HELLO·Android
系统源代码
IT资讯
技术文章
我的收藏
注册
登录
-
我收藏的文章
创建代码块
我的代码块
我的账号
Jelly Bean MR1
|
4.2.2_r1
下载
查看原文件
收藏
根目录
external
llvm
lib
Transforms
Vectorize
BBVectorize.cpp
//===- BBVectorize.cpp - A Basic-Block Vectorizer -------------------------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file implements a basic-block vectorization pass. The algorithm was // inspired by that used by the Vienna MAP Vectorizor by Franchetti and Kral, // et al. It works by looking for chains of pairable operations and then // pairing them. // //===----------------------------------------------------------------------===// #define BBV_NAME "bb-vectorize" #define DEBUG_TYPE BBV_NAME #include "llvm/Constants.h" #include "llvm/DerivedTypes.h" #include "llvm/Function.h" #include "llvm/Instructions.h" #include "llvm/IntrinsicInst.h" #include "llvm/Intrinsics.h" #include "llvm/LLVMContext.h" #include "llvm/Metadata.h" #include "llvm/Pass.h" #include "llvm/Type.h" #include "llvm/ADT/DenseMap.h" #include "llvm/ADT/DenseSet.h" #include "llvm/ADT/SmallVector.h" #include "llvm/ADT/Statistic.h" #include "llvm/ADT/STLExtras.h" #include "llvm/ADT/StringExtras.h" #include "llvm/Analysis/AliasAnalysis.h" #include "llvm/Analysis/AliasSetTracker.h" #include "llvm/Analysis/ScalarEvolution.h" #include "llvm/Analysis/ScalarEvolutionExpressions.h" #include "llvm/Analysis/ValueTracking.h" #include "llvm/Support/CommandLine.h" #include "llvm/Support/Debug.h" #include "llvm/Support/raw_ostream.h" #include "llvm/Support/ValueHandle.h" #include "llvm/Target/TargetData.h" #include "llvm/Transforms/Utils/Local.h" #include "llvm/Transforms/Vectorize.h" #include
#include
using namespace llvm; static cl::opt
ReqChainDepth("bb-vectorize-req-chain-depth", cl::init(6), cl::Hidden, cl::desc("The required chain depth for vectorization")); static cl::opt
SearchLimit("bb-vectorize-search-limit", cl::init(400), cl::Hidden, cl::desc("The maximum search distance for instruction pairs")); static cl::opt
SplatBreaksChain("bb-vectorize-splat-breaks-chain", cl::init(false), cl::Hidden, cl::desc("Replicating one element to a pair breaks the chain")); static cl::opt
VectorBits("bb-vectorize-vector-bits", cl::init(128), cl::Hidden, cl::desc("The size of the native vector registers")); static cl::opt
MaxIter("bb-vectorize-max-iter", cl::init(0), cl::Hidden, cl::desc("The maximum number of pairing iterations")); static cl::opt
Pow2LenOnly("bb-vectorize-pow2-len-only", cl::init(false), cl::Hidden, cl::desc("Don't try to form non-2^n-length vectors")); static cl::opt
MaxInsts("bb-vectorize-max-instr-per-group", cl::init(500), cl::Hidden, cl::desc("The maximum number of pairable instructions per group")); static cl::opt
MaxCandPairsForCycleCheck("bb-vectorize-max-cycle-check-pairs", cl::init(200), cl::Hidden, cl::desc("The maximum number of candidate pairs with which to use" " a full cycle check")); static cl::opt
NoBools("bb-vectorize-no-bools", cl::init(false), cl::Hidden, cl::desc("Don't try to vectorize boolean (i1) values")); static cl::opt
NoInts("bb-vectorize-no-ints", cl::init(false), cl::Hidden, cl::desc("Don't try to vectorize integer values")); static cl::opt
NoFloats("bb-vectorize-no-floats", cl::init(false), cl::Hidden, cl::desc("Don't try to vectorize floating-point values")); static cl::opt
NoPointers("bb-vectorize-no-pointers", cl::init(false), cl::Hidden, cl::desc("Don't try to vectorize pointer values")); static cl::opt
NoCasts("bb-vectorize-no-casts", cl::init(false), cl::Hidden, cl::desc("Don't try to vectorize casting (conversion) operations")); static cl::opt
NoMath("bb-vectorize-no-math", cl::init(false), cl::Hidden, cl::desc("Don't try to vectorize floating-point math intrinsics")); static cl::opt
NoFMA("bb-vectorize-no-fma", cl::init(false), cl::Hidden, cl::desc("Don't try to vectorize the fused-multiply-add intrinsic")); static cl::opt
NoSelect("bb-vectorize-no-select", cl::init(false), cl::Hidden, cl::desc("Don't try to vectorize select instructions")); static cl::opt
NoCmp("bb-vectorize-no-cmp", cl::init(false), cl::Hidden, cl::desc("Don't try to vectorize comparison instructions")); static cl::opt
NoGEP("bb-vectorize-no-gep", cl::init(false), cl::Hidden, cl::desc("Don't try to vectorize getelementptr instructions")); static cl::opt
NoMemOps("bb-vectorize-no-mem-ops", cl::init(false), cl::Hidden, cl::desc("Don't try to vectorize loads and stores")); static cl::opt
AlignedOnly("bb-vectorize-aligned-only", cl::init(false), cl::Hidden, cl::desc("Only generate aligned loads and stores")); static cl::opt
NoMemOpBoost("bb-vectorize-no-mem-op-boost", cl::init(false), cl::Hidden, cl::desc("Don't boost the chain-depth contribution of loads and stores")); static cl::opt
FastDep("bb-vectorize-fast-dep", cl::init(false), cl::Hidden, cl::desc("Use a fast instruction dependency analysis")); #ifndef NDEBUG static cl::opt
DebugInstructionExamination("bb-vectorize-debug-instruction-examination", cl::init(false), cl::Hidden, cl::desc("When debugging is enabled, output information on the" " instruction-examination process")); static cl::opt
DebugCandidateSelection("bb-vectorize-debug-candidate-selection", cl::init(false), cl::Hidden, cl::desc("When debugging is enabled, output information on the" " candidate-selection process")); static cl::opt
DebugPairSelection("bb-vectorize-debug-pair-selection", cl::init(false), cl::Hidden, cl::desc("When debugging is enabled, output information on the" " pair-selection process")); static cl::opt
DebugCycleCheck("bb-vectorize-debug-cycle-check", cl::init(false), cl::Hidden, cl::desc("When debugging is enabled, output information on the" " cycle-checking process")); #endif STATISTIC(NumFusedOps, "Number of operations fused by bb-vectorize"); namespace { struct BBVectorize : public BasicBlockPass { static char ID; // Pass identification, replacement for typeid const VectorizeConfig Config; BBVectorize(const VectorizeConfig &C = VectorizeConfig()) : BasicBlockPass(ID), Config(C) { initializeBBVectorizePass(*PassRegistry::getPassRegistry()); } BBVectorize(Pass *P, const VectorizeConfig &C) : BasicBlockPass(ID), Config(C) { AA = &P->getAnalysis
(); SE = &P->getAnalysis
