/*
* Copyright (C) 2010 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "../InputReader.h"
#include <utils/List.h>
#include <gtest/gtest.h>
#include <math.h>
namespace android {
// An arbitrary time value.
static const nsecs_t ARBITRARY_TIME = 1234;
// Arbitrary display properties.
static const int32_t DISPLAY_ID = 0;
static const int32_t DISPLAY_WIDTH = 480;
static const int32_t DISPLAY_HEIGHT = 800;
// Error tolerance for floating point assertions.
static const float EPSILON = 0.001f;
template<typename T>
static inline T min(T a, T b) {
return a < b ? a : b;
}
static inline float avg(float x, float y) {
return (x + y) / 2;
}
// --- FakePointerController ---
class FakePointerController : public PointerControllerInterface {
bool mHaveBounds;
float mMinX, mMinY, mMaxX, mMaxY;
float mX, mY;
int32_t mButtonState;
protected:
virtual ~FakePointerController() { }
public:
FakePointerController() :
mHaveBounds(false), mMinX(0), mMinY(0), mMaxX(0), mMaxY(0), mX(0), mY(0),
mButtonState(0) {
}
void setBounds(float minX, float minY, float maxX, float maxY) {
mHaveBounds = true;
mMinX = minX;
mMinY = minY;
mMaxX = maxX;
mMaxY = maxY;
}
virtual void setPosition(float x, float y) {
mX = x;
mY = y;
}
virtual void setButtonState(int32_t buttonState) {
mButtonState = buttonState;
}
virtual int32_t getButtonState() const {
return mButtonState;
}
virtual void getPosition(float* outX, float* outY) const {
*outX = mX;
*outY = mY;
}
private:
virtual bool getBounds(float* outMinX, float* outMinY, float* outMaxX, float* outMaxY) const {
*outMinX = mMinX;
*outMinY = mMinY;
*outMaxX = mMaxX;
*outMaxY = mMaxY;
return mHaveBounds;
}
virtual void move(float deltaX, float deltaY) {
mX += deltaX;
if (mX < mMinX) mX = mMinX;
if (mX > mMaxX) mX = mMaxX;
mY += deltaY;
if (mY < mMinY) mY = mMinY;
if (mY > mMaxY) mY = mMaxY;
}
virtual void fade(Transition transition) {
}
virtual void unfade(Transition transition) {
}
virtual void setPresentation(Presentation presentation) {
}
virtual void setSpots(const PointerCoords* spotCoords,
const uint32_t* spotIdToIndex, BitSet32 spotIdBits) {
}
virtual void clearSpots() {
}
};
// --- FakeInputReaderPolicy ---
class FakeInputReaderPolicy : public InputReaderPolicyInterface {
InputReaderConfiguration mConfig;
KeyedVector<int32_t, sp<FakePointerController> > mPointerControllers;
Vector<InputDeviceInfo> mInputDevices;
protected:
virtual ~FakeInputReaderPolicy() { }
public:
FakeInputReaderPolicy() {
}
void setDisplayInfo(int32_t displayId, int32_t width, int32_t height, int32_t orientation) {
// Set the size of both the internal and external display at the same time.
bool isRotated = (orientation == DISPLAY_ORIENTATION_90
|| orientation == DISPLAY_ORIENTATION_270);
DisplayViewport v;
v.displayId = displayId;
v.orientation = orientation;
v.logicalLeft = 0;
v.logicalTop = 0;
v.logicalRight = isRotated ? height : width;
v.logicalBottom = isRotated ? width : height;
v.physicalLeft = 0;
v.physicalTop = 0;
v.physicalRight = isRotated ? height : width;
v.physicalBottom = isRotated ? width : height;
v.deviceWidth = isRotated ? height : width;
v.deviceHeight = isRotated ? width : height;
mConfig.setDisplayInfo(false /*external*/, v);
mConfig.setDisplayInfo(true /*external*/, v);
}
void addExcludedDeviceName(const String8& deviceName) {
mConfig.excludedDeviceNames.push(deviceName);
}
void setPointerController(int32_t deviceId, const sp<FakePointerController>& controller) {
mPointerControllers.add(deviceId, controller);
}
const InputReaderConfiguration* getReaderConfiguration() const {
return &mConfig;
}
const Vector<InputDeviceInfo>& getInputDevices() const {
return mInputDevices;
}
private:
virtual void getReaderConfiguration(InputReaderConfiguration* outConfig) {
*outConfig = mConfig;
}
virtual sp<PointerControllerInterface> obtainPointerController(int32_t deviceId) {
return mPointerControllers.valueFor(deviceId);
}
virtual void notifyInputDevicesChanged(const Vector<InputDeviceInfo>& inputDevices) {
mInputDevices = inputDevices;
}
virtual sp<KeyCharacterMap> getKeyboardLayoutOverlay(const String8& inputDeviceDescriptor) {
return NULL;
}
virtual String8 getDeviceAlias(const InputDeviceIdentifier& identifier) {
return String8::empty();
}
};
// --- FakeInputListener ---
class FakeInputListener : public InputListenerInterface {
private:
List<NotifyConfigurationChangedArgs> mNotifyConfigurationChangedArgsQueue;
List<NotifyDeviceResetArgs> mNotifyDeviceResetArgsQueue;
List<NotifyKeyArgs> mNotifyKeyArgsQueue;
List<NotifyMotionArgs> mNotifyMotionArgsQueue;
List<NotifySwitchArgs> mNotifySwitchArgsQueue;
protected:
virtual ~FakeInputListener() { }
public:
FakeInputListener() {
}
void assertNotifyConfigurationChangedWasCalled(
NotifyConfigurationChangedArgs* outEventArgs = NULL) {
ASSERT_FALSE(mNotifyConfigurationChangedArgsQueue.empty())
<< "Expected notifyConfigurationChanged() to have been called.";
if (outEventArgs) {
*outEventArgs = *mNotifyConfigurationChangedArgsQueue.begin();
}
mNotifyConfigurationChangedArgsQueue.erase(mNotifyConfigurationChangedArgsQueue.begin());
