11, 8, kFmtBitBlt, 19, 16, kFmtModImm, -1, -1,
kFmtUnused, -1, -1,
IS_TERTIARY_OP | REG_DEF0_USE1 | SETS_CCODES | USES_CCODES,
"sbcs", "r!0d, r!1d, #!2m", 2),
ENCODING_MAP(kThumb2It, 0xbf00,
kFmtBitBlt, 7, 4, kFmtBitBlt, 3, 0, kFmtModImm, -1, -1,
kFmtUnused, -1, -1, IS_BINARY_OP | IS_IT | USES_CCODES,
"it:!1b", "!0c", 1),
ENCODING_MAP(kThumb2Fmstat, 0xeef1fa10,
kFmtUnused, -1, -1, kFmtUnused, -1, -1, kFmtUnused, -1, -1,
kFmtUnused, -1, -1, NO_OPERAND | SETS_CCODES,
"fmstat", "", 2),
ENCODING_MAP(kThumb2Vcmpd, 0xeeb40b40,
kFmtDfp, 22, 12, kFmtDfp, 5, 0, kFmtUnused, -1, -1,
kFmtUnused, -1, -1, IS_BINARY_OP | REG_USE01,
"vcmp.f64", "!0S, !1S", 2),
ENCODING_MAP(kThumb2Vcmps, 0xeeb40a40,
kFmtSfp, 22, 12, kFmtSfp, 5, 0, kFmtUnused, -1, -1,
kFmtUnused, -1, -1, IS_BINARY_OP | REG_USE01,
"vcmp.f32", "!0s, !1s", 2),
ENCODING_MAP(kThumb2LdrPcRel12, 0xf8df0000,
kFmtBitBlt, 15, 12, kFmtBitBlt, 11, 0, kFmtUnused, -1, -1,
kFmtUnused, -1, -1,
IS_TERTIARY_OP | REG_DEF0 | REG_USE_PC | IS_LOAD,
"ldr", "r!0d, [r15pc, #!1d]", 2),
ENCODING_MAP(kThumb2BCond, 0xf0008000,
kFmtBrOffset, -1, -1, kFmtBitBlt, 25, 22, kFmtUnused, -1, -1,
kFmtUnused, -1, -1,
IS_BINARY_OP | IS_BRANCH | USES_CCODES,
"b!1c", "!0t", 2),
ENCODING_MAP(kThumb2Vmovd_RR, 0xeeb00b40,
kFmtDfp, 22, 12, kFmtDfp, 5, 0, kFmtUnused, -1, -1,
kFmtUnused, -1, -1, IS_BINARY_OP | REG_DEF0_USE1,
"vmov.f64", "!0S, !1S", 2),
ENCODING_MAP(kThumb2Vmovs_RR, 0xeeb00a40,
kFmtSfp, 22, 12, kFmtSfp, 5, 0, kFmtUnused, -1, -1,
kFmtUnused, -1, -1, IS_BINARY_OP | REG_DEF0_USE1,
"vmov.f32", "!0s, !1s", 2),
ENCODING_MAP(kThumb2Fmrs, 0xee100a10,
kFmtBitBlt, 15, 12, kFmtSfp, 7, 16, kFmtUnused, -1, -1,
kFmtUnused, -1, -1, IS_BINARY_OP | REG_DEF0_USE1,
"fmrs", "r!0d, !1s", 2),
ENCODING_MAP(kThumb2Fmsr, 0xee000a10,
kFmtSfp, 7, 16, kFmtBitBlt, 15, 12, kFmtUnused, -1, -1,
kFmtUnused, -1, -1, IS_BINARY_OP | REG_DEF0_USE1,
"fmsr", "!0s, r!1d", 2),
ENCODING_MAP(kThumb2Fmrrd, 0xec500b10,
kFmtBitBlt, 15, 12, kFmtBitBlt, 19, 16, kFmtDfp, 5, 0,
kFmtUnused, -1, -1, IS_TERTIARY_OP | REG_DEF01_USE2,
"fmrrd", "r!0d, r!1d, !2S", 2),
ENCODING_MAP(kThumb2Fmdrr, 0xec400b10,
kFmtDfp, 5, 0, kFmtBitBlt, 15, 12, kFmtBitBlt, 19, 16,
kFmtUnused, -1, -1, IS_TERTIARY_OP | REG_DEF0_USE12,
"fmdrr", "!0S, r!1d, r!2d", 2),
ENCODING_MAP(kThumb2Vabsd, 0xeeb00bc0,
kFmtDfp, 22, 12, kFmtDfp, 5, 0, kFmtUnused, -1, -1,
kFmtUnused, -1, -1, IS_BINARY_OP | REG_DEF0_USE1,
"vabs.f64", "!0S, !1S", 2),
ENCODING_MAP(kThumb2Vabss, 0xeeb00ac0,
kFmtSfp, 22, 12, kFmtSfp, 5, 0, kFmtUnused, -1, -1,
kFmtUnused, -1, -1, IS_BINARY_OP | REG_DEF0_USE1,
"vabs.f32", "!0s, !1s", 2),
ENCODING_MAP(kThumb2Vnegd, 0xeeb10b40,
kFmtDfp, 22, 12, kFmtDfp, 5, 0, kFmtUnused, -1, -1,
kFmtUnused, -1, -1, IS_BINARY_OP | REG_DEF0_USE1,
"vneg.f64", "!0S, !1S", 2),
ENCODING_MAP(kThumb2Vnegs, 0xeeb10a40,
kFmtSfp, 22, 12, kFmtSfp, 5, 0, kFmtUnused, -1, -1,
kFmtUnused, -1, -1, IS_BINARY_OP | REG_DEF0_USE1,
"vneg.f32", "!0s, !1s", 2),
ENCODING_MAP(kThumb2Vmovs_IMM8, 0xeeb00a00,
kFmtSfp, 22, 12, kFmtFPImm, 16, 0, kFmtUnused, -1, -1,
kFmtUnused, -1, -1, IS_BINARY_OP | REG_DEF0,
"vmov.f32", "!0s, #0x!1h", 2),
ENCODING_MAP(kThumb2Vmovd_IMM8, 0xeeb00b00,
kFmtDfp, 22, 12, kFmtFPImm, 16, 0, kFmtUnused, -1, -1,
kFmtUnused, -1, -1, IS_BINARY_OP | REG_DEF0,
"vmov.f64", "!0S, #0x!1h", 2),
ENCODING_MAP(kThumb2Mla, 0xfb000000,
kFmtBitBlt, 11, 8, kFmtBitBlt, 19, 16, kFmtBitBlt, 3, 0,
kFmtBitBlt, 15, 12,
IS_QUAD_OP | REG_DEF0 | REG_USE1 | REG_USE2 | REG_USE3,
"mla", "r!0d, r!1d, r!2d, r!3d", 2),
ENCODING_MAP(kThumb2Umull, 0xfba00000,
kFmtBitBlt, 15, 12, kFmtBitBlt, 11, 8, kFmtBitBlt, 19, 16,
kFmtBitBlt, 3, 0,
IS_QUAD_OP | REG_DEF0 | REG_DEF1 | REG_USE2 | REG_USE3,
"umull", "r!0d, r!1d, r!2d, r!3d", 2),
ENCODING_MAP(kThumb2Ldrex, 0xe8500f00,
kFmtBitBlt, 15, 12, kFmtBitBlt, 19, 16, kFmtBitBlt, 7, 0,
kFmtUnused, -1, -1, IS_TERTIARY_OP | REG_DEF0_USE1 | IS_LOAD,
"ldrex", "r!0d, [r!1d, #!2E]", 2),
ENCODING_MAP(kThumb2Strex, 0xe8400000,
kFmtBitBlt, 11, 8, kFmtBitBlt, 15, 12, kFmtBitBlt, 19, 16,
kFmtBitBlt, 7, 0, IS_QUAD_OP | REG_DEF0_USE12 | IS_STORE,
"strex", "r!0d,r!1d, [r!2d, #!2E]", 2),
ENCODING_MAP(kThumb2Clrex, 0xf3bf8f2f,
kFmtUnused, -1, -1, kFmtUnused, -1, -1, kFmtUnused, -1, -1,
kFmtUnused, -1, -1, NO_OPERAND,
"clrex", "", 2),
ENCODING_MAP(kThumb2Bfi, 0xf3600000,
kFmtBitBlt, 11, 8, kFmtBitBlt, 19, 16, kFmtShift5, -1, -1,
kFmtBitBlt, 4, 0, IS_QUAD_OP | REG_DEF0_USE1,
"bfi", "r!0d,r!1d,#!2d,#!3d", 2),
ENCODING_MAP(kThumb2Bfc, 0xf36f0000,
kFmtBitBlt, 11, 8, kFmtShift5, -1, -1, kFmtBitBlt, 4, 0,
kFmtUnused, -1, -1, IS_TERTIARY_OP | REG_DEF0,
"bfc", "r!0d,#!1d,#!2d", 2),
ENCODING_MAP(kThumb2Dmb, 0xf3bf8f50,
kFmtBitBlt, 3, 0, kFmtUnused, -1, -1, kFmtUnused, -1, -1,
kFmtUnused, -1, -1, IS_UNARY_OP,
"dmb","#!0B",2),
ENCODING_MAP(kThumb2LdrPcReln12, 0xf85f0000,
kFmtBitBlt, 15, 12, kFmtBitBlt, 11, 0, kFmtUnused, -1, -1,
kFmtUnused, -1, -1,
IS_BINARY_OP | REG_DEF0 | REG_USE_PC | IS_LOAD,
"ldr", "r!0d, [r15pc, -#!1d]", 2),
ENCODING_MAP(kThumbUndefined, 0xde00,
kFmtUnused, -1, -1, kFmtUnused, -1, -1, kFmtUnused, -1, -1,
kFmtUnused, -1, -1, NO_OPERAND,
"undefined", "", 1),
};
/*
* The fake NOP of moving r0 to r0 actually will incur data stalls if r0 is
* not ready. Since r5FP is not updated often, it is less likely to
* generate unnecessary stall cycles.
*/
#define PADDING_MOV_R5_R5 0x1C2D
/* Track the number of times that the code cache is patched */
#if defined(WITH_JIT_TUNING)
#define UPDATE_CODE_CACHE_PATCHES() (gDvmJit.codeCachePatches++)
#else
#define UPDATE_CODE_CACHE_PATCHES()
#endif
/* Write the numbers in the constant and class pool to the output stream */
static void installLiteralPools(CompilationUnit *cUnit)
{
int *dataPtr = (int *) ((char *) cUnit->baseAddr + cUnit->dataOffset);
/* Install number of class pointer literals */
*dataPtr++ = cUnit->numClassPointers;
ArmLIR *dataLIR = (ArmLIR *) cUnit->classPointerList;
while (dataLIR) {
/*
* Install the callsiteinfo pointers into the cells for now. They will
* be converted into real pointers in dvmJitInstallClassObjectPointers.