(); TD = P->getAnalysisIfAvailable
(); } typedef std::pair
ValuePair; typedef std::pair
ValuePairWithDepth; typedef std::pair
VPPair; // A ValuePair pair typedef std::pair
::iterator, std::multimap
::iterator> VPIteratorPair; typedef std::pair
::iterator, std::multimap
::iterator> VPPIteratorPair; AliasAnalysis *AA; ScalarEvolution *SE; TargetData *TD; // FIXME: const correct? bool vectorizePairs(BasicBlock &BB, bool NonPow2Len = false); bool getCandidatePairs(BasicBlock &BB, BasicBlock::iterator &Start, std::multimap
&CandidatePairs, std::vector
&PairableInsts, bool NonPow2Len); void computeConnectedPairs(std::multimap
&CandidatePairs, std::vector
&PairableInsts, std::multimap
&ConnectedPairs); void buildDepMap(BasicBlock &BB, std::multimap
&CandidatePairs, std::vector
&PairableInsts, DenseSet
&PairableInstUsers); void choosePairs(std::multimap
&CandidatePairs, std::vector
&PairableInsts, std::multimap
&ConnectedPairs, DenseSet
&PairableInstUsers, DenseMap
& ChosenPairs); void fuseChosenPairs(BasicBlock &BB, std::vector
&PairableInsts, DenseMap
& ChosenPairs); bool isInstVectorizable(Instruction *I, bool &IsSimpleLoadStore); bool areInstsCompatible(Instruction *I, Instruction *J, bool IsSimpleLoadStore, bool NonPow2Len); bool trackUsesOfI(DenseSet
&Users, AliasSetTracker &WriteSet, Instruction *I, Instruction *J, bool UpdateUsers = true, std::multimap
*LoadMoveSet = 0); void computePairsConnectedTo( std::multimap
&CandidatePairs, std::vector
&PairableInsts, std::multimap
&ConnectedPairs, ValuePair P); bool pairsConflict(ValuePair P, ValuePair Q, DenseSet
&PairableInstUsers, std::multimap
*PairableInstUserMap = 0); bool pairWillFormCycle(ValuePair P, std::multimap
&PairableInstUsers, DenseSet
&CurrentPairs); void pruneTreeFor( std::multimap
&CandidatePairs, std::vector
&PairableInsts, std::multimap
&ConnectedPairs, DenseSet
&PairableInstUsers, std::multimap
&PairableInstUserMap, DenseMap
&ChosenPairs, DenseMap
&Tree, DenseSet
&PrunedTree, ValuePair J, bool UseCycleCheck); void buildInitialTreeFor( std::multimap
&CandidatePairs, std::vector
&PairableInsts, std::multimap
&ConnectedPairs, DenseSet
&PairableInstUsers, DenseMap
&ChosenPairs, DenseMap
&Tree, ValuePair J); void findBestTreeFor( std::multimap
&CandidatePairs, std::vector
&PairableInsts, std::multimap
&ConnectedPairs, DenseSet
&PairableInstUsers, std::multimap
&PairableInstUserMap, DenseMap
&ChosenPairs, DenseSet
&BestTree, size_t &BestMaxDepth, size_t &BestEffSize, VPIteratorPair ChoiceRange, bool UseCycleCheck); Value *getReplacementPointerInput(LLVMContext& Context, Instruction *I, Instruction *J, unsigned o, bool FlipMemInputs); void fillNewShuffleMask(LLVMContext& Context, Instruction *J, unsigned MaskOffset, unsigned NumInElem, unsigned NumInElem1, unsigned IdxOffset, std::vector
&Mask); Value *getReplacementShuffleMask(LLVMContext& Context, Instruction *I, Instruction *J); bool expandIEChain(LLVMContext& Context, Instruction *I, Instruction *J, unsigned o, Value *&LOp, unsigned numElemL, Type *ArgTypeL, Type *ArgTypeR, unsigned IdxOff = 0); Value *getReplacementInput(LLVMContext& Context, Instruction *I, Instruction *J, unsigned o, bool FlipMemInputs); void getReplacementInputsForPair(LLVMContext& Context, Instruction *I, Instruction *J, SmallVector
&ReplacedOperands, bool FlipMemInputs); void replaceOutputsOfPair(LLVMContext& Context, Instruction *I, Instruction *J, Instruction *K, Instruction *&InsertionPt, Instruction *&K1, Instruction *&K2, bool FlipMemInputs); void collectPairLoadMoveSet(BasicBlock &BB, DenseMap
&ChosenPairs, std::multimap
&LoadMoveSet, Instruction *I); void collectLoadMoveSet(BasicBlock &BB, std::vector
&PairableInsts, DenseMap
&ChosenPairs, std::multimap
&LoadMoveSet); void collectPtrInfo(std::vector
&PairableInsts, DenseMap
&ChosenPairs, DenseSet
&LowPtrInsts); bool canMoveUsesOfIAfterJ(BasicBlock &BB, std::multimap
&LoadMoveSet, Instruction *I, Instruction *J); void moveUsesOfIAfterJ(BasicBlock &BB, std::multimap
&LoadMoveSet, Instruction *&InsertionPt, Instruction *I, Instruction *J); void combineMetadata(Instruction *K, const Instruction *J); bool vectorizeBB(BasicBlock &BB) { bool changed = false; // Iterate a sufficient number of times to merge types of size 1 bit, // then 2 bits, then 4, etc. up to half of the target vector width of the // target vector register. unsigned n = 1; for (unsigned v = 2; v <= Config.VectorBits && (!Config.MaxIter || n <= Config.MaxIter); v *= 2, ++n) { DEBUG(dbgs() << "BBV: fusing loop #" << n << " for " << BB.getName() << " in " << BB.getParent()->getName() << "...\n"); if (vectorizePairs(BB)) changed = true; else break; } if (changed && !Pow2LenOnly) { ++n; for (; !Config.MaxIter || n <= Config.MaxIter; ++n) { DEBUG(dbgs() << "BBV: fusing for non-2^n-length vectors loop #: " << n << " for " << BB.getName() << " in " << BB.getParent()->getName() << "...\n"); if (!vectorizePairs(BB, true)) break; } } DEBUG(dbgs() << "BBV: done!\n"); return changed; } virtual bool runOnBasicBlock(BasicBlock &BB) { AA = &getAnalysis
(); SE = &getAnalysis
(); TD = getAnalysisIfAvailable
(); return vectorizeBB(BB); } virtual void getAnalysisUsage(AnalysisUsage &AU) const { BasicBlockPass::getAnalysisUsage(AU); AU.addRequired
(); AU.addRequired
(); AU.addPreserved
(); AU.addPreserved
(); AU.setPreservesCFG(); } static inline VectorType *getVecTypeForPair(Type *ElemTy, Type *Elem2Ty) { assert(ElemTy->getScalarType() == Elem2Ty->getScalarType() && "Cannot form vector from incompatible scalar types"); Type *STy = ElemTy->getScalarType(); unsigned numElem; if (VectorType *VTy = dyn_cast
(ElemTy)) { numElem = VTy->getNumElements(); } else { numElem = 1; } if (VectorType *VTy = dyn_cast
(Elem2Ty)) { numElem += VTy->getNumElements(); } else { numElem += 1; } return VectorType::get(STy, numElem); } static inline void getInstructionTypes(Instruction *I, Type *&T1, Type *&T2) { if (isa
(I)) { // For stores, it is the value type, not the pointer type that matters // because the value is what will come from a vector register. Value *IVal = cast
(I)->getValueOperand(); T1 = IVal->getType(); } else { T1 = I->getType(); } if (I->isCast()) T2 = cast