}
void assertNotifyDeviceResetWasCalled(
NotifyDeviceResetArgs* outEventArgs = NULL) {
ASSERT_FALSE(mNotifyDeviceResetArgsQueue.empty())
<< "Expected notifyDeviceReset() to have been called.";
if (outEventArgs) {
*outEventArgs = *mNotifyDeviceResetArgsQueue.begin();
}
mNotifyDeviceResetArgsQueue.erase(mNotifyDeviceResetArgsQueue.begin());
}
void assertNotifyKeyWasCalled(NotifyKeyArgs* outEventArgs = NULL) {
ASSERT_FALSE(mNotifyKeyArgsQueue.empty())
<< "Expected notifyKey() to have been called.";
if (outEventArgs) {
*outEventArgs = *mNotifyKeyArgsQueue.begin();
}
mNotifyKeyArgsQueue.erase(mNotifyKeyArgsQueue.begin());
}
void assertNotifyKeyWasNotCalled() {
ASSERT_TRUE(mNotifyKeyArgsQueue.empty())
<< "Expected notifyKey() to not have been called.";
}
void assertNotifyMotionWasCalled(NotifyMotionArgs* outEventArgs = NULL) {
ASSERT_FALSE(mNotifyMotionArgsQueue.empty())
<< "Expected notifyMotion() to have been called.";
if (outEventArgs) {
*outEventArgs = *mNotifyMotionArgsQueue.begin();
}
mNotifyMotionArgsQueue.erase(mNotifyMotionArgsQueue.begin());
}
void assertNotifyMotionWasNotCalled() {
ASSERT_TRUE(mNotifyMotionArgsQueue.empty())
<< "Expected notifyMotion() to not have been called.";
}
void assertNotifySwitchWasCalled(NotifySwitchArgs* outEventArgs = NULL) {
ASSERT_FALSE(mNotifySwitchArgsQueue.empty())
<< "Expected notifySwitch() to have been called.";
if (outEventArgs) {
*outEventArgs = *mNotifySwitchArgsQueue.begin();
}
mNotifySwitchArgsQueue.erase(mNotifySwitchArgsQueue.begin());
}
private:
virtual void notifyConfigurationChanged(const NotifyConfigurationChangedArgs* args) {
mNotifyConfigurationChangedArgsQueue.push_back(*args);
}
virtual void notifyDeviceReset(const NotifyDeviceResetArgs* args) {
mNotifyDeviceResetArgsQueue.push_back(*args);
}
virtual void notifyKey(const NotifyKeyArgs* args) {
mNotifyKeyArgsQueue.push_back(*args);
}
virtual void notifyMotion(const NotifyMotionArgs* args) {
mNotifyMotionArgsQueue.push_back(*args);
}
virtual void notifySwitch(const NotifySwitchArgs* args) {
mNotifySwitchArgsQueue.push_back(*args);
}
};
// --- FakeEventHub ---
class FakeEventHub : public EventHubInterface {
struct KeyInfo {
int32_t keyCode;
uint32_t flags;
};
struct Device {
InputDeviceIdentifier identifier;
uint32_t classes;
PropertyMap configuration;
KeyedVector<int, RawAbsoluteAxisInfo> absoluteAxes;
KeyedVector<int, bool> relativeAxes;
KeyedVector<int32_t, int32_t> keyCodeStates;
KeyedVector<int32_t, int32_t> scanCodeStates;
KeyedVector<int32_t, int32_t> switchStates;
KeyedVector<int32_t, int32_t> absoluteAxisValue;
KeyedVector<int32_t, KeyInfo> keysByScanCode;
KeyedVector<int32_t, KeyInfo> keysByUsageCode;
KeyedVector<int32_t, bool> leds;
Vector<VirtualKeyDefinition> virtualKeys;
Device(uint32_t classes) :
classes(classes) {
}
};
KeyedVector<int32_t, Device*> mDevices;
Vector<String8> mExcludedDevices;
List<RawEvent> mEvents;
protected:
virtual ~FakeEventHub() {
for (size_t i = 0; i < mDevices.size(); i++) {
delete mDevices.valueAt(i);
}
}
public:
FakeEventHub() { }
void addDevice(int32_t deviceId, const String8& name, uint32_t classes) {
Device* device = new Device(classes);
device->identifier.name = name;
mDevices.add(deviceId, device);
enqueueEvent(ARBITRARY_TIME, deviceId, EventHubInterface::DEVICE_ADDED, 0, 0);
}
void removeDevice(int32_t deviceId) {
delete mDevices.valueFor(deviceId);
mDevices.removeItem(deviceId);
enqueueEvent(ARBITRARY_TIME, deviceId, EventHubInterface::DEVICE_REMOVED, 0, 0);
}
void finishDeviceScan() {
enqueueEvent(ARBITRARY_TIME, 0, EventHubInterface::FINISHED_DEVICE_SCAN, 0, 0);
}
void addConfigurationProperty(int32_t deviceId, const String8& key, const String8& value) {
Device* device = getDevice(deviceId);
device->configuration.addProperty(key, value);
}
void addConfigurationMap(int32_t deviceId, const PropertyMap* configuration) {
Device* device = getDevice(deviceId);
device->configuration.addAll(configuration);
}
void addAbsoluteAxis(int32_t deviceId, int axis,
int32_t minValue, int32_t maxValue, int flat, int fuzz, int resolution = 0) {
Device* device = getDevice(deviceId);
RawAbsoluteAxisInfo info;
info.valid = true;
info.minValue = minValue;
info.maxValue = maxValue;
info.flat = flat;
info.fuzz = fuzz;
info.resolution = resolution;
device->absoluteAxes.add(axis, info);
}
void addRelativeAxis(int32_t deviceId, int32_t axis) {
Device* device = getDevice(deviceId);
device->relativeAxes.add(axis, true);
}
void setKeyCodeState(int32_t deviceId, int32_t keyCode, int32_t state) {
Device* device = getDevice(deviceId);
device->keyCodeStates.replaceValueFor(keyCode, state);
}
void setScanCodeState(int32_t deviceId, int32_t scanCode, int32_t state) {
Device* device = getDevice(deviceId);
device->scanCodeStates.replaceValueFor(scanCode, state);
}
void setSwitchState(int32_t deviceId, int32_t switchCode, int32_t state) {
Device* device = getDevice(deviceId);
device->switchStates.replaceValueFor(switchCode, state);
}