*/
*dataPtr++ = dataLIR->operands[0];
dataLIR = NEXT_LIR(dataLIR);
}
dataLIR = (ArmLIR *) cUnit->literalList;
while (dataLIR) {
*dataPtr++ = dataLIR->operands[0];
dataLIR = NEXT_LIR(dataLIR);
}
}
/*
* Assemble the LIR into binary instruction format. Note that we may
* discover that pc-relative displacements may not fit the selected
* instruction. In those cases we will try to substitute a new code
* sequence or request that the trace be shortened and retried.
*/
static AssemblerStatus assembleInstructions(CompilationUnit *cUnit,
intptr_t startAddr)
{
short *bufferAddr = (short *) cUnit->codeBuffer;
ArmLIR *lir;
for (lir = (ArmLIR *) cUnit->firstLIRInsn; lir; lir = NEXT_LIR(lir)) {
if (lir->opcode < 0) {
if ((lir->opcode == kArmPseudoPseudoAlign4) &&
/* 1 means padding is needed */
(lir->operands[0] == 1)) {
*bufferAddr++ = PADDING_MOV_R5_R5;
}
continue;
}
if (lir->flags.isNop) {
continue;
}
if (lir->opcode == kThumbLdrPcRel ||
lir->opcode == kThumb2LdrPcRel12 ||
lir->opcode == kThumbAddPcRel ||
((lir->opcode == kThumb2Vldrs) && (lir->operands[1] == r15pc))) {
ArmLIR *lirTarget = (ArmLIR *) lir->generic.target;
intptr_t pc = (lir->generic.offset + 4) & ~3;
intptr_t target = lirTarget->generic.offset;
int delta = target - pc;
if (delta & 0x3) {
ALOGE("PC-rel distance is not multiples of 4: %d", delta);
dvmCompilerAbort(cUnit);
}
if ((lir->opcode == kThumb2LdrPcRel12) && (delta > 4091)) {
if (cUnit->printMe) {
ALOGD("kThumb2LdrPcRel12@%x: delta=%d", lir->generic.offset,
delta);
dvmCompilerCodegenDump(cUnit);
}
return kRetryHalve;
} else if (delta > 1020) {
if (cUnit->printMe) {
ALOGD("kThumbLdrPcRel@%x: delta=%d", lir->generic.offset,
delta);
dvmCompilerCodegenDump(cUnit);
}
return kRetryHalve;
}
if (lir->opcode == kThumb2Vldrs) {
lir->operands[2] = delta >> 2;
} else {
lir->operands[1] = (lir->opcode == kThumb2LdrPcRel12) ?
delta : delta >> 2;
}
} else if (lir->opcode == kThumb2Cbnz || lir->opcode == kThumb2Cbz) {
ArmLIR *targetLIR = (ArmLIR *) lir->generic.target;
intptr_t pc = lir->generic.offset + 4;
intptr_t target = targetLIR->generic.offset;
int delta = target - pc;
if (delta > 126 || delta < 0) {
/* Convert to cmp rx,#0 / b[eq/ne] tgt pair */
ArmLIR *newInst =
(ArmLIR *)dvmCompilerNew(sizeof(ArmLIR), true);
/* Make new branch instruction and insert after */
newInst->opcode = kThumbBCond;
newInst->operands[0] = 0;
newInst->operands[1] = (lir->opcode == kThumb2Cbz) ?
kArmCondEq : kArmCondNe;
newInst->generic.target = lir->generic.target;
dvmCompilerSetupResourceMasks(newInst);
dvmCompilerInsertLIRAfter((LIR *)lir, (LIR *)newInst);
/* Convert the cb[n]z to a cmp rx, #0 ] */
lir->opcode = kThumbCmpRI8;
/* operand[0] is src1 in both cb[n]z & CmpRI8 */
lir->operands[1] = 0;
lir->generic.target = 0;
dvmCompilerSetupResourceMasks(lir);
if (cUnit->printMe) {
ALOGD("kThumb2Cbnz/kThumb2Cbz@%x: delta=%d",
lir->generic.offset, delta);
dvmCompilerCodegenDump(cUnit);
}
return kRetryAll;
} else {
lir->operands[1] = delta >> 1;
}
} else if (lir->opcode == kThumbBCond ||
lir->opcode == kThumb2BCond) {
ArmLIR *targetLIR = (ArmLIR *) lir->generic.target;
intptr_t pc = lir->generic.offset + 4;
intptr_t target = targetLIR->generic.offset;
int delta = target - pc;
if ((lir->opcode == kThumbBCond) && (delta > 254 || delta < -256)) {
if (cUnit->printMe) {
ALOGD("kThumbBCond@%x: delta=%d", lir->generic.offset,
delta);
dvmCompilerCodegenDump(cUnit);
}
return kRetryHalve;
}
lir->operands[0] = delta >> 1;
} else if (lir->opcode == kThumbBUncond) {
ArmLIR *targetLIR = (ArmLIR *) lir->generic.target;
intptr_t pc = lir->generic.offset + 4;
intptr_t target = targetLIR->generic.offset;
int delta = target - pc;
if (delta > 2046 || delta < -2048) {
ALOGE("Unconditional branch distance out of range: %d", delta);
dvmCompilerAbort(cUnit);
}
lir->operands[0] = delta >> 1;
} else if (lir->opcode == kThumbBlx1) {
assert(NEXT_LIR(lir)->opcode == kThumbBlx2);
/* curPC is Thumb */
intptr_t curPC = (startAddr + lir->generic.offset + 4) & ~3;
intptr_t target = lir->operands[1];
/* Match bit[1] in target with base */
if (curPC & 0x2) {
target |= 0x2;
}
int delta = target - curPC;
assert((delta >= -(1<<22)) && (delta <= ((1<<22)-2)));
lir->operands[0] = (delta >> 12) & 0x7ff;
NEXT_LIR(lir)->operands[0] = (delta>> 1) & 0x7ff;
} else if (lir->opcode == kThumbBl1) {
assert(NEXT_LIR(lir)->opcode == kThumbBl2);
/* Both curPC and target are Thumb */
intptr_t curPC = startAddr + lir->generic.offset + 4;
intptr_t target = lir->operands[1];
int delta = target - curPC;
assert((delta >= -(1<<22)) && (delta <= ((1<<22)-2)));
lir->operands[0] = (delta >> 12) & 0x7ff;
NEXT_LIR(lir)->operands[0] = (delta>> 1) & 0x7ff;
}
ArmEncodingMap *encoder = &EncodingMap[lir->opcode];
u4 bits = encoder->skeleton;
int i;
for (i = 0; i < 4; i++) {
u4 operand;
u4 value;
operand = lir->operands[i];
switch(encoder->fieldLoc[i].kind) {
case kFmtUnused:
break;
case kFmtFPImm:
value = ((operand & 0xF0) >> 4) << encoder->fieldLoc[i].end;
value |= (operand & 0x0F) << encoder->fieldLoc[i].start;
bits |= value;
break;
case kFmtBrOffset:
value = ((operand & 0x80000) >> 19) << 26;
value |= ((operand & 0x40000) >> 18) << 11;
value |= ((operand & 0x20000) >> 17) << 13;
value |= ((operand & 0x1f800) >> 11) << 16;
value |= (operand & 0x007ff);
bits |= value;
break;
case kFmtShift5:
value = ((operand & 0x1c) >> 2) << 12;
value |= (operand & 0x03) << 6;
bits |= value;
break;
case kFmtShift:
value = ((operand & 0x70) >> 4) << 12;
value |= (operand & 0x0f) << 4;
bits |= value;
break;
case kFmtBWidth:
value = operand - 1;
bits |= value;
break;
case kFmtLsb:
value = ((operand & 0x1c) >> 2) << 12;
value |= (operand & 0x03) << 6;
bits |= value;
break;
case kFmtImm6:
value = ((operand & 0x20) >> 5) << 9;
value |= (operand & 0x1f) << 3;
bits |= value;
break;
case kFmtBitBlt:
value = (operand << encoder->fieldLoc[i].start) &
((1 << (encoder->fieldLoc[i].end + 1)) - 1);
bits |= value;
break;
case kFmtDfp: {
assert(DOUBLEREG(operand));
assert((operand & 0x1) == 0);
int regName = (operand & FP_REG_MASK) >> 1;
/* Snag the 1-bit slice and position it */
value = ((regName & 0x10) >> 4) <<
encoder->fieldLoc[i].end;
/* Extract and position the 4-bit slice */
value |= (regName & 0x0f) <<
encoder->fieldLoc[i].start;
bits |= value;
break;
}
case kFmtSfp:
assert(SINGLEREG(operand));
/* Snag the 1-bit slice and position it */
value = (operand & 0x1) <<
encoder->fieldLoc[i].end;
/* Extract and position the 4-bit slice */
value |= ((operand & 0x1e) >> 1) <<
encoder->fieldLoc[i].start;
bits |= value;
break;
case kFmtImm12:
case kFmtModImm:
value = ((operand & 0x800) >> 11) << 26;
value |= ((operand & 0x700) >> 8) << 12;
value |= operand & 0x0ff;
bits |= value;
break;
case kFmtImm16:
value = ((operand & 0x0800) >> 11) << 26;
value |= ((operand & 0xf000) >> 12) << 16;
value |= ((operand & 0x0700) >> 8) << 12;
value |= operand & 0x0ff;
bits |= value;
break;
default:
assert(0);
}
}
if (encoder->size == 2) {
*bufferAddr++ = (bits >> 16) & 0xffff;
}
*bufferAddr++ = bits & 0xffff;
}
return kSuccess;
}
static int assignLiteralOffsetCommon(LIR *lir, int offset)
{
for (;lir != NULL; lir = lir->next) {
lir->offset = offset;
offset += 4;
}
return offset;
}
/* Determine the offset of each literal field */
static int assignLiteralOffset(CompilationUnit *cUnit, int offset)
{
/* Reserved for the size field of class pointer pool */
offset += 4;
offset = assignLiteralOffsetCommon(cUnit->classPointerList, offset);
offset = assignLiteralOffsetCommon(cUnit->literalList, offset);
return offset;
}
/*
* Translation layout in the code cache. Note that the codeAddress pointer
* in JitTable will point directly to the code body (field codeAddress). The
* chain cell offset codeAddress - 2, and the address of the trace profile
* counter is at codeAddress - 6.
*
* +----------------------------+
* | Trace Profile Counter addr | -> 4 bytes (PROF_COUNTER_ADDR_SIZE)
* +----------------------------+
* +--| Offset to chain cell counts| -> 2 bytes (CHAIN_CELL_OFFSET_SIZE)
* | +----------------------------+
* | | Trace profile code | <- entry point when profiling
* | . - - - - - - - .