(I)->getSrcTy(); else T2 = T1; } // Returns the weight associated with the provided value. A chain of // candidate pairs has a length given by the sum of the weights of its // members (one weight per pair; the weight of each member of the pair // is assumed to be the same). This length is then compared to the // chain-length threshold to determine if a given chain is significant // enough to be vectorized. The length is also used in comparing // candidate chains where longer chains are considered to be better. // Note: when this function returns 0, the resulting instructions are // not actually fused. inline size_t getDepthFactor(Value *V) { // InsertElement and ExtractElement have a depth factor of zero. This is // for two reasons: First, they cannot be usefully fused. Second, because // the pass generates a lot of these, they can confuse the simple metric // used to compare the trees in the next iteration. Thus, giving them a // weight of zero allows the pass to essentially ignore them in // subsequent iterations when looking for vectorization opportunities // while still tracking dependency chains that flow through those // instructions. if (isa
(V) || isa
(V)) return 0; // Give a load or store half of the required depth so that load/store // pairs will vectorize. if (!Config.NoMemOpBoost && (isa
(V) || isa
(V))) return Config.ReqChainDepth/2; return 1; } // This determines the relative offset of two loads or stores, returning // true if the offset could be determined to be some constant value. // For example, if OffsetInElmts == 1, then J accesses the memory directly // after I; if OffsetInElmts == -1 then I accesses the memory // directly after J. bool getPairPtrInfo(Instruction *I, Instruction *J, Value *&IPtr, Value *&JPtr, unsigned &IAlignment, unsigned &JAlignment, int64_t &OffsetInElmts) { OffsetInElmts = 0; if (isa
(I)) { IPtr = cast
(I)->getPointerOperand(); JPtr = cast
(J)->getPointerOperand(); IAlignment = cast
(I)->getAlignment(); JAlignment = cast
(J)->getAlignment(); } else { IPtr = cast
(I)->getPointerOperand(); JPtr = cast
(J)->getPointerOperand(); IAlignment = cast
(I)->getAlignment(); JAlignment = cast
(J)->getAlignment(); } const SCEV *IPtrSCEV = SE->getSCEV(IPtr); const SCEV *JPtrSCEV = SE->getSCEV(JPtr); // If this is a trivial offset, then we'll get something like // 1*sizeof(type). With target data, which we need anyway, this will get // constant folded into a number. const SCEV *OffsetSCEV = SE->getMinusSCEV(JPtrSCEV, IPtrSCEV); if (const SCEVConstant *ConstOffSCEV = dyn_cast
(OffsetSCEV)) { ConstantInt *IntOff = ConstOffSCEV->getValue(); int64_t Offset = IntOff->getSExtValue(); Type *VTy = cast
(IPtr->getType())->getElementType(); int64_t VTyTSS = (int64_t) TD->getTypeStoreSize(VTy); Type *VTy2 = cast
(JPtr->getType())->getElementType(); if (VTy != VTy2 && Offset < 0) { int64_t VTy2TSS = (int64_t) TD->getTypeStoreSize(VTy2); OffsetInElmts = Offset/VTy2TSS; return (abs64(Offset) % VTy2TSS) == 0; } OffsetInElmts = Offset/VTyTSS; return (abs64(Offset) % VTyTSS) == 0; } return false; } // Returns true if the provided CallInst represents an intrinsic that can // be vectorized. bool isVectorizableIntrinsic(CallInst* I) { Function *F = I->getCalledFunction(); if (!F) return false; unsigned IID = F->getIntrinsicID(); if (!IID) return false; switch(IID) { default: return false; case Intrinsic::sqrt: case Intrinsic::powi: case Intrinsic::sin: case Intrinsic::cos: case Intrinsic::log: case Intrinsic::log2: case Intrinsic::log10: case Intrinsic::exp: case Intrinsic::exp2: case Intrinsic::pow: return Config.VectorizeMath; case Intrinsic::fma: return Config.VectorizeFMA; } } // Returns true if J is the second element in some pair referenced by // some multimap pair iterator pair. template
bool isSecondInIteratorPair(V J, std::pair< typename std::multimap
::iterator, typename std::multimap
::iterator> PairRange) { for (typename std::multimap
::iterator K = PairRange.first; K != PairRange.second; ++K) if (K->second == J) return true; return false; } }; // This function implements one vectorization iteration on the provided // basic block. It returns true if the block is changed. bool BBVectorize::vectorizePairs(BasicBlock &BB, bool NonPow2Len) { bool ShouldContinue; BasicBlock::iterator Start = BB.getFirstInsertionPt(); std::vector
AllPairableInsts; DenseMap
AllChosenPairs; do { std::vector
PairableInsts; std::multimap
CandidatePairs; ShouldContinue = getCandidatePairs(BB, Start, CandidatePairs, PairableInsts, NonPow2Len); if (PairableInsts.empty()) continue; // Now we have a map of all of the pairable instructions and we need to // select the best possible pairing. A good pairing is one such that the // users of the pair are also paired. This defines a (directed) forest // over the pairs such that two pairs are connected iff the second pair // uses the first. // Note that it only matters that both members of the second pair use some // element of the first pair (to allow for splatting). std::multimap
ConnectedPairs; computeConnectedPairs(CandidatePairs, PairableInsts, ConnectedPairs); if (ConnectedPairs.empty()) continue; // Build the pairable-instruction dependency map DenseSet
PairableInstUsers; buildDepMap(BB, CandidatePairs, PairableInsts, PairableInstUsers); // There is now a graph of the connected pairs. For each variable, pick // the pairing with the largest tree meeting the depth requirement on at // least one branch. Then select all pairings that are part of that tree // and remove them from the list of available pairings and pairable // variables. DenseMap