void setAbsoluteAxisValue(int32_t deviceId, int32_t axis, int32_t value) {
Device* device = getDevice(deviceId);
device->absoluteAxisValue.replaceValueFor(axis, value);
}
void addKey(int32_t deviceId, int32_t scanCode, int32_t usageCode,
int32_t keyCode, uint32_t flags) {
Device* device = getDevice(deviceId);
KeyInfo info;
info.keyCode = keyCode;
info.flags = flags;
if (scanCode) {
device->keysByScanCode.add(scanCode, info);
}
if (usageCode) {
device->keysByUsageCode.add(usageCode, info);
}
}
void addLed(int32_t deviceId, int32_t led, bool initialState) {
Device* device = getDevice(deviceId);
device->leds.add(led, initialState);
}
bool getLedState(int32_t deviceId, int32_t led) {
Device* device = getDevice(deviceId);
return device->leds.valueFor(led);
}
Vector<String8>& getExcludedDevices() {
return mExcludedDevices;
}
void addVirtualKeyDefinition(int32_t deviceId, const VirtualKeyDefinition& definition) {
Device* device = getDevice(deviceId);
device->virtualKeys.push(definition);
}
void enqueueEvent(nsecs_t when, int32_t deviceId, int32_t type,
int32_t code, int32_t value) {
RawEvent event;
event.when = when;
event.deviceId = deviceId;
event.type = type;
event.code = code;
event.value = value;
mEvents.push_back(event);
if (type == EV_ABS) {
setAbsoluteAxisValue(deviceId, code, value);
}
}
void assertQueueIsEmpty() {
ASSERT_EQ(size_t(0), mEvents.size())
<< "Expected the event queue to be empty (fully consumed).";
}
private:
Device* getDevice(int32_t deviceId) const {
ssize_t index = mDevices.indexOfKey(deviceId);
return index >= 0 ? mDevices.valueAt(index) : NULL;
}
virtual uint32_t getDeviceClasses(int32_t deviceId) const {
Device* device = getDevice(deviceId);
return device ? device->classes : 0;
}
virtual InputDeviceIdentifier getDeviceIdentifier(int32_t deviceId) const {
Device* device = getDevice(deviceId);
return device ? device->identifier : InputDeviceIdentifier();
}
virtual void getConfiguration(int32_t deviceId, PropertyMap* outConfiguration) const {
Device* device = getDevice(deviceId);
if (device) {
*outConfiguration = device->configuration;
}
}
virtual status_t getAbsoluteAxisInfo(int32_t deviceId, int axis,
RawAbsoluteAxisInfo* outAxisInfo) const {
Device* device = getDevice(deviceId);
if (device) {
ssize_t index = device->absoluteAxes.indexOfKey(axis);
if (index >= 0) {
*outAxisInfo = device->absoluteAxes.valueAt(index);
return OK;
}
}
outAxisInfo->clear();
return -1;
}
virtual bool hasRelativeAxis(int32_t deviceId, int axis) const {
Device* device = getDevice(deviceId);
if (device) {
return device->relativeAxes.indexOfKey(axis) >= 0;
}
return false;
}
virtual bool hasInputProperty(int32_t deviceId, int property) const {
return false;
}
virtual status_t mapKey(int32_t deviceId, int32_t scanCode, int32_t usageCode,
int32_t* outKeycode, uint32_t* outFlags) const {
Device* device = getDevice(deviceId);
if (device) {
const KeyInfo* key = getKey(device, scanCode, usageCode);
if (key) {
if (outKeycode) {
*outKeycode = key->keyCode;
}
if (outFlags) {
*outFlags = key->flags;
}
return OK;
}
}
return NAME_NOT_FOUND;
}
const KeyInfo* getKey(Device* device, int32_t scanCode, int32_t usageCode) const {
if (usageCode) {
ssize_t index = device->keysByUsageCode.indexOfKey(usageCode);
if (index >= 0) {
return &device->keysByUsageCode.valueAt(index);
}
}
if (scanCode) {
ssize_t index = device->keysByScanCode.indexOfKey(scanCode);
if (index >= 0) {
return &device->keysByScanCode.valueAt(index);
}
}
return NULL;
}
virtual status_t mapAxis(int32_t deviceId, int32_t scanCode,
AxisInfo* outAxisInfo) const {
return NAME_NOT_FOUND;
}
virtual void setExcludedDevices(const Vector<String8>& devices) {
mExcludedDevices = devices;
}
virtual size_t getEvents(int timeoutMillis, RawEvent* buffer, size_t bufferSize) {
if (mEvents.empty()) {
return 0;
}
*buffer = *mEvents.begin();
mEvents.erase(mEvents.begin());
return 1;
}
virtual int32_t getScanCodeState(int32_t deviceId, int32_t scanCode) const {
Device* device = getDevice(deviceId);
if (device) {
ssize_t index = device->scanCodeStates.indexOfKey(scanCode);
if (index >= 0) {
return device->scanCodeStates.valueAt(index);
}
}
return AKEY_STATE_UNKNOWN;
}
virtual int32_t getKeyCodeState(int32_t deviceId, int32_t keyCode) const {
Device* device = getDevice(deviceId);
if (device) {
ssize_t index = device->keyCodeStates.indexOfKey(keyCode);
if (index >= 0) {
return device->keyCodeStates.valueAt(index);
}
}
return AKEY_STATE_UNKNOWN;
}
virtual int32_t getSwitchState(int32_t deviceId, int32_t sw) const {
Device* device = getDevice(deviceId);
if (device) {
ssize_t index = device->switchStates.indexOfKey(sw);
if (index >= 0) {
return device->switchStates.valueAt(index);
}
}
return AKEY_STATE_UNKNOWN;
}
virtual status_t getAbsoluteAxisValue(int32_t deviceId, int32_t axis,
int32_t* outValue) const {
Device* device = getDevice(deviceId);
if (device) {
ssize_t index = device->absoluteAxisValue.indexOfKey(axis);
if (index >= 0) {
*outValue = device->absoluteAxisValue.valueAt(index);
return OK;
}
}
*outValue = 0;
return -1;
}