* | | Code body | <- entry point when not profiling
* | . .
* | | |
* | +----------------------------+
* | | Chaining Cells | -> 12/16 bytes, 4 byte aligned
* | . .
* | . .
* | | |
* | +----------------------------+
* | | Gap for large switch stmt | -> # cases >= MAX_CHAINED_SWITCH_CASES
* | +----------------------------+
* +->| Chaining cell counts | -> 8 bytes, chain cell counts by type
* +----------------------------+
* | Trace description | -> variable sized
* . .
* | |
* +----------------------------+
* | # Class pointer pool size | -> 4 bytes
* +----------------------------+
* | Class pointer pool | -> 4-byte aligned, variable size
* . .
* . .
* | |
* +----------------------------+
* | Literal pool | -> 4-byte aligned, variable size
* . .
* . .
* | |
* +----------------------------+
*
*/
#define PROF_COUNTER_ADDR_SIZE 4
#define CHAIN_CELL_OFFSET_SIZE 2
/*
* Utility functions to navigate various parts in a trace. If we change the
* layout/offset in the future, we just modify these functions and we don't need
* to propagate the changes to all the use cases.
*/
static inline char *getTraceBase(const JitEntry *p)
{
return (char*)p->codeAddress -
(PROF_COUNTER_ADDR_SIZE + CHAIN_CELL_OFFSET_SIZE +
(p->u.info.instructionSet == DALVIK_JIT_ARM ? 0 : 1));
}
/* Handy function to retrieve the profile count */
static inline JitTraceCounter_t getProfileCount(const JitEntry *entry)
{
if (entry->dPC == 0 || entry->codeAddress == 0 ||
entry->codeAddress == dvmCompilerGetInterpretTemplate())
return 0;
JitTraceCounter_t **p = (JitTraceCounter_t **) getTraceBase(entry);
return **p;
}
/* Handy function to reset the profile count */
static inline void resetProfileCount(const JitEntry *entry)
{
if (entry->dPC == 0 || entry->codeAddress == 0 ||
entry->codeAddress == dvmCompilerGetInterpretTemplate())
return;
JitTraceCounter_t **p = (JitTraceCounter_t **) getTraceBase(entry);
**p = 0;
}
/* Get the pointer of the chain cell count */
static inline ChainCellCounts* getChainCellCountsPointer(const char *base)
{
/* 4 is the size of the profile count */
u2 *chainCellOffsetP = (u2 *) (base + PROF_COUNTER_ADDR_SIZE);
u2 chainCellOffset = *chainCellOffsetP;
return (ChainCellCounts *) ((char *) chainCellOffsetP + chainCellOffset);
}
/* Get the size of all chaining cells */
static inline u4 getChainCellSize(const ChainCellCounts* pChainCellCounts)
{
int cellSize = 0;
int i;
/* Get total count of chain cells */
for (i = 0; i < kChainingCellGap; i++) {
if (i != kChainingCellInvokePredicted) {
cellSize += pChainCellCounts->u.count[i] *
(CHAIN_CELL_NORMAL_SIZE >> 2);
} else {
cellSize += pChainCellCounts->u.count[i] *
(CHAIN_CELL_PREDICTED_SIZE >> 2);
}
}
return cellSize;
}
/* Get the starting pointer of the trace description section */
static JitTraceDescription* getTraceDescriptionPointer(const char *base)
{
ChainCellCounts* pCellCounts = getChainCellCountsPointer(base);
return (JitTraceDescription*) ((char*)pCellCounts + sizeof(*pCellCounts));
}
/* Get the size of a trace description */
static int getTraceDescriptionSize(const JitTraceDescription *desc)
{
int runCount;
/* Trace end is always of non-meta type (ie isCode == true) */
for (runCount = 0; ; runCount++) {
if (desc->trace[runCount].isCode &&
desc->trace[runCount].info.frag.runEnd)
break;
}
return sizeof(JitTraceDescription) + ((runCount+1) * sizeof(JitTraceRun));
}
#if defined(SIGNATURE_BREAKPOINT)
/* Inspect the assembled instruction stream to find potential matches */
static void matchSignatureBreakpoint(const CompilationUnit *cUnit,
unsigned int size)
{
unsigned int i, j;
u4 *ptr = (u4 *) cUnit->codeBuffer;
for (i = 0; i < size - gDvmJit.signatureBreakpointSize + 1; i++) {
if (ptr[i] == gDvmJit.signatureBreakpoint[0]) {
for (j = 1; j < gDvmJit.signatureBreakpointSize; j++) {
if (ptr[i+j] != gDvmJit.signatureBreakpoint[j]) {
break;
}
}
if (j == gDvmJit.signatureBreakpointSize) {
ALOGD("Signature match starting from offset %#x (%d words)",
i*4, gDvmJit.signatureBreakpointSize);
int descSize = getTraceDescriptionSize(cUnit->traceDesc);
JitTraceDescription *newCopy =
(JitTraceDescription *) malloc(descSize);
memcpy(newCopy, cUnit->traceDesc, descSize);
dvmCompilerWorkEnqueue(NULL, kWorkOrderTraceDebug, newCopy);
break;
}
}
}
}
#endif
/*
* Go over each instruction in the list and calculate the offset from the top
* before sending them off to the assembler. If out-of-range branch distance is
* seen rearrange the instructions a bit to correct it.
*/
void dvmCompilerAssembleLIR(CompilationUnit *cUnit, JitTranslationInfo *info)
{
ArmLIR *armLIR;
int offset = 0;
int i;
ChainCellCounts chainCellCounts;
int descSize = (cUnit->jitMode == kJitMethod) ?
0 : getTraceDescriptionSize(cUnit->traceDesc);
int chainingCellGap = 0;
info->instructionSet = cUnit->instructionSet;
/* Beginning offset needs to allow space for chain cell offset */
for (armLIR = (ArmLIR *) cUnit->firstLIRInsn;
armLIR;
armLIR = NEXT_LIR(armLIR)) {
armLIR->generic.offset = offset;
if (armLIR->opcode >= 0 && !armLIR->flags.isNop) {
armLIR->flags.size = EncodingMap[armLIR->opcode].size * 2;
offset += armLIR->flags.size;
} else if (armLIR->opcode == kArmPseudoPseudoAlign4) {
if (offset & 0x2) {
offset += 2;
armLIR->operands[0] = 1;
} else {
armLIR->operands[0] = 0;
}
}
/* Pseudo opcodes don't consume space */
}
/* Const values have to be word aligned */
offset = (offset + 3) & ~3;
u4 chainCellOffset = offset;
ArmLIR *chainCellOffsetLIR = NULL;
if (cUnit->jitMode != kJitMethod) {
/*
* Get the gap (# of u4) between the offset of chaining cell count and
* the bottom of real chaining cells. If the translation has chaining
* cells, the gap is guaranteed to be multiples of 4.
*/
chainingCellGap = (offset - cUnit->chainingCellBottom->offset) >> 2;
/* Add space for chain cell counts & trace description */
chainCellOffsetLIR = (ArmLIR *) cUnit->chainCellOffsetLIR;
assert(chainCellOffsetLIR);
assert(chainCellOffset < 0x10000);
assert(chainCellOffsetLIR->opcode == kArm16BitData &&
chainCellOffsetLIR->operands[0] == CHAIN_CELL_OFFSET_TAG);
/*
* Adjust the CHAIN_CELL_OFFSET_TAG LIR's offset to remove the
* space occupied by the pointer to the trace profiling counter.
*/
chainCellOffsetLIR->operands[0] = chainCellOffset - 4;
offset += sizeof(chainCellCounts) + descSize;
assert((offset & 0x3) == 0); /* Should still be word aligned */
}
/* Set up offsets for literals */
cUnit->dataOffset = offset;
/*
* Assign each class pointer/constant an offset from the beginning of the
* compilation unit.
*/
offset = assignLiteralOffset(cUnit, offset);
cUnit->totalSize = offset;
if (gDvmJit.codeCacheByteUsed + cUnit->totalSize > gDvmJit.codeCacheSize) {
gDvmJit.codeCacheFull = true;
info->discardResult = true;
return;
}
/* Allocate enough space for the code block */
cUnit->codeBuffer = (unsigned char *)dvmCompilerNew(chainCellOffset, true);
if (cUnit->codeBuffer == NULL) {
ALOGE("Code buffer allocation failure");
info->discardResult = true;
return;
}
/*
* Attempt to assemble the trace. Note that assembleInstructions
* may rewrite the code sequence and request a retry.
*/
cUnit->assemblerStatus = assembleInstructions(cUnit,
(intptr_t) gDvmJit.codeCache + gDvmJit.codeCacheByteUsed);
switch(cUnit->assemblerStatus) {
case kSuccess:
break;
case kRetryAll:
if (cUnit->assemblerRetries < MAX_ASSEMBLER_RETRIES) {
if (cUnit->jitMode != kJitMethod) {
/* Restore pristine chain cell marker on retry */
chainCellOffsetLIR->operands[0] = CHAIN_CELL_OFFSET_TAG;
}
return;
}
/* Too many retries - reset and try cutting the trace in half */
cUnit->assemblerRetries = 0;
cUnit->assemblerStatus = kRetryHalve;
return;
case kRetryHalve:
return;
default:
ALOGE("Unexpected assembler status: %d", cUnit->assemblerStatus);
dvmAbort();
}
#if defined(SIGNATURE_BREAKPOINT)
if (info->discardResult == false && gDvmJit.signatureBreakpoint != NULL &&
chainCellOffset/4 >= gDvmJit.signatureBreakpointSize) {
matchSignatureBreakpoint(cUnit, chainCellOffset/4);
}
#endif
/* Don't go all the way if the goal is just to get the verbose output */
if (info->discardResult) return;
/*
* The cache might disappear - acquire lock and check version
* Continue holding lock until translation cache update is complete.
* These actions are required here in the compiler thread because
* it is unaffected by suspend requests and doesn't know if a
* translation cache flush is in progress.