ChosenPairs; choosePairs(CandidatePairs, PairableInsts, ConnectedPairs, PairableInstUsers, ChosenPairs); if (ChosenPairs.empty()) continue; AllPairableInsts.insert(AllPairableInsts.end(), PairableInsts.begin(), PairableInsts.end()); AllChosenPairs.insert(ChosenPairs.begin(), ChosenPairs.end()); } while (ShouldContinue); if (AllChosenPairs.empty()) return false; NumFusedOps += AllChosenPairs.size(); // A set of pairs has now been selected. It is now necessary to replace the // paired instructions with vector instructions. For this procedure each // operand must be replaced with a vector operand. This vector is formed // by using build_vector on the old operands. The replaced values are then // replaced with a vector_extract on the result. Subsequent optimization // passes should coalesce the build/extract combinations. fuseChosenPairs(BB, AllPairableInsts, AllChosenPairs); // It is important to cleanup here so that future iterations of this // function have less work to do. (void) SimplifyInstructionsInBlock(&BB, TD, AA->getTargetLibraryInfo()); return true; } // This function returns true if the provided instruction is capable of being // fused into a vector instruction. This determination is based only on the // type and other attributes of the instruction. bool BBVectorize::isInstVectorizable(Instruction *I, bool &IsSimpleLoadStore) { IsSimpleLoadStore = false; if (CallInst *C = dyn_cast
(I)) { if (!isVectorizableIntrinsic(C)) return false; } else if (LoadInst *L = dyn_cast
(I)) { // Vectorize simple loads if possbile: IsSimpleLoadStore = L->isSimple(); if (!IsSimpleLoadStore || !Config.VectorizeMemOps) return false; } else if (StoreInst *S = dyn_cast
(I)) { // Vectorize simple stores if possbile: IsSimpleLoadStore = S->isSimple(); if (!IsSimpleLoadStore || !Config.VectorizeMemOps) return false; } else if (CastInst *C = dyn_cast
(I)) { // We can vectorize casts, but not casts of pointer types, etc. if (!Config.VectorizeCasts) return false; Type *SrcTy = C->getSrcTy(); if (!SrcTy->isSingleValueType()) return false; Type *DestTy = C->getDestTy(); if (!DestTy->isSingleValueType()) return false; } else if (isa
(I)) { if (!Config.VectorizeSelect) return false; } else if (isa
(I)) { if (!Config.VectorizeCmp) return false; } else if (GetElementPtrInst *G = dyn_cast
(I)) { if (!Config.VectorizeGEP) return false; // Currently, vector GEPs exist only with one index. if (G->getNumIndices() != 1) return false; } else if (!(I->isBinaryOp() || isa
(I) || isa
(I) || isa
(I))) { return false; } // We can't vectorize memory operations without target data if (TD == 0 && IsSimpleLoadStore) return false; Type *T1, *T2; getInstructionTypes(I, T1, T2); // Not every type can be vectorized... if (!(VectorType::isValidElementType(T1) || T1->isVectorTy()) || !(VectorType::isValidElementType(T2) || T2->isVectorTy())) return false; if (T1->getScalarSizeInBits() == 1 && T2->getScalarSizeInBits() == 1) { if (!Config.VectorizeBools) return false; } else { if (!Config.VectorizeInts && (T1->isIntOrIntVectorTy() || T2->isIntOrIntVectorTy())) return false; } if (!Config.VectorizeFloats && (T1->isFPOrFPVectorTy() || T2->isFPOrFPVectorTy())) return false; // Don't vectorize target-specific types. if (T1->isX86_FP80Ty() || T1->isPPC_FP128Ty() || T1->isX86_MMXTy()) return false; if (T2->isX86_FP80Ty() || T2->isPPC_FP128Ty() || T2->isX86_MMXTy()) return false; if ((!Config.VectorizePointers || TD == 0) && (T1->getScalarType()->isPointerTy() || T2->getScalarType()->isPointerTy())) return false; if (T1->getPrimitiveSizeInBits() >= Config.VectorBits || T2->getPrimitiveSizeInBits() >= Config.VectorBits) return false; return true; } // This function returns true if the two provided instructions are compatible // (meaning that they can be fused into a vector instruction). This assumes // that I has already been determined to be vectorizable and that J is not // in the use tree of I. bool BBVectorize::areInstsCompatible(Instruction *I, Instruction *J, bool IsSimpleLoadStore, bool NonPow2Len) { DEBUG(if (DebugInstructionExamination) dbgs() << "BBV: looking at " << *I << " <-> " << *J << "\n"); // Loads and stores can be merged if they have different alignments, // but are otherwise the same. if (!J->isSameOperationAs(I, Instruction::CompareIgnoringAlignment | (NonPow2Len ? Instruction::CompareUsingScalarTypes : 0))) return false; Type *IT1, *IT2, *JT1, *JT2; getInstructionTypes(I, IT1, IT2); getInstructionTypes(J, JT1, JT2); unsigned MaxTypeBits = std::max( IT1->getPrimitiveSizeInBits() + JT1->getPrimitiveSizeInBits(), IT2->getPrimitiveSizeInBits() + JT2->getPrimitiveSizeInBits()); if (MaxTypeBits > Config.VectorBits) return false; // FIXME: handle addsub-type operations! if (IsSimpleLoadStore) { Value *IPtr, *JPtr; unsigned IAlignment, JAlignment; int64_t OffsetInElmts = 0; if (getPairPtrInfo(I, J, IPtr, JPtr, IAlignment, JAlignment, OffsetInElmts) && abs64(OffsetInElmts) == 1) { if (Config.AlignedOnly) { Type *aTypeI = isa
(I) ? cast
(I)->getValueOperand()->getType() : I->getType(); Type *aTypeJ = isa
(J) ? cast
(J)->getValueOperand()->getType() : J->getType(); // An aligned load or store is possible only if the instruction // with the lower offset has an alignment suitable for the // vector type. unsigned BottomAlignment = IAlignment; if (OffsetInElmts < 0) BottomAlignment = JAlignment; Type *VType = getVecTypeForPair(aTypeI, aTypeJ); unsigned VecAlignment = TD->getPrefTypeAlignment(VType); if (BottomAlignment < VecAlignment) return false; } } else { return false; } } // The powi intrinsic is special because only the first argument is // vectorized, the second arguments must be equal. CallInst *CI = dyn_cast
(I); Function *FI; if (CI && (FI = CI->getCalledFunction()) && FI->getIntrinsicID() == Intrinsic::powi) { Value *A1I = CI->getArgOperand(1), *A1J = cast
(J)->getArgOperand(1); const SCEV *A1ISCEV = SE->getSCEV(A1I), *A1JSCEV = SE->getSCEV(A1J); return (A1ISCEV == A1JSCEV); } return true; } // Figure out whether or not J uses I and update the users and write-set // structures associated with I. Specifically, Users represents the set of // instructions that depend on I. WriteSet represents the set // of memory locations that are dependent on I. If UpdateUsers is true, // and J uses I, then Users is updated to contain J and WriteSet is updated // to contain any memory locations to which J writes. The function returns // true if J uses I. By default, alias analysis is used to determine // whether J reads from memory that overlaps with a location in WriteSet. // If LoadMoveSet is not null, then it is a previously-computed multimap // where the key is the memory-based user instruction and the value is // the instruction to be compared with I. So, if LoadMoveSet is provided, // then the alias analysis is not used. This is necessary because this // function is called during the process of moving instructions during // vectorization and the results of the alias analysis are not stable during // that process. bool BBVectorize::trackUsesOfI(DenseSet