virtual bool markSupportedKeyCodes(int32_t deviceId, size_t numCodes, const int32_t* keyCodes,
uint8_t* outFlags) const {
bool result = false;
Device* device = getDevice(deviceId);
if (device) {
for (size_t i = 0; i < numCodes; i++) {
for (size_t j = 0; j < device->keysByScanCode.size(); j++) {
if (keyCodes[i] == device->keysByScanCode.valueAt(j).keyCode) {
outFlags[i] = 1;
result = true;
}
}
for (size_t j = 0; j < device->keysByUsageCode.size(); j++) {
if (keyCodes[i] == device->keysByUsageCode.valueAt(j).keyCode) {
outFlags[i] = 1;
result = true;
}
}
}
}
return result;
}
virtual bool hasScanCode(int32_t deviceId, int32_t scanCode) const {
Device* device = getDevice(deviceId);
if (device) {
ssize_t index = device->keysByScanCode.indexOfKey(scanCode);
return index >= 0;
}
return false;
}
virtual bool hasLed(int32_t deviceId, int32_t led) const {
Device* device = getDevice(deviceId);
return device && device->leds.indexOfKey(led) >= 0;
}
virtual void setLedState(int32_t deviceId, int32_t led, bool on) {
Device* device = getDevice(deviceId);
if (device) {
ssize_t index = device->leds.indexOfKey(led);
if (index >= 0) {
device->leds.replaceValueAt(led, on);
} else {
ADD_FAILURE()
<< "Attempted to set the state of an LED that the EventHub declared "
"was not present. led=" << led;
}
}
}
virtual void getVirtualKeyDefinitions(int32_t deviceId,
Vector<VirtualKeyDefinition>& outVirtualKeys) const {
outVirtualKeys.clear();
Device* device = getDevice(deviceId);
if (device) {
outVirtualKeys.appendVector(device->virtualKeys);
}
}
virtual sp<KeyCharacterMap> getKeyCharacterMap(int32_t deviceId) const {
return NULL;
}
virtual bool setKeyboardLayoutOverlay(int32_t deviceId, const sp<KeyCharacterMap>& map) {
return false;
}
virtual void vibrate(int32_t deviceId, nsecs_t duration) {
}
virtual void cancelVibrate(int32_t deviceId) {
}
virtual bool isExternal(int32_t deviceId) const {
return false;
}
virtual void dump(String8& dump) {
}
virtual void monitor() {
}
virtual void requestReopenDevices() {
}
virtual void wake() {
}
};
// --- FakeInputReaderContext ---
class FakeInputReaderContext : public InputReaderContext {
sp<EventHubInterface> mEventHub;
sp<InputReaderPolicyInterface> mPolicy;
sp<InputListenerInterface> mListener;
int32_t mGlobalMetaState;
bool mUpdateGlobalMetaStateWasCalled;
int32_t mGeneration;
public:
FakeInputReaderContext(const sp<EventHubInterface>& eventHub,
const sp<InputReaderPolicyInterface>& policy,
const sp<InputListenerInterface>& listener) :
mEventHub(eventHub), mPolicy(policy), mListener(listener),
mGlobalMetaState(0) {
}
virtual ~FakeInputReaderContext() { }
void assertUpdateGlobalMetaStateWasCalled() {
ASSERT_TRUE(mUpdateGlobalMetaStateWasCalled)
<< "Expected updateGlobalMetaState() to have been called.";
mUpdateGlobalMetaStateWasCalled = false;
}
void setGlobalMetaState(int32_t state) {
mGlobalMetaState = state;
}
private:
virtual void updateGlobalMetaState() {
mUpdateGlobalMetaStateWasCalled = true;
}
virtual int32_t getGlobalMetaState() {
return mGlobalMetaState;
}
virtual EventHubInterface* getEventHub() {
return mEventHub.get();
}
virtual InputReaderPolicyInterface* getPolicy() {
return mPolicy.get();
}
virtual InputListenerInterface* getListener() {
return mListener.get();
}
virtual void disableVirtualKeysUntil(nsecs_t time) {
}
virtual bool shouldDropVirtualKey(nsecs_t now,
InputDevice* device, int32_t keyCode, int32_t scanCode) {
return false;
}
virtual void fadePointer() {
}
virtual void requestTimeoutAtTime(nsecs_t when) {
}
virtual int32_t bumpGeneration() {
return ++mGeneration;
}
};
// --- FakeInputMapper ---
class FakeInputMapper : public InputMapper {
uint32_t mSources;
int32_t mKeyboardType;
int32_t mMetaState;
KeyedVector<int32_t, int32_t> mKeyCodeStates;
KeyedVector<int32_t, int32_t> mScanCodeStates;
KeyedVector<int32_t, int32_t> mSwitchStates;
Vector<int32_t> mSupportedKeyCodes;
RawEvent mLastEvent;
bool mConfigureWasCalled;
bool mResetWasCalled;
bool mProcessWasCalled;
public:
FakeInputMapper(InputDevice* device, uint32_t sources) :
InputMapper(device),
mSources(sources), mKeyboardType(AINPUT_KEYBOARD_TYPE_NONE),
mMetaState(0),
mConfigureWasCalled(false), mResetWasCalled(false), mProcessWasCalled(false) {
}
virtual ~FakeInputMapper() { }
void setKeyboardType(int32_t keyboardType) {
mKeyboardType = keyboardType;
}
void setMetaState(int32_t metaState) {
mMetaState = metaState;
}
void assertConfigureWasCalled() {
ASSERT_TRUE(mConfigureWasCalled)
<< "Expected configure() to have been called.";
mConfigureWasCalled = false;
}
void assertResetWasCalled() {
ASSERT_TRUE(mResetWasCalled)
<< "Expected reset() to have been called.";
mResetWasCalled = false;
}
void assertProcessWasCalled(RawEvent* outLastEvent = NULL) {
ASSERT_TRUE(mProcessWasCalled)
<< "Expected process() to have been called.";
if (outLastEvent) {
*outLastEvent = mLastEvent;
}
mProcessWasCalled = false;
}
void setKeyCodeState(int32_t keyCode, int32_t state) {
mKeyCodeStates.replaceValueFor(keyCode, state);
}
void setScanCodeState(int32_t scanCode, int32_t state) {