*/
dvmLockMutex(&gDvmJit.compilerLock);
if (info->cacheVersion != gDvmJit.cacheVersion) {
/* Cache changed - discard current translation */
info->discardResult = true;
info->codeAddress = NULL;
dvmUnlockMutex(&gDvmJit.compilerLock);
return;
}
cUnit->baseAddr = (char *) gDvmJit.codeCache + gDvmJit.codeCacheByteUsed;
gDvmJit.codeCacheByteUsed += offset;
UNPROTECT_CODE_CACHE(cUnit->baseAddr, offset);
/* Install the code block */
memcpy((char*)cUnit->baseAddr, cUnit->codeBuffer, chainCellOffset);
gDvmJit.numCompilations++;
if (cUnit->jitMode != kJitMethod) {
/* Install the chaining cell counts */
for (i=0; i< kChainingCellGap; i++) {
chainCellCounts.u.count[i] = cUnit->numChainingCells[i];
}
/* Set the gap number in the chaining cell count structure */
chainCellCounts.u.count[kChainingCellGap] = chainingCellGap;
memcpy((char*)cUnit->baseAddr + chainCellOffset, &chainCellCounts,
sizeof(chainCellCounts));
/* Install the trace description */
memcpy((char*) cUnit->baseAddr + chainCellOffset +
sizeof(chainCellCounts),
cUnit->traceDesc, descSize);
}
/* Write the literals directly into the code cache */
installLiteralPools(cUnit);
/* Flush dcache and invalidate the icache to maintain coherence */
dvmCompilerCacheFlush((long)cUnit->baseAddr,
(long)((char *) cUnit->baseAddr + offset), 0);
UPDATE_CODE_CACHE_PATCHES();
PROTECT_CODE_CACHE(cUnit->baseAddr, offset);
/* Translation cache update complete - release lock */
dvmUnlockMutex(&gDvmJit.compilerLock);
/* Record code entry point and instruction set */
info->codeAddress = (char*)cUnit->baseAddr + cUnit->headerSize;
/* If applicable, mark low bit to denote thumb */
if (info->instructionSet != DALVIK_JIT_ARM)
info->codeAddress = (char*)info->codeAddress + 1;
/* transfer the size of the profiling code */
info->profileCodeSize = cUnit->profileCodeSize;
}
/*
* Returns the skeleton bit pattern associated with an opcode. All
* variable fields are zeroed.
*/
static u4 getSkeleton(ArmOpcode op)
{
return EncodingMap[op].skeleton;
}
static u4 assembleChainingBranch(int branchOffset, bool thumbTarget)
{
u4 thumb1, thumb2;
if (!thumbTarget) {
thumb1 = (getSkeleton(kThumbBlx1) | ((branchOffset>>12) & 0x7ff));
thumb2 = (getSkeleton(kThumbBlx2) | ((branchOffset>> 1) & 0x7ff));
} else if ((branchOffset < -2048) | (branchOffset > 2046)) {
thumb1 = (getSkeleton(kThumbBl1) | ((branchOffset>>12) & 0x7ff));
thumb2 = (getSkeleton(kThumbBl2) | ((branchOffset>> 1) & 0x7ff));
} else {
thumb1 = (getSkeleton(kThumbBUncond) | ((branchOffset>> 1) & 0x7ff));
thumb2 = getSkeleton(kThumbOrr); /* nop -> or r0, r0 */
}
return thumb2<<16 | thumb1;
}
/*
* Perform translation chain operation.
* For ARM, we'll use a pair of thumb instructions to generate
* an unconditional chaining branch of up to 4MB in distance.
* Use a BL, because the generic "interpret" translation needs
* the link register to find the dalvik pc of teh target.
* 111HHooooooooooo
* Where HH is 10 for the 1st inst, and 11 for the second and
* the "o" field is each instruction's 11-bit contribution to the
* 22-bit branch offset.
* If the target is nearby, use a single-instruction bl.
* If one or more threads is suspended, don't chain.
*/
void* dvmJitChain(void* tgtAddr, u4* branchAddr)
{
int baseAddr = (u4) branchAddr + 4;
int branchOffset = (int) tgtAddr - baseAddr;
u4 newInst;
bool thumbTarget;
/*
* Only chain translations when there is no urge to ask all threads to
* suspend themselves via the interpreter.
*/
if ((gDvmJit.pProfTable != NULL) && (gDvm.sumThreadSuspendCount == 0) &&
(gDvmJit.codeCacheFull == false)) {
assert((branchOffset >= -(1<<22)) && (branchOffset <= ((1<<22)-2)));
gDvmJit.translationChains++;
COMPILER_TRACE_CHAINING(
ALOGD("Jit Runtime: chaining %#x to %#x",
(int) branchAddr, (int) tgtAddr & -2));
/*
* NOTE: normally, all translations are Thumb[2] mode, with
* a single exception: the default TEMPLATE_INTERPRET
* pseudo-translation. If the need ever arises to
* mix Arm & Thumb[2] translations, the following code should be
* generalized.
*/
thumbTarget = (tgtAddr != dvmCompilerGetInterpretTemplate());
newInst = assembleChainingBranch(branchOffset, thumbTarget);
/*
* The second half-word instruction of the chaining cell must
* either be a nop (which represents initial state), or is the
* same exact branch halfword that we are trying to install.
*/
assert( ((*branchAddr >> 16) == getSkeleton(kThumbOrr)) ||
((*branchAddr >> 16) == (newInst >> 16)));
UNPROTECT_CODE_CACHE(branchAddr, sizeof(*branchAddr));
*branchAddr = newInst;
dvmCompilerCacheFlush((long)branchAddr, (long)branchAddr + 4, 0);
UPDATE_CODE_CACHE_PATCHES();
PROTECT_CODE_CACHE(branchAddr, sizeof(*branchAddr));
gDvmJit.hasNewChain = true;
}
return tgtAddr;
}
#if !defined(WITH_SELF_VERIFICATION)
/*
* Attempt to enqueue a work order to patch an inline cache for a predicted
* chaining cell for virtual/interface calls.
*/
static void inlineCachePatchEnqueue(PredictedChainingCell *cellAddr,
PredictedChainingCell *newContent)
{
/*
* Make sure only one thread gets here since updating the cell (ie fast
* path and queueing the request (ie the queued path) have to be done
* in an atomic fashion.
*/
dvmLockMutex(&gDvmJit.compilerICPatchLock);
/* Fast path for uninitialized chaining cell */
if (cellAddr->clazz == NULL &&
cellAddr->branch == PREDICTED_CHAIN_BX_PAIR_INIT) {
UNPROTECT_CODE_CACHE(cellAddr, sizeof(*cellAddr));
cellAddr->method = newContent->method;
cellAddr->branch = newContent->branch;
/*
* The update order matters - make sure clazz is updated last since it
* will bring the uninitialized chaining cell to life.
*/
android_atomic_release_store((int32_t)newContent->clazz,
(volatile int32_t *)(void *)&cellAddr->clazz);
dvmCompilerCacheFlush((intptr_t) cellAddr, (intptr_t) (cellAddr+1), 0);
UPDATE_CODE_CACHE_PATCHES();
PROTECT_CODE_CACHE(cellAddr, sizeof(*cellAddr));
#if defined(WITH_JIT_TUNING)
gDvmJit.icPatchInit++;
#endif
/* Check if this is a frequently missed clazz */
} else if (cellAddr->stagedClazz != newContent->clazz) {
/* Not proven to be frequent yet - build up the filter cache */
UNPROTECT_CODE_CACHE(cellAddr, sizeof(*cellAddr));
cellAddr->stagedClazz = newContent->clazz;
UPDATE_CODE_CACHE_PATCHES();
PROTECT_CODE_CACHE(cellAddr, sizeof(*cellAddr));
#if defined(WITH_JIT_TUNING)
gDvmJit.icPatchRejected++;
#endif
/*
* Different classes but same method implementation - it is safe to just
* patch the class value without the need to stop the world.
*/
} else if (cellAddr->method == newContent->method) {
UNPROTECT_CODE_CACHE(cellAddr, sizeof(*cellAddr));
cellAddr->clazz = newContent->clazz;
/* No need to flush the cache here since the branch is not patched */
UPDATE_CODE_CACHE_PATCHES();
PROTECT_CODE_CACHE(cellAddr, sizeof(*cellAddr));
#if defined(WITH_JIT_TUNING)
gDvmJit.icPatchLockFree++;
#endif
/*
* Cannot patch the chaining cell inline - queue it until the next safe
* point.
*/
} else if (gDvmJit.compilerICPatchIndex < COMPILER_IC_PATCH_QUEUE_SIZE) {
int index = gDvmJit.compilerICPatchIndex++;
const ClassObject *clazz = newContent->clazz;
gDvmJit.compilerICPatchQueue[index].cellAddr = cellAddr;
gDvmJit.compilerICPatchQueue[index].cellContent = *newContent;
gDvmJit.compilerICPatchQueue[index].classDescriptor = clazz->descriptor;
gDvmJit.compilerICPatchQueue[index].classLoader = clazz->classLoader;
/* For verification purpose only */
gDvmJit.compilerICPatchQueue[index].serialNumber = clazz->serialNumber;
#if defined(WITH_JIT_TUNING)
gDvmJit.icPatchQueued++;
#endif
} else {
/* Queue is full - just drop this patch request */
#if defined(WITH_JIT_TUNING)
gDvmJit.icPatchDropped++;
#endif
}
dvmUnlockMutex(&gDvmJit.compilerICPatchLock);
}
#endif
/*
* This method is called from the invoke templates for virtual and interface
* methods to speculatively setup a chain to the callee. The templates are
* written in assembly and have setup method, cell, and clazz at r0, r2, and
* r3 respectively, so there is a unused argument in the list. Upon return one
* of the following three results may happen:
* 1) Chain is not setup because the callee is native. Reset the rechain
* count to a big number so that it will take a long time before the next
* rechain attempt to happen.
* 2) Chain is not setup because the callee has not been created yet. Reset
* the rechain count to a small number and retry in the near future.
* 3) Enqueue the new content for the chaining cell which will be appled in
* next safe point.
*/
const Method *dvmJitToPatchPredictedChain(const Method *method,
Thread *self,
PredictedChainingCell *cell,
const ClassObject *clazz)
{
int newRechainCount = PREDICTED_CHAIN_COUNTER_RECHAIN;
#if defined(WITH_SELF_VERIFICATION)
newRechainCount = PREDICTED_CHAIN_COUNTER_AVOID;
goto done;
#else
PredictedChainingCell newCell;
int baseAddr, branchOffset, tgtAddr;
if (dvmIsNativeMethod(method)) {
UNPROTECT_CODE_CACHE(cell, sizeof(*cell));
/*
* Put a non-zero/bogus value in the clazz field so that it won't
* trigger immediate patching and will continue to fail to match with
* a real clazz pointer.
*/
cell->clazz = (ClassObject *) PREDICTED_CHAIN_FAKE_CLAZZ;
UPDATE_CODE_CACHE_PATCHES();
PROTECT_CODE_CACHE(cell, sizeof(*cell));
goto done;
}
tgtAddr = (int) dvmJitGetTraceAddr(method->insns);
/*
* Compilation not made yet for the callee. Reset the counter to a small
* value and come back to check soon.