&Users, AliasSetTracker &WriteSet, Instruction *I, Instruction *J, bool UpdateUsers, std::multimap
*LoadMoveSet) { bool UsesI = false; // This instruction may already be marked as a user due, for example, to // being a member of a selected pair. if (Users.count(J)) UsesI = true; if (!UsesI) for (User::op_iterator JU = J->op_begin(), JE = J->op_end(); JU != JE; ++JU) { Value *V = *JU; if (I == V || Users.count(V)) { UsesI = true; break; } } if (!UsesI && J->mayReadFromMemory()) { if (LoadMoveSet) { VPIteratorPair JPairRange = LoadMoveSet->equal_range(J); UsesI = isSecondInIteratorPair
(I, JPairRange); } else { for (AliasSetTracker::iterator W = WriteSet.begin(), WE = WriteSet.end(); W != WE; ++W) { if (W->aliasesUnknownInst(J, *AA)) { UsesI = true; break; } } } } if (UsesI && UpdateUsers) { if (J->mayWriteToMemory()) WriteSet.add(J); Users.insert(J); } return UsesI; } // This function iterates over all instruction pairs in the provided // basic block and collects all candidate pairs for vectorization. bool BBVectorize::getCandidatePairs(BasicBlock &BB, BasicBlock::iterator &Start, std::multimap
&CandidatePairs, std::vector
&PairableInsts, bool NonPow2Len) { BasicBlock::iterator E = BB.end(); if (Start == E) return false; bool ShouldContinue = false, IAfterStart = false; for (BasicBlock::iterator I = Start++; I != E; ++I) { if (I == Start) IAfterStart = true; bool IsSimpleLoadStore; if (!isInstVectorizable(I, IsSimpleLoadStore)) continue; // Look for an instruction with which to pair instruction *I... DenseSet
Users; AliasSetTracker WriteSet(*AA); bool JAfterStart = IAfterStart; BasicBlock::iterator J = llvm::next(I); for (unsigned ss = 0; J != E && ss <= Config.SearchLimit; ++J, ++ss) { if (J == Start) JAfterStart = true; // Determine if J uses I, if so, exit the loop. bool UsesI = trackUsesOfI(Users, WriteSet, I, J, !Config.FastDep); if (Config.FastDep) { // Note: For this heuristic to be effective, independent operations // must tend to be intermixed. This is likely to be true from some // kinds of grouped loop unrolling (but not the generic LLVM pass), // but otherwise may require some kind of reordering pass. // When using fast dependency analysis, // stop searching after first use: if (UsesI) break; } else { if (UsesI) continue; } // J does not use I, and comes before the first use of I, so it can be // merged with I if the instructions are compatible. if (!areInstsCompatible(I, J, IsSimpleLoadStore, NonPow2Len)) continue; // J is a candidate for merging with I. if (!PairableInsts.size() || PairableInsts[PairableInsts.size()-1] != I) { PairableInsts.push_back(I); } CandidatePairs.insert(ValuePair(I, J)); // The next call to this function must start after the last instruction // selected during this invocation. if (JAfterStart) { Start = llvm::next(J); IAfterStart = JAfterStart = false; } DEBUG(if (DebugCandidateSelection) dbgs() << "BBV: candidate pair " << *I << " <-> " << *J << "\n"); // If we have already found too many pairs, break here and this function // will be called again starting after the last instruction selected // during this invocation. if (PairableInsts.size() >= Config.MaxInsts) { ShouldContinue = true; break; } } if (ShouldContinue) break; } DEBUG(dbgs() << "BBV: found " << PairableInsts.size() << " instructions with candidate pairs\n"); return ShouldContinue; } // Finds candidate pairs connected to the pair P =
. This means that // it looks for pairs such that both members have an input which is an // output of PI or PJ. void BBVectorize::computePairsConnectedTo( std::multimap
&CandidatePairs, std::vector
&PairableInsts, std::multimap
&ConnectedPairs, ValuePair P) { StoreInst *SI, *SJ; // For each possible pairing for this variable, look at the uses of // the first value... for (Value::use_iterator I = P.first->use_begin(), E = P.first->use_end(); I != E; ++I) { if (isa
(*I)) { // A pair cannot be connected to a load because the load only takes one // operand (the address) and it is a scalar even after vectorization. continue; } else if ((SI = dyn_cast
(*I)) && P.first == SI->getPointerOperand()) { // Similarly, a pair cannot be connected to a store through its // pointer operand. continue; } VPIteratorPair IPairRange = CandidatePairs.equal_range(*I); // For each use of the first variable, look for uses of the second // variable... for (Value::use_iterator J = P.second->use_begin(), E2 = P.second->use_end(); J != E2; ++J) { if ((SJ = dyn_cast
(*J)) && P.second == SJ->getPointerOperand()) continue; VPIteratorPair JPairRange = CandidatePairs.equal_range(*J); // Look for
: if (isSecondInIteratorPair
(*J, IPairRange)) ConnectedPairs.insert(VPPair(P, ValuePair(*I, *J))); // Look for
: if (isSecondInIteratorPair
(*I, JPairRange)) ConnectedPairs.insert(VPPair(P, ValuePair(*J, *I))); } if (Config.SplatBreaksChain) continue; // Look for cases where just the first value in the pair is used by // both members of another pair (splatting). for (Value::use_iterator J = P.first->use_begin(); J != E; ++J) { if ((SJ = dyn_cast
(*J)) && P.first == SJ->getPointerOperand()) continue; if (isSecondInIteratorPair
(*J, IPairRange)) ConnectedPairs.insert(VPPair(P, ValuePair(*I, *J))); } } if (Config.SplatBreaksChain) return; // Look for cases where just the second value in the pair is used by // both members of another pair (splatting). for (Value::use_iterator I = P.second->use_begin(), E = P.second->use_end(); I != E; ++I) { if (isa
(*I)) continue; else if ((SI = dyn_cast
(*I)) && P.second == SI->getPointerOperand()) continue; VPIteratorPair IPairRange = CandidatePairs.equal_range(*I); for (Value::use_iterator J = P.second->use_begin(); J != E; ++J) { if ((SJ = dyn_cast
(*J)) && P.second == SJ->getPointerOperand()) continue; if (isSecondInIteratorPair