mScanCodeStates.replaceValueFor(scanCode, state);
}
void setSwitchState(int32_t switchCode, int32_t state) {
mSwitchStates.replaceValueFor(switchCode, state);
}
void addSupportedKeyCode(int32_t keyCode) {
mSupportedKeyCodes.add(keyCode);
}
private:
virtual uint32_t getSources() {
return mSources;
}
virtual void populateDeviceInfo(InputDeviceInfo* deviceInfo) {
InputMapper::populateDeviceInfo(deviceInfo);
if (mKeyboardType != AINPUT_KEYBOARD_TYPE_NONE) {
deviceInfo->setKeyboardType(mKeyboardType);
}
}
virtual void configure(nsecs_t when,
const InputReaderConfiguration* config, uint32_t changes) {
mConfigureWasCalled = true;
}
virtual void reset(nsecs_t when) {
mResetWasCalled = true;
}
virtual void process(const RawEvent* rawEvent) {
mLastEvent = *rawEvent;
mProcessWasCalled = true;
}
virtual int32_t getKeyCodeState(uint32_t sourceMask, int32_t keyCode) {
ssize_t index = mKeyCodeStates.indexOfKey(keyCode);
return index >= 0 ? mKeyCodeStates.valueAt(index) : AKEY_STATE_UNKNOWN;
}
virtual int32_t getScanCodeState(uint32_t sourceMask, int32_t scanCode) {
ssize_t index = mScanCodeStates.indexOfKey(scanCode);
return index >= 0 ? mScanCodeStates.valueAt(index) : AKEY_STATE_UNKNOWN;
}
virtual int32_t getSwitchState(uint32_t sourceMask, int32_t switchCode) {
ssize_t index = mSwitchStates.indexOfKey(switchCode);
return index >= 0 ? mSwitchStates.valueAt(index) : AKEY_STATE_UNKNOWN;
}
virtual bool markSupportedKeyCodes(uint32_t sourceMask, size_t numCodes,
const int32_t* keyCodes, uint8_t* outFlags) {
bool result = false;
for (size_t i = 0; i < numCodes; i++) {
for (size_t j = 0; j < mSupportedKeyCodes.size(); j++) {
if (keyCodes[i] == mSupportedKeyCodes[j]) {
outFlags[i] = 1;
result = true;
}
}
}
return result;
}
virtual int32_t getMetaState() {
return mMetaState;
}
virtual void fadePointer() {
}
};
// --- InstrumentedInputReader ---
class InstrumentedInputReader : public InputReader {
InputDevice* mNextDevice;
public:
InstrumentedInputReader(const sp<EventHubInterface>& eventHub,
const sp<InputReaderPolicyInterface>& policy,
const sp<InputListenerInterface>& listener) :
InputReader(eventHub, policy, listener),
mNextDevice(NULL) {
}
virtual ~InstrumentedInputReader() {
if (mNextDevice) {
delete mNextDevice;
}
}
void setNextDevice(InputDevice* device) {
mNextDevice = device;
}
InputDevice* newDevice(int32_t deviceId, const String8& name, uint32_t classes) {
InputDeviceIdentifier identifier;
identifier.name = name;
int32_t generation = deviceId + 1;
return new InputDevice(&mContext, deviceId, generation, identifier, classes);
}
protected:
virtual InputDevice* createDeviceLocked(int32_t deviceId,
const InputDeviceIdentifier& identifier, uint32_t classes) {
if (mNextDevice) {
InputDevice* device = mNextDevice;
mNextDevice = NULL;
return device;
}
return InputReader::createDeviceLocked(deviceId, identifier, classes);
}
friend class InputReaderTest;
};
// --- InputReaderTest ---
class InputReaderTest : public testing::Test {
protected:
sp<FakeInputListener> mFakeListener;
sp<FakeInputReaderPolicy> mFakePolicy;
sp<FakeEventHub> mFakeEventHub;
sp<InstrumentedInputReader> mReader;
virtual void SetUp() {
mFakeEventHub = new FakeEventHub();
mFakePolicy = new FakeInputReaderPolicy();
mFakeListener = new FakeInputListener();
mReader = new InstrumentedInputReader(mFakeEventHub, mFakePolicy, mFakeListener);
}
virtual void TearDown() {
mReader.clear();
mFakeListener.clear();
mFakePolicy.clear();
mFakeEventHub.clear();
}
void addDevice(int32_t deviceId, const String8& name, uint32_t classes,
const PropertyMap* configuration) {
mFakeEventHub->addDevice(deviceId, name, classes);
if (configuration) {
mFakeEventHub->addConfigurationMap(deviceId, configuration);
}
mFakeEventHub->finishDeviceScan();
mReader->loopOnce();
mReader->loopOnce();
mFakeEventHub->assertQueueIsEmpty();
}
FakeInputMapper* addDeviceWithFakeInputMapper(int32_t deviceId,
const String8& name, uint32_t classes, uint32_t sources,
const PropertyMap* configuration) {
InputDevice* device = mReader->newDevice(deviceId, name, classes);
FakeInputMapper* mapper = new FakeInputMapper(device, sources);
device->addMapper(mapper);
mReader->setNextDevice(device);
addDevice(deviceId, name, classes, configuration);
return mapper;
}
};
TEST_F(InputReaderTest, GetInputDevices) {
ASSERT_NO_FATAL_FAILURE(addDevice(1, String8("keyboard"),
INPUT_DEVICE_CLASS_KEYBOARD, NULL));
ASSERT_NO_FATAL_FAILURE(addDevice(2, String8("ignored"),
0, NULL)); // no classes so device will be ignored
Vector<InputDeviceInfo> inputDevices;
mReader->getInputDevices(inputDevices);
ASSERT_EQ(1U, inputDevices.size());
ASSERT_EQ(1, inputDevices[0].getId());
ASSERT_STREQ("keyboard", inputDevices[0].getIdentifier().name.string());
ASSERT_EQ(AINPUT_KEYBOARD_TYPE_NON_ALPHABETIC, inputDevices[0].getKeyboardType());
ASSERT_EQ(AINPUT_SOURCE_KEYBOARD, inputDevices[0].getSources());
ASSERT_EQ(size_t(0), inputDevices[0].getMotionRanges().size());
// Should also have received a notification describing the new input devices.