*/
if ((tgtAddr == 0) ||
((void*)tgtAddr == dvmCompilerGetInterpretTemplate())) {
COMPILER_TRACE_CHAINING(
ALOGD("Jit Runtime: predicted chain %p to method %s%s delayed",
cell, method->clazz->descriptor, method->name));
goto done;
}
if (cell->clazz == NULL) {
newRechainCount = self->icRechainCount;
}
baseAddr = (int) cell + 4; // PC is cur_addr + 4
branchOffset = tgtAddr - baseAddr;
newCell.branch = assembleChainingBranch(branchOffset, true);
newCell.clazz = clazz;
newCell.method = method;
newCell.stagedClazz = NULL;
/*
* Enter the work order to the queue and the chaining cell will be patched
* the next time a safe point is entered.
*
* If the enqueuing fails reset the rechain count to a normal value so that
* it won't get indefinitely delayed.
*/
inlineCachePatchEnqueue(cell, &newCell);
#endif
done:
self->icRechainCount = newRechainCount;
return method;
}
/*
* Patch the inline cache content based on the content passed from the work
* order.
*/
void dvmCompilerPatchInlineCache(void)
{
int i;
PredictedChainingCell *minAddr, *maxAddr;
/* Nothing to be done */
if (gDvmJit.compilerICPatchIndex == 0) return;
/*
* Since all threads are already stopped we don't really need to acquire
* the lock. But race condition can be easily introduced in the future w/o
* paying attention so we still acquire the lock here.
*/
dvmLockMutex(&gDvmJit.compilerICPatchLock);
UNPROTECT_CODE_CACHE(gDvmJit.codeCache, gDvmJit.codeCacheByteUsed);
//ALOGD("Number of IC patch work orders: %d", gDvmJit.compilerICPatchIndex);
/* Initialize the min/max address range */
minAddr = (PredictedChainingCell *)
((char *) gDvmJit.codeCache + gDvmJit.codeCacheSize);
maxAddr = (PredictedChainingCell *) gDvmJit.codeCache;
for (i = 0; i < gDvmJit.compilerICPatchIndex; i++) {
ICPatchWorkOrder *workOrder = &gDvmJit.compilerICPatchQueue[i];
PredictedChainingCell *cellAddr = workOrder->cellAddr;
PredictedChainingCell *cellContent = &workOrder->cellContent;
ClassObject *clazz = dvmFindClassNoInit(workOrder->classDescriptor,
workOrder->classLoader);
assert(clazz->serialNumber == workOrder->serialNumber);
/* Use the newly resolved clazz pointer */
cellContent->clazz = clazz;
COMPILER_TRACE_CHAINING(
ALOGD("Jit Runtime: predicted chain %p from %s to %s (%s) "
"patched",
cellAddr,
cellAddr->clazz->descriptor,
cellContent->clazz->descriptor,
cellContent->method->name));
/* Patch the chaining cell */
*cellAddr = *cellContent;
minAddr = (cellAddr < minAddr) ? cellAddr : minAddr;
maxAddr = (cellAddr > maxAddr) ? cellAddr : maxAddr;
}
/* Then synchronize the I/D cache */
dvmCompilerCacheFlush((long) minAddr, (long) (maxAddr+1), 0);
UPDATE_CODE_CACHE_PATCHES();
PROTECT_CODE_CACHE(gDvmJit.codeCache, gDvmJit.codeCacheByteUsed);
gDvmJit.compilerICPatchIndex = 0;
dvmUnlockMutex(&gDvmJit.compilerICPatchLock);
}
/*
* Unchain a trace given the starting address of the translation
* in the code cache. Refer to the diagram in dvmCompilerAssembleLIR.
* Returns the address following the last cell unchained. Note that
* the incoming codeAddr is a thumb code address, and therefore has
* the low bit set.
*/
static u4* unchainSingle(JitEntry *trace)
{
const char *base = getTraceBase(trace);
ChainCellCounts *pChainCellCounts = getChainCellCountsPointer(base);
int cellSize = getChainCellSize(pChainCellCounts);
u4* pChainCells;
u4 newInst;
int i,j;
PredictedChainingCell *predChainCell;
if (cellSize == 0)
return (u4 *) pChainCellCounts;
/* Locate the beginning of the chain cell region */
pChainCells = ((u4 *) pChainCellCounts) - cellSize -
pChainCellCounts->u.count[kChainingCellGap];
/* The cells are sorted in order - walk through them and reset */
for (i = 0; i < kChainingCellGap; i++) {
int elemSize = CHAIN_CELL_NORMAL_SIZE >> 2; /* In 32-bit words */
if (i == kChainingCellInvokePredicted) {
elemSize = CHAIN_CELL_PREDICTED_SIZE >> 2;
}
for (j = 0; j < pChainCellCounts->u.count[i]; j++) {
switch(i) {
case kChainingCellNormal:
case kChainingCellHot:
case kChainingCellInvokeSingleton:
case kChainingCellBackwardBranch:
/*
* Replace the 1st half-word of the cell with an
* unconditional branch, leaving the 2nd half-word
* untouched. This avoids problems with a thread
* that is suspended between the two halves when
* this unchaining takes place.
*/
newInst = *pChainCells;
newInst &= 0xFFFF0000;
newInst |= getSkeleton(kThumbBUncond); /* b offset is 0 */
*pChainCells = newInst;
break;
case kChainingCellInvokePredicted:
predChainCell = (PredictedChainingCell *) pChainCells;
/*
* There could be a race on another mutator thread to use
* this particular predicted cell and the check has passed
* the clazz comparison. So we cannot safely wipe the
* method and branch but it is safe to clear the clazz,
* which serves as the key.
*/
predChainCell->clazz = PREDICTED_CHAIN_CLAZZ_INIT;
break;
default:
ALOGE("Unexpected chaining type: %d", i);
dvmAbort(); // dvmAbort OK here - can't safely recover
}
COMPILER_TRACE_CHAINING(
ALOGD("Jit Runtime: unchaining %#x", (int)pChainCells));
pChainCells += elemSize; /* Advance by a fixed number of words */
}
}
return pChainCells;
}
/* Unchain all translation in the cache. */
void dvmJitUnchainAll()
{
u4* lowAddress = NULL;
u4* highAddress = NULL;
if (gDvmJit.pJitEntryTable != NULL) {
COMPILER_TRACE_CHAINING(LOGD("Jit Runtime: unchaining all"));
dvmLockMutex(&gDvmJit.tableLock);
UNPROTECT_CODE_CACHE(gDvmJit.codeCache, gDvmJit.codeCacheByteUsed);
for (size_t i = 0; i < gDvmJit.jitTableSize; i++) {
if (gDvmJit.pJitEntryTable[i].dPC &&
!gDvmJit.pJitEntryTable[i].u.info.isMethodEntry &&
gDvmJit.pJitEntryTable[i].codeAddress &&
(gDvmJit.pJitEntryTable[i].codeAddress !=
dvmCompilerGetInterpretTemplate())) {
u4* lastAddress;
lastAddress = unchainSingle(&gDvmJit.pJitEntryTable[i]);
if (lowAddress == NULL ||
(u4*)gDvmJit.pJitEntryTable[i].codeAddress <
lowAddress)
lowAddress = lastAddress;
if (lastAddress > highAddress)
highAddress = lastAddress;
}
}
dvmCompilerCacheFlush((long)lowAddress, (long)highAddress, 0);
UPDATE_CODE_CACHE_PATCHES();
PROTECT_CODE_CACHE(gDvmJit.codeCache, gDvmJit.codeCacheByteUsed);
dvmUnlockMutex(&gDvmJit.tableLock);
gDvmJit.translationChains = 0;
}
gDvmJit.hasNewChain = false;
}
typedef struct jitProfileAddrToLine {
u4 lineNum;
u4 bytecodeOffset;
} jitProfileAddrToLine;
/* Callback function to track the bytecode offset/line number relationiship */
static int addrToLineCb (void *cnxt, u4 bytecodeOffset, u4 lineNum)
{
jitProfileAddrToLine *addrToLine = (jitProfileAddrToLine *) cnxt;
/* Best match so far for this offset */
if (addrToLine->bytecodeOffset >= bytecodeOffset) {
addrToLine->lineNum = lineNum;
}
return 0;
}
/* Dumps profile info for a single trace */
static int dumpTraceProfile(JitEntry *p, bool silent, bool reset,
unsigned long sum)
{
int idx;
if (p->codeAddress == NULL) {
if (!silent)
ALOGD("TRACEPROFILE NULL");
return 0;
}
if (p->codeAddress == dvmCompilerGetInterpretTemplate()) {
if (!silent)
ALOGD("TRACEPROFILE INTERPRET_ONLY");
return 0;
}
JitTraceCounter_t count = getProfileCount(p);
if (reset) {
resetProfileCount(p);
}
if (silent) {
return count;
}
JitTraceDescription *desc = getTraceDescriptionPointer(getTraceBase(p));
const Method *method = desc->method;
char *methodDesc = dexProtoCopyMethodDescriptor(&method->prototype);
jitProfileAddrToLine addrToLine = {0, desc->trace[0].info.frag.startOffset};
/*
* We may end up decoding the debug information for the same method
* multiple times, but the tradeoff is we don't need to allocate extra
* space to store the addr/line mapping. Since this is a debugging feature
* and done infrequently so the slower but simpler mechanism should work
* just fine.
*/
dexDecodeDebugInfo(method->clazz->pDvmDex->pDexFile,
dvmGetMethodCode(method),
method->clazz->descriptor,
method->prototype.protoIdx,
method->accessFlags,
addrToLineCb, NULL, &addrToLine);
ALOGD("TRACEPROFILE 0x%08x % 10d %5.2f%% [%#x(+%d), %d] %s%s;%s",
(int) getTraceBase(p),
count,
((float ) count) / sum * 100.0,
desc->trace[0].info.frag.startOffset,
desc->trace[0].info.frag.numInsts,
addrToLine.lineNum,
method->clazz->descriptor, method->name, methodDesc);
free(methodDesc);
/* Find the last fragment (ie runEnd is set) */
for (idx = 0;
desc->trace[idx].isCode && !desc->trace[idx].info.frag.runEnd;
idx++) {
}
/*
* runEnd must comes with a JitCodeDesc frag. If isCode is false it must
* be a meta info field (only used by callsite info for now).