(*J, IPairRange)) ConnectedPairs.insert(VPPair(P, ValuePair(*I, *J))); } } } // This function figures out which pairs are connected. Two pairs are // connected if some output of the first pair forms an input to both members // of the second pair. void BBVectorize::computeConnectedPairs( std::multimap
&CandidatePairs, std::vector
&PairableInsts, std::multimap
&ConnectedPairs) { for (std::vector
::iterator PI = PairableInsts.begin(), PE = PairableInsts.end(); PI != PE; ++PI) { VPIteratorPair choiceRange = CandidatePairs.equal_range(*PI); for (std::multimap
::iterator P = choiceRange.first; P != choiceRange.second; ++P) computePairsConnectedTo(CandidatePairs, PairableInsts, ConnectedPairs, *P); } DEBUG(dbgs() << "BBV: found " << ConnectedPairs.size() << " pair connections.\n"); } // This function builds a set of use tuples such that
is in the set // if B is in the use tree of A. If B is in the use tree of A, then B // depends on the output of A. void BBVectorize::buildDepMap( BasicBlock &BB, std::multimap
&CandidatePairs, std::vector
&PairableInsts, DenseSet
&PairableInstUsers) { DenseSet
IsInPair; for (std::multimap
::iterator C = CandidatePairs.begin(), E = CandidatePairs.end(); C != E; ++C) { IsInPair.insert(C->first); IsInPair.insert(C->second); } // Iterate through the basic block, recording all Users of each // pairable instruction. BasicBlock::iterator E = BB.end(); for (BasicBlock::iterator I = BB.getFirstInsertionPt(); I != E; ++I) { if (IsInPair.find(I) == IsInPair.end()) continue; DenseSet
Users; AliasSetTracker WriteSet(*AA); for (BasicBlock::iterator J = llvm::next(I); J != E; ++J) (void) trackUsesOfI(Users, WriteSet, I, J); for (DenseSet
::iterator U = Users.begin(), E = Users.end(); U != E; ++U) PairableInstUsers.insert(ValuePair(I, *U)); } } // Returns true if an input to pair P is an output of pair Q and also an // input of pair Q is an output of pair P. If this is the case, then these // two pairs cannot be simultaneously fused. bool BBVectorize::pairsConflict(ValuePair P, ValuePair Q, DenseSet
&PairableInstUsers, std::multimap
*PairableInstUserMap) { // Two pairs are in conflict if they are mutual Users of eachother. bool QUsesP = PairableInstUsers.count(ValuePair(P.first, Q.first)) || PairableInstUsers.count(ValuePair(P.first, Q.second)) || PairableInstUsers.count(ValuePair(P.second, Q.first)) || PairableInstUsers.count(ValuePair(P.second, Q.second)); bool PUsesQ = PairableInstUsers.count(ValuePair(Q.first, P.first)) || PairableInstUsers.count(ValuePair(Q.first, P.second)) || PairableInstUsers.count(ValuePair(Q.second, P.first)) || PairableInstUsers.count(ValuePair(Q.second, P.second)); if (PairableInstUserMap) { // FIXME: The expensive part of the cycle check is not so much the cycle // check itself but this edge insertion procedure. This needs some // profiling and probably a different data structure (same is true of // most uses of std::multimap). if (PUsesQ) { VPPIteratorPair QPairRange = PairableInstUserMap->equal_range(Q); if (!isSecondInIteratorPair(P, QPairRange)) PairableInstUserMap->insert(VPPair(Q, P)); } if (QUsesP) { VPPIteratorPair PPairRange = PairableInstUserMap->equal_range(P); if (!isSecondInIteratorPair(Q, PPairRange)) PairableInstUserMap->insert(VPPair(P, Q)); } } return (QUsesP && PUsesQ); } // This function walks the use graph of current pairs to see if, starting // from P, the walk returns to P. bool BBVectorize::pairWillFormCycle(ValuePair P, std::multimap
&PairableInstUserMap, DenseSet
&CurrentPairs) { DEBUG(if (DebugCycleCheck) dbgs() << "BBV: starting cycle check for : " << *P.first << " <-> " << *P.second << "\n"); // A lookup table of visisted pairs is kept because the PairableInstUserMap // contains non-direct associations. DenseSet
Visited; SmallVector
Q; // General depth-first post-order traversal: Q.push_back(P); do { ValuePair QTop = Q.pop_back_val(); Visited.insert(QTop); DEBUG(if (DebugCycleCheck) dbgs() << "BBV: cycle check visiting: " << *QTop.first << " <-> " << *QTop.second << "\n"); VPPIteratorPair QPairRange = PairableInstUserMap.equal_range(QTop); for (std::multimap
::iterator C = QPairRange.first; C != QPairRange.second; ++C) { if (C->second == P) { DEBUG(dbgs() << "BBV: rejected to prevent non-trivial cycle formation: " << *C->first.first << " <-> " << *C->first.second << "\n"); return true; } if (CurrentPairs.count(C->second) && !Visited.count(C->second)) Q.push_back(C->second); } } while (!Q.empty()); return false; } // This function builds the initial tree of connected pairs with the // pair J at the root. void BBVectorize::buildInitialTreeFor( std::multimap
&CandidatePairs, std::vector
&PairableInsts, std::multimap
&ConnectedPairs, DenseSet
&PairableInstUsers, DenseMap
&ChosenPairs, DenseMap
&Tree, ValuePair J) { // Each of these pairs is viewed as the root node of a Tree. The Tree // is then walked (depth-first). As this happens, we keep track of // the pairs that compose the Tree and the maximum depth of the Tree. SmallVector
Q; // General depth-first post-order traversal: Q.push_back(ValuePairWithDepth(J, getDepthFactor(J.first))); do { ValuePairWithDepth QTop = Q.back(); // Push each child onto the queue: bool MoreChildren = false; size_t MaxChildDepth = QTop.second; VPPIteratorPair qtRange = ConnectedPairs.equal_range(QTop.first); for (std::multimap
::iterator k = qtRange.first; k != qtRange.second; ++k) { // Make sure that this child pair is still a candidate: bool IsStillCand = false; VPIteratorPair checkRange = CandidatePairs.equal_range(k->second.first); for (std::multimap
::iterator m = checkRange.first; m != checkRange.second; ++m) { if (m->second == k->second.second) { IsStillCand = true; break; } } if (IsStillCand) { DenseMap
::iterator C = Tree.find(k->second); if (C == Tree.end()) { size_t d = getDepthFactor(k->second.first); Q.push_back(ValuePairWithDepth(k->second, QTop.second+d)); MoreChildren = true; } else { MaxChildDepth = std::max(MaxChildDepth, C->second); } } } if (!MoreChildren) { // Record the current pair as part of the Tree: Tree.insert(ValuePairWithDepth(QTop.first, MaxChildDepth)); Q.pop_back(); } } while (!Q.empty()); } // Given some initial tree, prune it by removing conflicting pairs (pairs // that cannot be simultaneously chosen for vectorization). void BBVectorize::pruneTreeFor( std::multimap