inputDevices = mFakePolicy->getInputDevices();
ASSERT_EQ(1U, inputDevices.size());
ASSERT_EQ(1, inputDevices[0].getId());
ASSERT_STREQ("keyboard", inputDevices[0].getIdentifier().name.string());
ASSERT_EQ(AINPUT_KEYBOARD_TYPE_NON_ALPHABETIC, inputDevices[0].getKeyboardType());
ASSERT_EQ(AINPUT_SOURCE_KEYBOARD, inputDevices[0].getSources());
ASSERT_EQ(size_t(0), inputDevices[0].getMotionRanges().size());
}
TEST_F(InputReaderTest, GetKeyCodeState_ForwardsRequestsToMappers) {
FakeInputMapper* mapper = NULL;
ASSERT_NO_FATAL_FAILURE(mapper = addDeviceWithFakeInputMapper(1, String8("fake"),
INPUT_DEVICE_CLASS_KEYBOARD, AINPUT_SOURCE_KEYBOARD, NULL));
mapper->setKeyCodeState(AKEYCODE_A, AKEY_STATE_DOWN);
ASSERT_EQ(AKEY_STATE_UNKNOWN, mReader->getKeyCodeState(0,
AINPUT_SOURCE_ANY, AKEYCODE_A))
<< "Should return unknown when the device id is >= 0 but unknown.";
ASSERT_EQ(AKEY_STATE_UNKNOWN, mReader->getKeyCodeState(1,
AINPUT_SOURCE_TRACKBALL, AKEYCODE_A))
<< "Should return unknown when the device id is valid but the sources are not supported by the device.";
ASSERT_EQ(AKEY_STATE_DOWN, mReader->getKeyCodeState(1,
AINPUT_SOURCE_KEYBOARD | AINPUT_SOURCE_TRACKBALL, AKEYCODE_A))
<< "Should return value provided by mapper when device id is valid and the device supports some of the sources.";
ASSERT_EQ(AKEY_STATE_UNKNOWN, mReader->getKeyCodeState(-1,
AINPUT_SOURCE_TRACKBALL, AKEYCODE_A))
<< "Should return unknown when the device id is < 0 but the sources are not supported by any device.";
ASSERT_EQ(AKEY_STATE_DOWN, mReader->getKeyCodeState(-1,
AINPUT_SOURCE_KEYBOARD | AINPUT_SOURCE_TRACKBALL, AKEYCODE_A))
<< "Should return value provided by mapper when device id is < 0 and one of the devices supports some of the sources.";
}
TEST_F(InputReaderTest, GetScanCodeState_ForwardsRequestsToMappers) {
FakeInputMapper* mapper = NULL;
ASSERT_NO_FATAL_FAILURE(mapper = addDeviceWithFakeInputMapper(1, String8("fake"),
INPUT_DEVICE_CLASS_KEYBOARD, AINPUT_SOURCE_KEYBOARD, NULL));
mapper->setScanCodeState(KEY_A, AKEY_STATE_DOWN);
ASSERT_EQ(AKEY_STATE_UNKNOWN, mReader->getScanCodeState(0,
AINPUT_SOURCE_ANY, KEY_A))
<< "Should return unknown when the device id is >= 0 but unknown.";
ASSERT_EQ(AKEY_STATE_UNKNOWN, mReader->getScanCodeState(1,
AINPUT_SOURCE_TRACKBALL, KEY_A))
<< "Should return unknown when the device id is valid but the sources are not supported by the device.";
ASSERT_EQ(AKEY_STATE_DOWN, mReader->getScanCodeState(1,
AINPUT_SOURCE_KEYBOARD | AINPUT_SOURCE_TRACKBALL, KEY_A))
<< "Should return value provided by mapper when device id is valid and the device supports some of the sources.";
ASSERT_EQ(AKEY_STATE_UNKNOWN, mReader->getScanCodeState(-1,
AINPUT_SOURCE_TRACKBALL, KEY_A))
<< "Should return unknown when the device id is < 0 but the sources are not supported by any device.";
ASSERT_EQ(AKEY_STATE_DOWN, mReader->getScanCodeState(-1,
AINPUT_SOURCE_KEYBOARD | AINPUT_SOURCE_TRACKBALL, KEY_A))
<< "Should return value provided by mapper when device id is < 0 and one of the devices supports some of the sources.";
}
TEST_F(InputReaderTest, GetSwitchState_ForwardsRequestsToMappers) {
FakeInputMapper* mapper = NULL;
ASSERT_NO_FATAL_FAILURE(mapper = addDeviceWithFakeInputMapper(1, String8("fake"),
INPUT_DEVICE_CLASS_KEYBOARD, AINPUT_SOURCE_KEYBOARD, NULL));
mapper->setSwitchState(SW_LID, AKEY_STATE_DOWN);
ASSERT_EQ(AKEY_STATE_UNKNOWN, mReader->getSwitchState(0,
AINPUT_SOURCE_ANY, SW_LID))
<< "Should return unknown when the device id is >= 0 but unknown.";
ASSERT_EQ(AKEY_STATE_UNKNOWN, mReader->getSwitchState(1,
AINPUT_SOURCE_TRACKBALL, SW_LID))
<< "Should return unknown when the device id is valid but the sources are not supported by the device.";
ASSERT_EQ(AKEY_STATE_DOWN, mReader->getSwitchState(1,
AINPUT_SOURCE_KEYBOARD | AINPUT_SOURCE_TRACKBALL, SW_LID))
<< "Should return value provided by mapper when device id is valid and the device supports some of the sources.";
ASSERT_EQ(AKEY_STATE_UNKNOWN, mReader->getSwitchState(-1,
AINPUT_SOURCE_TRACKBALL, SW_LID))
<< "Should return unknown when the device id is < 0 but the sources are not supported by any device.";
ASSERT_EQ(AKEY_STATE_DOWN, mReader->getSwitchState(-1,
AINPUT_SOURCE_KEYBOARD | AINPUT_SOURCE_TRACKBALL, SW_LID))
<< "Should return value provided by mapper when device id is < 0 and one of the devices supports some of the sources.";
}
TEST_F(InputReaderTest, MarkSupportedKeyCodes_ForwardsRequestsToMappers) {
FakeInputMapper* mapper = NULL;
ASSERT_NO_FATAL_FAILURE(mapper = addDeviceWithFakeInputMapper(1, String8("fake"),
INPUT_DEVICE_CLASS_KEYBOARD, AINPUT_SOURCE_KEYBOARD, NULL));
mapper->addSupportedKeyCode(AKEYCODE_A);
mapper->addSupportedKeyCode(AKEYCODE_B);
const int32_t keyCodes[4] = { AKEYCODE_A, AKEYCODE_B, AKEYCODE_1, AKEYCODE_2 };
uint8_t flags[4] = { 0, 0, 0, 1 };
ASSERT_FALSE(mReader->hasKeys(0, AINPUT_SOURCE_ANY, 4, keyCodes, flags))
<< "Should return false when device id is >= 0 but unknown.";
ASSERT_TRUE(!flags[0] && !flags[1] && !flags[2] && !flags[3]);
flags[3] = 1;
ASSERT_FALSE(mReader->hasKeys(1, AINPUT_SOURCE_TRACKBALL, 4, keyCodes, flags))