*/
if (!desc->trace[idx].isCode) {
const Method *method = (const Method *)
desc->trace[idx+JIT_TRACE_CUR_METHOD-1].info.meta;
char *methodDesc = dexProtoCopyMethodDescriptor(&method->prototype);
/* Print the callee info in the trace */
ALOGD(" -> %s%s;%s", method->clazz->descriptor, method->name,
methodDesc);
}
return count;
}
/* Create a copy of the trace descriptor of an existing compilation */
JitTraceDescription *dvmCopyTraceDescriptor(const u2 *pc,
const JitEntry *knownEntry)
{
const JitEntry *jitEntry = knownEntry ? knownEntry
: dvmJitFindEntry(pc, false);
if ((jitEntry == NULL) || (jitEntry->codeAddress == 0))
return NULL;
JitTraceDescription *desc =
getTraceDescriptionPointer(getTraceBase(jitEntry));
/* Now make a copy and return */
int descSize = getTraceDescriptionSize(desc);
JitTraceDescription *newCopy = (JitTraceDescription *) malloc(descSize);
memcpy(newCopy, desc, descSize);
return newCopy;
}
/* qsort callback function */
static int sortTraceProfileCount(const void *entry1, const void *entry2)
{
const JitEntry *jitEntry1 = (const JitEntry *)entry1;
const JitEntry *jitEntry2 = (const JitEntry *)entry2;
JitTraceCounter_t count1 = getProfileCount(jitEntry1);
JitTraceCounter_t count2 = getProfileCount(jitEntry2);
return (count1 == count2) ? 0 : ((count1 > count2) ? -1 : 1);
}
/* Sort the trace profile counts and dump them */
void dvmCompilerSortAndPrintTraceProfiles()
{
JitEntry *sortedEntries;
int numTraces = 0;
unsigned long sum = 0;
unsigned int i;
/* Make sure that the table is not changing */
dvmLockMutex(&gDvmJit.tableLock);
/* Sort the entries by descending order */
sortedEntries = (JitEntry *)malloc(sizeof(JitEntry) * gDvmJit.jitTableSize);
if (sortedEntries == NULL)
goto done;
memcpy(sortedEntries, gDvmJit.pJitEntryTable,
sizeof(JitEntry) * gDvmJit.jitTableSize);
qsort(sortedEntries, gDvmJit.jitTableSize, sizeof(JitEntry),
sortTraceProfileCount);
/* Analyze the sorted entries */
for (i=0; i < gDvmJit.jitTableSize; i++) {
if (sortedEntries[i].dPC != 0) {
sum += dumpTraceProfile(&sortedEntries[i],
true /* silent */,
false /* reset */,
0);
numTraces++;
}
}
if (numTraces == 0)
numTraces = 1;
if (sum == 0) {
sum = 1;
}
ALOGD("JIT: Average execution count -> %d",(int)(sum / numTraces));
/* Dump the sorted entries. The count of each trace will be reset to 0. */
for (i=0; i < gDvmJit.jitTableSize; i++) {
if (sortedEntries[i].dPC != 0) {
dumpTraceProfile(&sortedEntries[i],
false /* silent */,
true /* reset */,
sum);
}
}
for (i=0; i < gDvmJit.jitTableSize && i < 10; i++) {
/* Stip interpreter stubs */
if (sortedEntries[i].codeAddress == dvmCompilerGetInterpretTemplate()) {
continue;
}
JitTraceDescription* desc =
dvmCopyTraceDescriptor(NULL, &sortedEntries[i]);
if (desc) {
dvmCompilerWorkEnqueue(sortedEntries[i].dPC,
kWorkOrderTraceDebug, desc);
}
}
free(sortedEntries);
done:
dvmUnlockMutex(&gDvmJit.tableLock);
return;
}
static void findClassPointersSingleTrace(char *base, void (*callback)(void *))
{
unsigned int chainTypeIdx, chainIdx;
ChainCellCounts *pChainCellCounts = getChainCellCountsPointer(base);
int cellSize = getChainCellSize(pChainCellCounts);
/* Scan the chaining cells */
if (cellSize) {
/* Locate the beginning of the chain cell region */
u4 *pChainCells = ((u4 *) pChainCellCounts) - cellSize -
pChainCellCounts->u.count[kChainingCellGap];
/* The cells are sorted in order - walk through them */
for (chainTypeIdx = 0; chainTypeIdx < kChainingCellGap;
chainTypeIdx++) {
if (chainTypeIdx != kChainingCellInvokePredicted) {
/* In 32-bit words */
pChainCells += (CHAIN_CELL_NORMAL_SIZE >> 2) *
pChainCellCounts->u.count[chainTypeIdx];
continue;
}
for (chainIdx = 0;
chainIdx < pChainCellCounts->u.count[chainTypeIdx];
chainIdx++) {
PredictedChainingCell *cell =
(PredictedChainingCell *) pChainCells;
/*
* Report the cell if it contains a sane class
* pointer.
*/
if (cell->clazz != NULL &&
cell->clazz !=
(ClassObject *) PREDICTED_CHAIN_FAKE_CLAZZ) {
callback(&cell->clazz);
}
pChainCells += CHAIN_CELL_PREDICTED_SIZE >> 2;
}
}
}
/* Scan the class pointer pool */
JitTraceDescription *desc = getTraceDescriptionPointer(base);
int descSize = getTraceDescriptionSize(desc);
int *classPointerP = (int *) ((char *) desc + descSize);
int numClassPointers = *classPointerP++;
for (; numClassPointers; numClassPointers--, classPointerP++) {
callback(classPointerP);
}
}
/*
* Scan class pointers in each translation and pass its address to the callback
* function. Currently such a pointers can be found in the pointer pool and the
* clazz field in the predicted chaining cells.
*/
void dvmJitScanAllClassPointers(void (*callback)(void *))
{
UNPROTECT_CODE_CACHE(gDvmJit.codeCache, gDvmJit.codeCacheByteUsed);
/* Handle the inflight compilation first */
if (gDvmJit.inflightBaseAddr)
findClassPointersSingleTrace((char *) gDvmJit.inflightBaseAddr,
callback);
if (gDvmJit.pJitEntryTable != NULL) {
unsigned int traceIdx;
dvmLockMutex(&gDvmJit.tableLock);
for (traceIdx = 0; traceIdx < gDvmJit.jitTableSize; traceIdx++) {
const JitEntry *entry = &gDvmJit.pJitEntryTable[traceIdx];
if (entry->dPC &&
!entry->u.info.isMethodEntry &&
entry->codeAddress &&
(entry->codeAddress != dvmCompilerGetInterpretTemplate())) {
char *base = getTraceBase(entry);
findClassPointersSingleTrace(base, callback);
}
}
dvmUnlockMutex(&gDvmJit.tableLock);
}
UPDATE_CODE_CACHE_PATCHES();
PROTECT_CODE_CACHE(gDvmJit.codeCache, gDvmJit.codeCacheByteUsed);
}
/*
* Provide the final touch on the class object pointer pool to install the
* actual pointers. The thread has to be in the running state.
*/
void dvmJitInstallClassObjectPointers(CompilationUnit *cUnit, char *codeAddress)
{
char *base = codeAddress - cUnit->headerSize -
(cUnit->instructionSet == DALVIK_JIT_ARM ? 0 : 1);
/* Scan the class pointer pool */
JitTraceDescription *desc = getTraceDescriptionPointer(base);
int descSize = getTraceDescriptionSize(desc);
intptr_t *classPointerP = (int *) ((char *) desc + descSize);
int numClassPointers = *(int *)classPointerP++;
intptr_t *startClassPointerP = classPointerP;
/*
* Change the thread state to VM_RUNNING so that GC won't be happening
* when the assembler looks up the class pointers. May suspend the current
* thread if there is a pending request before the state is actually
* changed to RUNNING.
*/
dvmChangeStatus(gDvmJit.compilerThread, THREAD_RUNNING);
/*
* Unprotecting the code cache will need to acquire the code cache
* protection lock first. Doing so after the state change may increase the
* time spent in the RUNNING state (which may delay the next GC request
* should there be contention on codeCacheProtectionLock). In practice
* this is probably not going to happen often since a GC is just served.
* More importantly, acquiring the lock before the state change will
* cause deadlock (b/4192964).
*/
UNPROTECT_CODE_CACHE(startClassPointerP,
numClassPointers * sizeof(intptr_t));
#if defined(WITH_JIT_TUNING)
u8 startTime = dvmGetRelativeTimeUsec();
#endif
for (;numClassPointers; numClassPointers--) {
CallsiteInfo *callsiteInfo = (CallsiteInfo *) *classPointerP;
ClassObject *clazz = dvmFindClassNoInit(
callsiteInfo->classDescriptor, callsiteInfo->classLoader);
assert(!strcmp(clazz->descriptor, callsiteInfo->classDescriptor));
*classPointerP++ = (intptr_t) clazz;
}
/*
* Register the base address so that if GC kicks in after the thread state
* has been changed to VMWAIT and before the compiled code is registered
* in the JIT table, its content can be patched if class objects are
* moved.
*/
gDvmJit.inflightBaseAddr = base;
#if defined(WITH_JIT_TUNING)
u8 blockTime = dvmGetRelativeTimeUsec() - startTime;
gDvmJit.compilerThreadBlockGCTime += blockTime;
if (blockTime > gDvmJit.maxCompilerThreadBlockGCTime)
gDvmJit.maxCompilerThreadBlockGCTime = blockTime;
gDvmJit.numCompilerThreadBlockGC++;
#endif
UPDATE_CODE_CACHE_PATCHES();
PROTECT_CODE_CACHE(startClassPointerP, numClassPointers * sizeof(intptr_t));
/* Change the thread state back to VMWAIT */
dvmChangeStatus(gDvmJit.compilerThread, THREAD_VMWAIT);
}
#if defined(WITH_SELF_VERIFICATION)
/*
* The following are used to keep compiled loads and stores from modifying
* memory during self verification mode.
*
* Stores do not modify memory. Instead, the address and value pair are stored
* into heapSpace. Addresses within heapSpace are unique. For accesses smaller
* than a word, the word containing the address is loaded first before being
* updated.
*
* Loads check heapSpace first and return data from there if an entry exists.
* Otherwise, data is loaded from memory as usual.
*/
/* Used to specify sizes of memory operations */
enum {
kSVByte,
kSVSignedByte,
kSVHalfword,
kSVSignedHalfword,
kSVWord,
kSVDoubleword,
kSVVariable,
};
/* Load the value of a decoded register from the stack */
static int selfVerificationMemRegLoad(int* sp, int reg)
{
return *(sp + reg);
}
/* Load the value of a decoded doubleword register from the stack */
static s8 selfVerificationMemRegLoadDouble(int* sp, int reg)
{
return *((s8*)(sp + reg));
}
/* Store the value of a decoded register out to the stack */
static void selfVerificationMemRegStore(int* sp, int data, int reg)
{
*(sp + reg) = data;
}
/* Store the value of a decoded doubleword register out to the stack */
static void selfVerificationMemRegStoreDouble(int* sp, s8 data, int reg)
{
*((s8*)(sp + reg)) = data;
}
/*
* Load the specified size of data from the specified address, checking
* heapSpace first if Self Verification mode wrote to it previously, and
* falling back to actual memory otherwise.