&CandidatePairs, std::vector
&PairableInsts, std::multimap
&ConnectedPairs, DenseSet
&PairableInstUsers, std::multimap
&PairableInstUserMap, DenseMap
&ChosenPairs, DenseMap
&Tree, DenseSet
&PrunedTree, ValuePair J, bool UseCycleCheck) { SmallVector
Q; // General depth-first post-order traversal: Q.push_back(ValuePairWithDepth(J, getDepthFactor(J.first))); do { ValuePairWithDepth QTop = Q.pop_back_val(); PrunedTree.insert(QTop.first); // Visit each child, pruning as necessary... DenseMap
BestChildren; VPPIteratorPair QTopRange = ConnectedPairs.equal_range(QTop.first); for (std::multimap
::iterator K = QTopRange.first; K != QTopRange.second; ++K) { DenseMap
::iterator C = Tree.find(K->second); if (C == Tree.end()) continue; // This child is in the Tree, now we need to make sure it is the // best of any conflicting children. There could be multiple // conflicting children, so first, determine if we're keeping // this child, then delete conflicting children as necessary. // It is also necessary to guard against pairing-induced // dependencies. Consider instructions a .. x .. y .. b // such that (a,b) are to be fused and (x,y) are to be fused // but a is an input to x and b is an output from y. This // means that y cannot be moved after b but x must be moved // after b for (a,b) to be fused. In other words, after // fusing (a,b) we have y .. a/b .. x where y is an input // to a/b and x is an output to a/b: x and y can no longer // be legally fused. To prevent this condition, we must // make sure that a child pair added to the Tree is not // both an input and output of an already-selected pair. // Pairing-induced dependencies can also form from more complicated // cycles. The pair vs. pair conflicts are easy to check, and so // that is done explicitly for "fast rejection", and because for // child vs. child conflicts, we may prefer to keep the current // pair in preference to the already-selected child. DenseSet
CurrentPairs; bool CanAdd = true; for (DenseMap
::iterator C2 = BestChildren.begin(), E2 = BestChildren.end(); C2 != E2; ++C2) { if (C2->first.first == C->first.first || C2->first.first == C->first.second || C2->first.second == C->first.first || C2->first.second == C->first.second || pairsConflict(C2->first, C->first, PairableInstUsers, UseCycleCheck ? &PairableInstUserMap : 0)) { if (C2->second >= C->second) { CanAdd = false; break; } CurrentPairs.insert(C2->first); } } if (!CanAdd) continue; // Even worse, this child could conflict with another node already // selected for the Tree. If that is the case, ignore this child. for (DenseSet
::iterator T = PrunedTree.begin(), E2 = PrunedTree.end(); T != E2; ++T) { if (T->first == C->first.first || T->first == C->first.second || T->second == C->first.first || T->second == C->first.second || pairsConflict(*T, C->first, PairableInstUsers, UseCycleCheck ? &PairableInstUserMap : 0)) { CanAdd = false; break; } CurrentPairs.insert(*T); } if (!CanAdd) continue; // And check the queue too... for (SmallVector
::iterator C2 = Q.begin(), E2 = Q.end(); C2 != E2; ++C2) { if (C2->first.first == C->first.first || C2->first.first == C->first.second || C2->first.second == C->first.first || C2->first.second == C->first.second || pairsConflict(C2->first, C->first, PairableInstUsers, UseCycleCheck ? &PairableInstUserMap : 0)) { CanAdd = false; break; } CurrentPairs.insert(C2->first); } if (!CanAdd) continue; // Last but not least, check for a conflict with any of the // already-chosen pairs. for (DenseMap
::iterator C2 = ChosenPairs.begin(), E2 = ChosenPairs.end(); C2 != E2; ++C2) { if (pairsConflict(*C2, C->first, PairableInstUsers, UseCycleCheck ? &PairableInstUserMap : 0)) { CanAdd = false; break; } CurrentPairs.insert(*C2); } if (!CanAdd) continue; // To check for non-trivial cycles formed by the addition of the // current pair we've formed a list of all relevant pairs, now use a // graph walk to check for a cycle. We start from the current pair and // walk the use tree to see if we again reach the current pair. If we // do, then the current pair is rejected. // FIXME: It may be more efficient to use a topological-ordering // algorithm to improve the cycle check. This should be investigated. if (UseCycleCheck && pairWillFormCycle(C->first, PairableInstUserMap, CurrentPairs)) continue; // This child can be added, but we may have chosen it in preference // to an already-selected child. Check for this here, and if a // conflict is found, then remove the previously-selected child // before adding this one in its place. for (DenseMap
::iterator C2 = BestChildren.begin(); C2 != BestChildren.end();) { if (C2->first.first == C->first.first || C2->first.first == C->first.second || C2->first.second == C->first.first || C2->first.second == C->first.second || pairsConflict(C2->first, C->first, PairableInstUsers)) BestChildren.erase(C2++); else ++C2; } BestChildren.insert(ValuePairWithDepth(C->first, C->second)); } for (DenseMap
::iterator C = BestChildren.begin(), E2 = BestChildren.end(); C != E2; ++C) { size_t DepthF = getDepthFactor(C->first.first); Q.push_back(ValuePairWithDepth(C->first, QTop.second+DepthF)); } } while (!Q.empty()); } // This function finds the best tree of mututally-compatible connected // pairs, given the choice of root pairs as an iterator range. void BBVectorize::findBestTreeFor( std::multimap
&CandidatePairs, std::vector
&PairableInsts, std::multimap
&ConnectedPairs, DenseSet
&PairableInstUsers, std::multimap
&PairableInstUserMap, DenseMap
&ChosenPairs, DenseSet
&BestTree, size_t &BestMaxDepth, size_t &BestEffSize, VPIteratorPair ChoiceRange, bool UseCycleCheck) { for (std::multimap
::iterator J = ChoiceRange.first; J != ChoiceRange.second; ++J) { // Before going any further, make sure that this pair does not // conflict with any already-selected pairs (see comment below // near the Tree pruning for more details). DenseSet
ChosenPairSet; bool DoesConflict = false; for (DenseMap
::iterator C = ChosenPairs.begin(), E = ChosenPairs.end(); C != E; ++C) { if (pairsConflict(*C, *J, PairableInstUsers, UseCycleCheck ? &PairableInstUserMap : 0)) { DoesConflict = true; break; } ChosenPairSet.insert(*C); } if (DoesConflict) continue; if (UseCycleCheck && pairWillFormCycle(*J, PairableInstUserMap, ChosenPairSet)) continue; DenseMap