<< "Should return false when device id is valid but the sources are not supported by the device.";
ASSERT_TRUE(!flags[0] && !flags[1] && !flags[2] && !flags[3]);
flags[3] = 1;
ASSERT_TRUE(mReader->hasKeys(1, AINPUT_SOURCE_KEYBOARD | AINPUT_SOURCE_TRACKBALL, 4, keyCodes, flags))
<< "Should return value provided by mapper when device id is valid and the device supports some of the sources.";
ASSERT_TRUE(flags[0] && flags[1] && !flags[2] && !flags[3]);
flags[3] = 1;
ASSERT_FALSE(mReader->hasKeys(-1, AINPUT_SOURCE_TRACKBALL, 4, keyCodes, flags))
<< "Should return false when the device id is < 0 but the sources are not supported by any device.";
ASSERT_TRUE(!flags[0] && !flags[1] && !flags[2] && !flags[3]);
flags[3] = 1;
ASSERT_TRUE(mReader->hasKeys(-1, AINPUT_SOURCE_KEYBOARD | AINPUT_SOURCE_TRACKBALL, 4, keyCodes, flags))
<< "Should return value provided by mapper when device id is < 0 and one of the devices supports some of the sources.";
ASSERT_TRUE(flags[0] && flags[1] && !flags[2] && !flags[3]);
}
TEST_F(InputReaderTest, LoopOnce_WhenDeviceScanFinished_SendsConfigurationChanged) {
addDevice(1, String8("ignored"), INPUT_DEVICE_CLASS_KEYBOARD, NULL);
NotifyConfigurationChangedArgs args;
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyConfigurationChangedWasCalled(&args));
ASSERT_EQ(ARBITRARY_TIME, args.eventTime);
}
TEST_F(InputReaderTest, LoopOnce_ForwardsRawEventsToMappers) {
FakeInputMapper* mapper = NULL;
ASSERT_NO_FATAL_FAILURE(mapper = addDeviceWithFakeInputMapper(1, String8("fake"),
INPUT_DEVICE_CLASS_KEYBOARD, AINPUT_SOURCE_KEYBOARD, NULL));
mFakeEventHub->enqueueEvent(0, 1, EV_KEY, KEY_A, 1);
mReader->loopOnce();
ASSERT_NO_FATAL_FAILURE(mFakeEventHub->assertQueueIsEmpty());
RawEvent event;
ASSERT_NO_FATAL_FAILURE(mapper->assertProcessWasCalled(&event));
ASSERT_EQ(0, event.when);
ASSERT_EQ(1, event.deviceId);
ASSERT_EQ(EV_KEY, event.type);
ASSERT_EQ(KEY_A, event.code);
ASSERT_EQ(1, event.value);
}
// --- InputDeviceTest ---
class InputDeviceTest : public testing::Test {
protected:
static const char* DEVICE_NAME;
static const int32_t DEVICE_ID;
static const int32_t DEVICE_GENERATION;
static const uint32_t DEVICE_CLASSES;
sp<FakeEventHub> mFakeEventHub;
sp<FakeInputReaderPolicy> mFakePolicy;
sp<FakeInputListener> mFakeListener;
FakeInputReaderContext* mFakeContext;
InputDevice* mDevice;
virtual void SetUp() {
mFakeEventHub = new FakeEventHub();
mFakePolicy = new FakeInputReaderPolicy();
mFakeListener = new FakeInputListener();
mFakeContext = new FakeInputReaderContext(mFakeEventHub, mFakePolicy, mFakeListener);
mFakeEventHub->addDevice(DEVICE_ID, String8(DEVICE_NAME), 0);
InputDeviceIdentifier identifier;
identifier.name = DEVICE_NAME;
mDevice = new InputDevice(mFakeContext, DEVICE_ID, DEVICE_GENERATION,
identifier, DEVICE_CLASSES);
}
virtual void TearDown() {
delete mDevice;
delete mFakeContext;
mFakeListener.clear();
mFakePolicy.clear();
mFakeEventHub.clear();
}
};
const char* InputDeviceTest::DEVICE_NAME = "device";
const int32_t InputDeviceTest::DEVICE_ID = 1;
const int32_t InputDeviceTest::DEVICE_GENERATION = 2;
const uint32_t InputDeviceTest::DEVICE_CLASSES = INPUT_DEVICE_CLASS_KEYBOARD
| INPUT_DEVICE_CLASS_TOUCH | INPUT_DEVICE_CLASS_JOYSTICK;
TEST_F(InputDeviceTest, ImmutableProperties) {
ASSERT_EQ(DEVICE_ID, mDevice->getId());
ASSERT_STREQ(DEVICE_NAME, mDevice->getName());
ASSERT_EQ(DEVICE_CLASSES, mDevice->getClasses());
}
TEST_F(InputDeviceTest, WhenNoMappersAreRegistered_DeviceIsIgnored) {
// Configuration.
InputReaderConfiguration config;
mDevice->configure(ARBITRARY_TIME, &config, 0);
// Reset.
mDevice->reset(ARBITRARY_TIME);
NotifyDeviceResetArgs resetArgs;
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyDeviceResetWasCalled(&resetArgs));
ASSERT_EQ(ARBITRARY_TIME, resetArgs.eventTime);
ASSERT_EQ(DEVICE_ID, resetArgs.deviceId);
// Metadata.
ASSERT_TRUE(mDevice->isIgnored());
ASSERT_EQ(AINPUT_SOURCE_UNKNOWN, mDevice->getSources());
InputDeviceInfo info;
mDevice->getDeviceInfo(&info);
ASSERT_EQ(DEVICE_ID, info.getId());
ASSERT_STREQ(DEVICE_NAME, info.getIdentifier().name.string());
ASSERT_EQ(AINPUT_KEYBOARD_TYPE_NONE, info.getKeyboardType());
ASSERT_EQ(AINPUT_SOURCE_UNKNOWN, info.getSources());
// State queries.
ASSERT_EQ(0, mDevice->getMetaState());
ASSERT_EQ(AKEY_STATE_UNKNOWN, mDevice->getKeyCodeState(AINPUT_SOURCE_KEYBOARD, 0))
<< "Ignored device should return unknown key code state.";
ASSERT_EQ(AKEY_STATE_UNKNOWN, mDevice->getScanCodeState(AINPUT_SOURCE_KEYBOARD, 0))
<< "Ignored device should return unknown scan code state.";
ASSERT_EQ(AKEY_STATE_UNKNOWN, mDevice->getSwitchState(AINPUT_SOURCE_KEYBOARD, 0))
<< "Ignored device should return unknown switch state.";
const int32_t keyCodes[2] = { AKEYCODE_A, AKEYCODE_B };
uint8_t flags[2] = { 0, 1 };
ASSERT_FALSE(mDevice->markSupportedKeyCodes(AINPUT_SOURCE_KEYBOARD, 2, keyCodes, flags))
<< "Ignored device should never mark any key codes.";
ASSERT_EQ(0, flags[0]) << "Flag for unsupported key should be unchanged.";
ASSERT_EQ(1, flags[1]) << "Flag for unsupported key should be unchanged.";
}
TEST_F(InputDeviceTest, WhenMappersAreRegistered_DeviceIsNotIgnoredAndForwardsRequestsToMappers) {
// Configuration.