*/
static int selfVerificationLoad(int addr, int size)
{
Thread *self = dvmThreadSelf();
ShadowSpace *shadowSpace = self->shadowSpace;
ShadowHeap *heapSpacePtr;
int data;
int maskedAddr = addr & 0xFFFFFFFC;
int alignment = addr & 0x3;
for (heapSpacePtr = shadowSpace->heapSpace;
heapSpacePtr != shadowSpace->heapSpaceTail; heapSpacePtr++) {
if (heapSpacePtr->addr == maskedAddr) {
addr = ((unsigned int) &(heapSpacePtr->data)) | alignment;
break;
}
}
switch (size) {
case kSVByte:
data = *((u1*) addr);
break;
case kSVSignedByte:
data = *((s1*) addr);
break;
case kSVHalfword:
data = *((u2*) addr);
break;
case kSVSignedHalfword:
data = *((s2*) addr);
break;
case kSVWord:
data = *((u4*) addr);
break;
default:
ALOGE("*** ERROR: BAD SIZE IN selfVerificationLoad: %d", size);
data = 0;
dvmAbort();
}
//ALOGD("*** HEAP LOAD: Addr: %#x Data: %#x Size: %d", addr, data, size);
return data;
}
/* Like selfVerificationLoad, but specifically for doublewords */
static s8 selfVerificationLoadDoubleword(int addr)
{
Thread *self = dvmThreadSelf();
ShadowSpace* shadowSpace = self->shadowSpace;
ShadowHeap* heapSpacePtr;
int addr2 = addr+4;
unsigned int data = *((unsigned int*) addr);
unsigned int data2 = *((unsigned int*) addr2);
for (heapSpacePtr = shadowSpace->heapSpace;
heapSpacePtr != shadowSpace->heapSpaceTail; heapSpacePtr++) {
if (heapSpacePtr->addr == addr) {
data = heapSpacePtr->data;
} else if (heapSpacePtr->addr == addr2) {
data2 = heapSpacePtr->data;
}
}
//ALOGD("*** HEAP LOAD DOUBLEWORD: Addr: %#x Data: %#x Data2: %#x",
// addr, data, data2);
return (((s8) data2) << 32) | data;
}
/*
* Handles a store of a specified size of data to a specified address.
* This gets logged as an addr/data pair in heapSpace instead of modifying
* memory. Addresses in heapSpace are unique, and accesses smaller than a
* word pull the entire word from memory first before updating.
*/
static void selfVerificationStore(int addr, int data, int size)
{
Thread *self = dvmThreadSelf();
ShadowSpace *shadowSpace = self->shadowSpace;
ShadowHeap *heapSpacePtr;
int maskedAddr = addr & 0xFFFFFFFC;
int alignment = addr & 0x3;
//ALOGD("*** HEAP STORE: Addr: %#x Data: %#x Size: %d", addr, data, size);
for (heapSpacePtr = shadowSpace->heapSpace;
heapSpacePtr != shadowSpace->heapSpaceTail; heapSpacePtr++) {
if (heapSpacePtr->addr == maskedAddr) break;
}
if (heapSpacePtr == shadowSpace->heapSpaceTail) {
heapSpacePtr->addr = maskedAddr;
heapSpacePtr->data = *((unsigned int*) maskedAddr);
shadowSpace->heapSpaceTail++;
}
addr = ((unsigned int) &(heapSpacePtr->data)) | alignment;
switch (size) {
case kSVByte:
*((u1*) addr) = data;
break;
case kSVSignedByte:
*((s1*) addr) = data;
break;
case kSVHalfword:
*((u2*) addr) = data;
break;
case kSVSignedHalfword:
*((s2*) addr) = data;
break;
case kSVWord:
*((u4*) addr) = data;
break;
default:
ALOGE("*** ERROR: BAD SIZE IN selfVerificationSave: %d", size);
dvmAbort();
}
}
/* Like selfVerificationStore, but specifically for doublewords */
static void selfVerificationStoreDoubleword(int addr, s8 double_data)
{
Thread *self = dvmThreadSelf();
ShadowSpace *shadowSpace = self->shadowSpace;
ShadowHeap *heapSpacePtr;
int addr2 = addr+4;
int data = double_data;
int data2 = double_data >> 32;
bool store1 = false, store2 = false;
//ALOGD("*** HEAP STORE DOUBLEWORD: Addr: %#x Data: %#x, Data2: %#x",
// addr, data, data2);
for (heapSpacePtr = shadowSpace->heapSpace;
heapSpacePtr != shadowSpace->heapSpaceTail; heapSpacePtr++) {
if (heapSpacePtr->addr == addr) {
heapSpacePtr->data = data;
store1 = true;
} else if (heapSpacePtr->addr == addr2) {
heapSpacePtr->data = data2;
store2 = true;
}
}
if (!store1) {
shadowSpace->heapSpaceTail->addr = addr;
shadowSpace->heapSpaceTail->data = data;
shadowSpace->heapSpaceTail++;
}
if (!store2) {
shadowSpace->heapSpaceTail->addr = addr2;
shadowSpace->heapSpaceTail->data = data2;
shadowSpace->heapSpaceTail++;
}
}
/*
* Decodes the memory instruction at the address specified in the link
* register. All registers (r0-r12,lr) and fp registers (d0-d15) are stored
* consecutively on the stack beginning at the specified stack pointer.
* Calls the proper Self Verification handler for the memory instruction and
* updates the link register to point past the decoded memory instruction.
*/
void dvmSelfVerificationMemOpDecode(int lr, int* sp)
{
enum {
kMemOpLdrPcRel = 0x09, // ldr(3) [01001] rd[10..8] imm_8[7..0]
kMemOpRRR = 0x0A, // Full opcode is 7 bits
kMemOp2Single = 0x0A, // Used for Vstrs and Vldrs
kMemOpRRR2 = 0x0B, // Full opcode is 7 bits
kMemOp2Double = 0x0B, // Used for Vstrd and Vldrd
kMemOpStrRRI5 = 0x0C, // str(1) [01100] imm_5[10..6] rn[5..3] rd[2..0]
kMemOpLdrRRI5 = 0x0D, // ldr(1) [01101] imm_5[10..6] rn[5..3] rd[2..0]
kMemOpStrbRRI5 = 0x0E, // strb(1) [01110] imm_5[10..6] rn[5..3] rd[2..0]
kMemOpLdrbRRI5 = 0x0F, // ldrb(1) [01111] imm_5[10..6] rn[5..3] rd[2..0]
kMemOpStrhRRI5 = 0x10, // strh(1) [10000] imm_5[10..6] rn[5..3] rd[2..0]
kMemOpLdrhRRI5 = 0x11, // ldrh(1) [10001] imm_5[10..6] rn[5..3] rd[2..0]
kMemOpLdrSpRel = 0x13, // ldr(4) [10011] rd[10..8] imm_8[7..0]
kMemOpStmia = 0x18, // stmia [11000] rn[10..8] reglist [7..0]
kMemOpLdmia = 0x19, // ldmia [11001] rn[10..8] reglist [7..0]
kMemOpStrRRR = 0x28, // str(2) [0101000] rm[8..6] rn[5..3] rd[2..0]
kMemOpStrhRRR = 0x29, // strh(2) [0101001] rm[8..6] rn[5..3] rd[2..0]
kMemOpStrbRRR = 0x2A, // strb(2) [0101010] rm[8..6] rn[5..3] rd[2..0]
kMemOpLdrsbRRR = 0x2B, // ldrsb [0101011] rm[8..6] rn[5..3] rd[2..0]
kMemOpLdrRRR = 0x2C, // ldr(2) [0101100] rm[8..6] rn[5..3] rd[2..0]
kMemOpLdrhRRR = 0x2D, // ldrh(2) [0101101] rm[8..6] rn[5..3] rd[2..0]
kMemOpLdrbRRR = 0x2E, // ldrb(2) [0101110] rm[8..6] rn[5..3] rd[2..0]
kMemOpLdrshRRR = 0x2F, // ldrsh [0101111] rm[8..6] rn[5..3] rd[2..0]
kMemOp2Stmia = 0xE88, // stmia [111010001000[ rn[19..16] mask[15..0]
kMemOp2Ldmia = 0xE89, // ldmia [111010001001[ rn[19..16] mask[15..0]
kMemOp2Stmia2 = 0xE8A, // stmia [111010001010[ rn[19..16] mask[15..0]
kMemOp2Ldmia2 = 0xE8B, // ldmia [111010001011[ rn[19..16] mask[15..0]
kMemOp2Vstr = 0xED8, // Used for Vstrs and Vstrd
kMemOp2Vldr = 0xED9, // Used for Vldrs and Vldrd
kMemOp2Vstr2 = 0xEDC, // Used for Vstrs and Vstrd
kMemOp2Vldr2 = 0xEDD, // Used for Vstrs and Vstrd
kMemOp2StrbRRR = 0xF80, /* str rt,[rn,rm,LSL #imm] [111110000000]
rn[19-16] rt[15-12] [000000] imm[5-4] rm[3-0] */
kMemOp2LdrbRRR = 0xF81, /* ldrb rt,[rn,rm,LSL #imm] [111110000001]
rn[19-16] rt[15-12] [000000] imm[5-4] rm[3-0] */
kMemOp2StrhRRR = 0xF82, /* str rt,[rn,rm,LSL #imm] [111110000010]
rn[19-16] rt[15-12] [000000] imm[5-4] rm[3-0] */
kMemOp2LdrhRRR = 0xF83, /* ldrh rt,[rn,rm,LSL #imm] [111110000011]
rn[19-16] rt[15-12] [000000] imm[5-4] rm[3-0] */
kMemOp2StrRRR = 0xF84, /* str rt,[rn,rm,LSL #imm] [111110000100]
rn[19-16] rt[15-12] [000000] imm[5-4] rm[3-0] */
kMemOp2LdrRRR = 0xF85, /* ldr rt,[rn,rm,LSL #imm] [111110000101]
rn[19-16] rt[15-12] [000000] imm[5-4] rm[3-0] */
kMemOp2StrbRRI12 = 0xF88, /* strb rt,[rn,#imm12] [111110001000]
rt[15..12] rn[19..16] imm12[11..0] */
kMemOp2LdrbRRI12 = 0xF89, /* ldrb rt,[rn,#imm12] [111110001001]
rt[15..12] rn[19..16] imm12[11..0] */
kMemOp2StrhRRI12 = 0xF8A, /* strh rt,[rn,#imm12] [111110001010]
rt[15..12] rn[19..16] imm12[11..0] */
kMemOp2LdrhRRI12 = 0xF8B, /* ldrh rt,[rn,#imm12] [111110001011]
rt[15..12] rn[19..16] imm12[11..0] */
kMemOp2StrRRI12 = 0xF8C, /* str(Imm,T3) rd,[rn,#imm12] [111110001100]
rn[19..16] rt[15..12] imm12[11..0] */
kMemOp2LdrRRI12 = 0xF8D, /* ldr(Imm,T3) rd,[rn,#imm12] [111110001101]