Tree; buildInitialTreeFor(CandidatePairs, PairableInsts, ConnectedPairs, PairableInstUsers, ChosenPairs, Tree, *J); // Because we'll keep the child with the largest depth, the largest // depth is still the same in the unpruned Tree. size_t MaxDepth = Tree.lookup(*J); DEBUG(if (DebugPairSelection) dbgs() << "BBV: found Tree for pair {" << *J->first << " <-> " << *J->second << "} of depth " << MaxDepth << " and size " << Tree.size() << "\n"); // At this point the Tree has been constructed, but, may contain // contradictory children (meaning that different children of // some tree node may be attempting to fuse the same instruction). // So now we walk the tree again, in the case of a conflict, // keep only the child with the largest depth. To break a tie, // favor the first child. DenseSet
PrunedTree; pruneTreeFor(CandidatePairs, PairableInsts, ConnectedPairs, PairableInstUsers, PairableInstUserMap, ChosenPairs, Tree, PrunedTree, *J, UseCycleCheck); size_t EffSize = 0; for (DenseSet
::iterator S = PrunedTree.begin(), E = PrunedTree.end(); S != E; ++S) EffSize += getDepthFactor(S->first); DEBUG(if (DebugPairSelection) dbgs() << "BBV: found pruned Tree for pair {" << *J->first << " <-> " << *J->second << "} of depth " << MaxDepth << " and size " << PrunedTree.size() << " (effective size: " << EffSize << ")\n"); if (MaxDepth >= Config.ReqChainDepth && EffSize > BestEffSize) { BestMaxDepth = MaxDepth; BestEffSize = EffSize; BestTree = PrunedTree; } } } // Given the list of candidate pairs, this function selects those // that will be fused into vector instructions. void BBVectorize::choosePairs( std::multimap
&CandidatePairs, std::vector
&PairableInsts, std::multimap
&ConnectedPairs, DenseSet
&PairableInstUsers, DenseMap
& ChosenPairs) { bool UseCycleCheck = CandidatePairs.size() <= Config.MaxCandPairsForCycleCheck; std::multimap
PairableInstUserMap; for (std::vector
::iterator I = PairableInsts.begin(), E = PairableInsts.end(); I != E; ++I) { // The number of possible pairings for this variable: size_t NumChoices = CandidatePairs.count(*I); if (!NumChoices) continue; VPIteratorPair ChoiceRange = CandidatePairs.equal_range(*I); // The best pair to choose and its tree: size_t BestMaxDepth = 0, BestEffSize = 0; DenseSet
BestTree; findBestTreeFor(CandidatePairs, PairableInsts, ConnectedPairs, PairableInstUsers, PairableInstUserMap, ChosenPairs, BestTree, BestMaxDepth, BestEffSize, ChoiceRange, UseCycleCheck); // A tree has been chosen (or not) at this point. If no tree was // chosen, then this instruction, I, cannot be paired (and is no longer // considered). DEBUG(if (BestTree.size() > 0) dbgs() << "BBV: selected pairs in the best tree for: " << *cast
(*I) << "\n"); for (DenseSet
::iterator S = BestTree.begin(), SE2 = BestTree.end(); S != SE2; ++S) { // Insert the members of this tree into the list of chosen pairs. ChosenPairs.insert(ValuePair(S->first, S->second)); DEBUG(dbgs() << "BBV: selected pair: " << *S->first << " <-> " << *S->second << "\n"); // Remove all candidate pairs that have values in the chosen tree. for (std::multimap
::iterator K = CandidatePairs.begin(); K != CandidatePairs.end();) { if (K->first == S->first || K->second == S->first || K->second == S->second || K->first == S->second) { // Don't remove the actual pair chosen so that it can be used // in subsequent tree selections. if (!(K->first == S->first && K->second == S->second)) CandidatePairs.erase(K++); else ++K; } else { ++K; } } } } DEBUG(dbgs() << "BBV: selected " << ChosenPairs.size() << " pairs.\n"); } std::string getReplacementName(Instruction *I, bool IsInput, unsigned o, unsigned n = 0) { if (!I->hasName()) return ""; return (I->getName() + (IsInput ? ".v.i" : ".v.r") + utostr(o) + (n > 0 ? "." + utostr(n) : "")).str(); } // Returns the value that is to be used as the pointer input to the vector // instruction that fuses I with J. Value *BBVectorize::getReplacementPointerInput(LLVMContext& Context, Instruction *I, Instruction *J, unsigned o, bool FlipMemInputs) { Value *IPtr, *JPtr; unsigned IAlignment, JAlignment; int64_t OffsetInElmts; // Note: the analysis might fail here, that is why FlipMemInputs has // been precomputed (OffsetInElmts must be unused here). (void) getPairPtrInfo(I, J, IPtr, JPtr, IAlignment, JAlignment, OffsetInElmts); // The pointer value is taken to be the one with the lowest offset. Value *VPtr; if (!FlipMemInputs) { VPtr = IPtr; } else { VPtr = JPtr; } Type *ArgTypeI = cast
(IPtr->getType())->getElementType(); Type *ArgTypeJ = cast
(JPtr->getType())->getElementType(); Type *VArgType = getVecTypeForPair(ArgTypeI, ArgTypeJ); Type *VArgPtrType = PointerType::get(VArgType, cast
(IPtr->getType())->getAddressSpace()); return new BitCastInst(VPtr, VArgPtrType, getReplacementName(I, true, o), /* insert before */ FlipMemInputs ? J : I); } void BBVectorize::fillNewShuffleMask(LLVMContext& Context, Instruction *J, unsigned MaskOffset, unsigned NumInElem, unsigned NumInElem1, unsigned IdxOffset, std::vector
&Mask) { unsigned NumElem1 = cast
(J->getType())->getNumElements(); for (unsigned v = 0; v < NumElem1; ++v) { int m = cast
(J)->getMaskValue(v); if (m < 0) { Mask[v+MaskOffset] = UndefValue::get(Type::getInt32Ty(Context)); } else { unsigned mm = m + (int) IdxOffset; if (m >= (int) NumInElem1) mm += (int) NumInElem; Mask[v+MaskOffset] = ConstantInt::get(Type::getInt32Ty(Context), mm); } } } // Returns the value that is to be used as the vector-shuffle mask to the // vector instruction that fuses I with J. Value *BBVectorize::getReplacementShuffleMask(LLVMContext& Context, Instruction *I, Instruction *J) { // This is the shuffle mask. We need to append the second // mask to the first, and the numbers need to be adjusted. Type *ArgTypeI = I->getType(); Type *ArgTypeJ = J->getType(); Type *VArgType = getVecTypeForPair(ArgTypeI, ArgTypeJ); unsigned NumElemI = cast
(ArgTypeI)->getNumElements(); // Get the total number of elements in the fused vector type. // By definition, this must equal the number of elements in // the final mask. unsigned NumElem = cast