rn[19..16] rt[15..12] imm12[11..0] */
kMemOp2LdrsbRRR = 0xF91, /* ldrsb rt,[rn,rm,LSL #imm] [111110010001]
rn[19-16] rt[15-12] [000000] imm[5-4] rm[3-0] */
kMemOp2LdrshRRR = 0xF93, /* ldrsh rt,[rn,rm,LSL #imm] [111110010011]
rn[19-16] rt[15-12] [000000] imm[5-4] rm[3-0] */
kMemOp2LdrsbRRI12 = 0xF99, /* ldrsb rt,[rn,#imm12] [111110011001]
rt[15..12] rn[19..16] imm12[11..0] */
kMemOp2LdrshRRI12 = 0xF9B, /* ldrsh rt,[rn,#imm12] [111110011011]
rt[15..12] rn[19..16] imm12[11..0] */
kMemOp2 = 0xE000, // top 3 bits set indicates Thumb2
};
int addr, offset, data;
long long double_data;
int size = kSVWord;
bool store = false;
unsigned int *lr_masked = (unsigned int *) (lr & 0xFFFFFFFE);
unsigned int insn = *lr_masked;
int old_lr;
old_lr = selfVerificationMemRegLoad(sp, 13);
if ((insn & kMemOp2) == kMemOp2) {
insn = (insn << 16) | (insn >> 16);
//ALOGD("*** THUMB2 - Addr: %#x Insn: %#x", lr, insn);
int opcode12 = (insn >> 20) & 0xFFF;
int opcode4 = (insn >> 8) & 0xF;
int imm2 = (insn >> 4) & 0x3;
int imm8 = insn & 0xFF;
int imm12 = insn & 0xFFF;
int rd = (insn >> 12) & 0xF;
int rm = insn & 0xF;
int rn = (insn >> 16) & 0xF;
int rt = (insn >> 12) & 0xF;
bool wBack = true;
// Update the link register
selfVerificationMemRegStore(sp, old_lr+4, 13);
// Determine whether the mem op is a store or load
switch (opcode12) {
case kMemOp2Stmia:
case kMemOp2Stmia2:
case kMemOp2Vstr:
case kMemOp2Vstr2:
case kMemOp2StrbRRR:
case kMemOp2StrhRRR:
case kMemOp2StrRRR:
case kMemOp2StrbRRI12:
case kMemOp2StrhRRI12:
case kMemOp2StrRRI12:
store = true;
}
// Determine the size of the mem access
switch (opcode12) {
case kMemOp2StrbRRR:
case kMemOp2LdrbRRR:
case kMemOp2StrbRRI12:
case kMemOp2LdrbRRI12:
size = kSVByte;
break;
case kMemOp2LdrsbRRR:
case kMemOp2LdrsbRRI12:
size = kSVSignedByte;
break;
case kMemOp2StrhRRR:
case kMemOp2LdrhRRR:
case kMemOp2StrhRRI12:
case kMemOp2LdrhRRI12:
size = kSVHalfword;
break;
case kMemOp2LdrshRRR:
case kMemOp2LdrshRRI12:
size = kSVSignedHalfword;
break;
case kMemOp2Vstr:
case kMemOp2Vstr2:
case kMemOp2Vldr:
case kMemOp2Vldr2:
if (opcode4 == kMemOp2Double) size = kSVDoubleword;
break;
case kMemOp2Stmia:
case kMemOp2Ldmia:
case kMemOp2Stmia2:
case kMemOp2Ldmia2:
size = kSVVariable;
break;
}
// Load the value of the address
addr = selfVerificationMemRegLoad(sp, rn);
// Figure out the offset
switch (opcode12) {
case kMemOp2Vstr:
case kMemOp2Vstr2:
case kMemOp2Vldr:
case kMemOp2Vldr2:
offset = imm8 << 2;
if (opcode4 == kMemOp2Single) {
rt = rd << 1;
if (insn & 0x400000) rt |= 0x1;
} else if (opcode4 == kMemOp2Double) {
if (insn & 0x400000) rt |= 0x10;
rt = rt << 1;
} else {
ALOGE("*** ERROR: UNRECOGNIZED VECTOR MEM OP: %x", opcode4);
dvmAbort();
}
rt += 14;
break;
case kMemOp2StrbRRR:
case kMemOp2LdrbRRR:
case kMemOp2StrhRRR:
case kMemOp2LdrhRRR:
case kMemOp2StrRRR:
case kMemOp2LdrRRR:
case kMemOp2LdrsbRRR:
case kMemOp2LdrshRRR:
offset = selfVerificationMemRegLoad(sp, rm) << imm2;
break;
case kMemOp2StrbRRI12:
case kMemOp2LdrbRRI12:
case kMemOp2StrhRRI12:
case kMemOp2LdrhRRI12:
case kMemOp2StrRRI12:
case kMemOp2LdrRRI12:
case kMemOp2LdrsbRRI12:
case kMemOp2LdrshRRI12:
offset = imm12;
break;
case kMemOp2Stmia:
case kMemOp2Ldmia:
wBack = false;
case kMemOp2Stmia2:
case kMemOp2Ldmia2:
offset = 0;
break;
default:
ALOGE("*** ERROR: UNRECOGNIZED THUMB2 MEM OP: %x", opcode12);
offset = 0;
dvmAbort();
}
// Handle the decoded mem op accordingly
if (store) {
if (size == kSVVariable) {
ALOGD("*** THUMB2 STMIA CURRENTLY UNUSED (AND UNTESTED)");
int i;
int regList = insn & 0xFFFF;
for (i = 0; i < 16; i++) {
if (regList & 0x1) {
data = selfVerificationMemRegLoad(sp, i);
selfVerificationStore(addr, data, kSVWord);
addr += 4;
}
regList = regList >> 1;
}
if (wBack) selfVerificationMemRegStore(sp, addr, rn);
} else if (size == kSVDoubleword) {
double_data = selfVerificationMemRegLoadDouble(sp, rt);
selfVerificationStoreDoubleword(addr+offset, double_data);
} else {
data = selfVerificationMemRegLoad(sp, rt);
selfVerificationStore(addr+offset, data, size);
}
} else {
if (size == kSVVariable) {
ALOGD("*** THUMB2 LDMIA CURRENTLY UNUSED (AND UNTESTED)");
int i;
int regList = insn & 0xFFFF;
for (i = 0; i < 16; i++) {
if (regList & 0x1) {
data = selfVerificationLoad(addr, kSVWord);
selfVerificationMemRegStore(sp, data, i);
addr += 4;
}
regList = regList >> 1;
}
if (wBack) selfVerificationMemRegStore(sp, addr, rn);
} else if (size == kSVDoubleword) {
double_data = selfVerificationLoadDoubleword(addr+offset);
selfVerificationMemRegStoreDouble(sp, double_data, rt);
} else {
data = selfVerificationLoad(addr+offset, size);
selfVerificationMemRegStore(sp, data, rt);
}
}
} else {
//ALOGD("*** THUMB - Addr: %#x Insn: %#x", lr, insn);
// Update the link register
selfVerificationMemRegStore(sp, old_lr+2, 13);
int opcode5 = (insn >> 11) & 0x1F;
int opcode7 = (insn >> 9) & 0x7F;
int imm = (insn >> 6) & 0x1F;
int rd = (insn >> 8) & 0x7;
int rm = (insn >> 6) & 0x7;
int rn = (insn >> 3) & 0x7;
int rt = insn & 0x7;
// Determine whether the mem op is a store or load
switch (opcode5) {
case kMemOpRRR:
switch (opcode7) {
case kMemOpStrRRR:
case kMemOpStrhRRR:
case kMemOpStrbRRR:
store = true;
}
break;
case kMemOpStrRRI5:
case kMemOpStrbRRI5:
case kMemOpStrhRRI5:
case kMemOpStmia:
store = true;
}
// Determine the size of the mem access
switch (opcode5) {
case kMemOpRRR:
case kMemOpRRR2:
switch (opcode7) {
case kMemOpStrbRRR:
case kMemOpLdrbRRR:
size = kSVByte;
break;
case kMemOpLdrsbRRR:
size = kSVSignedByte;
break;
case kMemOpStrhRRR:
case kMemOpLdrhRRR:
size = kSVHalfword;
break;
case kMemOpLdrshRRR:
size = kSVSignedHalfword;
break;
}
break;
case kMemOpStrbRRI5:
case kMemOpLdrbRRI5:
size = kSVByte;
break;
case kMemOpStrhRRI5:
case kMemOpLdrhRRI5:
size = kSVHalfword;
break;
case kMemOpStmia:
case kMemOpLdmia:
size = kSVVariable;
break;
}
// Load the value of the address
if (opcode5 == kMemOpLdrPcRel)
addr = selfVerificationMemRegLoad(sp, 4);
else if (opcode5 == kMemOpStmia || opcode5 == kMemOpLdmia)
addr = selfVerificationMemRegLoad(sp, rd);
else
addr = selfVerificationMemRegLoad(sp, rn);
// Figure out the offset
switch (opcode5) {
case kMemOpLdrPcRel:
offset = (insn & 0xFF) << 2;
rt = rd;
break;
case kMemOpRRR:
case kMemOpRRR2:
offset = selfVerificationMemRegLoad(sp, rm);
break;
case kMemOpStrRRI5:
case kMemOpLdrRRI5:
offset = imm << 2;
break;
case kMemOpStrhRRI5:
case kMemOpLdrhRRI5:
offset = imm << 1;
break;
case kMemOpStrbRRI5:
case kMemOpLdrbRRI5:
offset = imm;
break;
case kMemOpStmia:
case kMemOpLdmia:
offset = 0;
break;
default:
ALOGE("*** ERROR: UNRECOGNIZED THUMB MEM OP: %x", opcode5);
offset = 0;
dvmAbort();
}
// Handle the decoded mem op accordingly
if (store) {
if (size == kSVVariable) {
int i;
int regList = insn & 0xFF;
for (i = 0; i < 8; i++) {
if (regList & 0x1) {
data = selfVerificationMemRegLoad(sp, i);
selfVerificationStore(addr, data, kSVWord);
addr += 4;
}
regList = regList >> 1;
}
selfVerificationMemRegStore(sp, addr, rd);
} else {
data = selfVerificationMemRegLoad(sp, rt);
selfVerificationStore(addr+offset, data, size);
}
} else {
if (size == kSVVariable) {
bool wBack = true;
int i;
int regList = insn & 0xFF;
for (i = 0; i < 8; i++) {
if (regList & 0x1) {
if (i == rd) wBack = false;
data = selfVerificationLoad(addr, kSVWord);
selfVerificationMemRegStore(sp, data, i);
addr += 4;
}
regList = regList >> 1;
}
if (wBack) selfVerificationMemRegStore(sp, addr, rd);
} else {
data = selfVerificationLoad(addr+offset, size);
selfVerificationMemRegStore(sp, data, rt);
}
}
}
}
#endif