mFakeEventHub->addConfigurationProperty(DEVICE_ID, String8("key"), String8("value"));
FakeInputMapper* mapper1 = new FakeInputMapper(mDevice, AINPUT_SOURCE_KEYBOARD);
mapper1->setKeyboardType(AINPUT_KEYBOARD_TYPE_ALPHABETIC);
mapper1->setMetaState(AMETA_ALT_ON);
mapper1->addSupportedKeyCode(AKEYCODE_A);
mapper1->addSupportedKeyCode(AKEYCODE_B);
mapper1->setKeyCodeState(AKEYCODE_A, AKEY_STATE_DOWN);
mapper1->setKeyCodeState(AKEYCODE_B, AKEY_STATE_UP);
mapper1->setScanCodeState(2, AKEY_STATE_DOWN);
mapper1->setScanCodeState(3, AKEY_STATE_UP);
mapper1->setSwitchState(4, AKEY_STATE_DOWN);
mDevice->addMapper(mapper1);
FakeInputMapper* mapper2 = new FakeInputMapper(mDevice, AINPUT_SOURCE_TOUCHSCREEN);
mapper2->setMetaState(AMETA_SHIFT_ON);
mDevice->addMapper(mapper2);
InputReaderConfiguration config;
mDevice->configure(ARBITRARY_TIME, &config, 0);
String8 propertyValue;
ASSERT_TRUE(mDevice->getConfiguration().tryGetProperty(String8("key"), propertyValue))
<< "Device should have read configuration during configuration phase.";
ASSERT_STREQ("value", propertyValue.string());
ASSERT_NO_FATAL_FAILURE(mapper1->assertConfigureWasCalled());
ASSERT_NO_FATAL_FAILURE(mapper2->assertConfigureWasCalled());
// Reset
mDevice->reset(ARBITRARY_TIME);
ASSERT_NO_FATAL_FAILURE(mapper1->assertResetWasCalled());
ASSERT_NO_FATAL_FAILURE(mapper2->assertResetWasCalled());
NotifyDeviceResetArgs resetArgs;
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyDeviceResetWasCalled(&resetArgs));
ASSERT_EQ(ARBITRARY_TIME, resetArgs.eventTime);
ASSERT_EQ(DEVICE_ID, resetArgs.deviceId);
// Metadata.
ASSERT_FALSE(mDevice->isIgnored());
ASSERT_EQ(uint32_t(AINPUT_SOURCE_KEYBOARD | AINPUT_SOURCE_TOUCHSCREEN), mDevice->getSources());
InputDeviceInfo info;
mDevice->getDeviceInfo(&info);
ASSERT_EQ(DEVICE_ID, info.getId());
ASSERT_STREQ(DEVICE_NAME, info.getIdentifier().name.string());
ASSERT_EQ(AINPUT_KEYBOARD_TYPE_ALPHABETIC, info.getKeyboardType());
ASSERT_EQ(uint32_t(AINPUT_SOURCE_KEYBOARD | AINPUT_SOURCE_TOUCHSCREEN), info.getSources());
// State queries.
ASSERT_EQ(AMETA_ALT_ON | AMETA_SHIFT_ON, mDevice->getMetaState())
<< "Should query mappers and combine meta states.";
ASSERT_EQ(AKEY_STATE_UNKNOWN, mDevice->getKeyCodeState(AINPUT_SOURCE_TRACKBALL, AKEYCODE_A))
<< "Should return unknown key code state when source not supported.";
ASSERT_EQ(AKEY_STATE_UNKNOWN, mDevice->getScanCodeState(AINPUT_SOURCE_TRACKBALL, AKEYCODE_A))
<< "Should return unknown scan code state when source not supported.";
ASSERT_EQ(AKEY_STATE_UNKNOWN, mDevice->getSwitchState(AINPUT_SOURCE_TRACKBALL, AKEYCODE_A))
<< "Should return unknown switch state when source not supported.";
ASSERT_EQ(AKEY_STATE_DOWN, mDevice->getKeyCodeState(AINPUT_SOURCE_KEYBOARD, AKEYCODE_A))
<< "Should query mapper when source is supported.";
ASSERT_EQ(AKEY_STATE_UP, mDevice->getScanCodeState(AINPUT_SOURCE_KEYBOARD, 3))
<< "Should query mapper when source is supported.";
ASSERT_EQ(AKEY_STATE_DOWN, mDevice->getSwitchState(AINPUT_SOURCE_KEYBOARD, 4))
<< "Should query mapper when source is supported.";
const int32_t keyCodes[4] = { AKEYCODE_A, AKEYCODE_B, AKEYCODE_1, AKEYCODE_2 };
uint8_t flags[4] = { 0, 0, 0, 1 };
ASSERT_FALSE(mDevice->markSupportedKeyCodes(AINPUT_SOURCE_TRACKBALL, 4, keyCodes, flags))
<< "Should do nothing when source is unsupported.";
ASSERT_EQ(0, flags[0]) << "Flag should be unchanged when source is unsupported.";
ASSERT_EQ(0, flags[1]) << "Flag should be unchanged when source is unsupported.";
ASSERT_EQ(0, flags[2]) << "Flag should be unchanged when source is unsupported.";
ASSERT_EQ(1, flags[3]) << "Flag should be unchanged when source is unsupported.";
ASSERT_TRUE(mDevice->markSupportedKeyCodes(AINPUT_SOURCE_KEYBOARD, 4, keyCodes, flags))
<< "Should query mapper when source is supported.";
ASSERT_EQ(1, flags[0]) << "Flag for supported key should be set.";
ASSERT_EQ(1, flags[1]) << "Flag for supported key should be set.";
ASSERT_EQ(0, flags[2]) << "Flag for unsupported key should be unchanged.";
ASSERT_EQ(1, flags[3]) << "Flag for unsupported key should be unchanged.";
// Event handling.
RawEvent event;
mDevice->process(&event, 1);
ASSERT_NO_FATAL_FAILURE(mapper1->assertProcessWasCalled());
ASSERT_NO_FATAL_FAILURE(mapper2->assertProcessWasCalled());
}
// --- InputMapperTest ---
class InputMapperTest : public testing::Test {
protected:
static const char* DEVICE_NAME;
static const int32_t DEVICE_ID;
static const int32_t DEVICE_GENERATION;
static const uint32_t DEVICE_CLASSES;
sp<FakeEventHub> mFakeEventHub;
sp<FakeInputReaderPolicy> mFakePolicy;
sp<FakeInputListener> mFakeListener;
FakeInputReaderContext* mFakeContext;
InputDevice* mDevice;
virtual void SetUp() {
mFakeEventHub = new FakeEventHub();
mFakePolicy = new FakeInputReaderPolicy();
mFakeListener = new FakeInputListener();
mFakeContext = new FakeInputReaderContext(mFakeEventHub, mFakePolicy, mFakeListener);
InputDeviceIdentifier identifier;
identifier.name = DEVICE_NAME;
mDevice = new InputDevice(mFakeContext, DEVICE_ID, DEVICE_GENERATION,
identifier, DEVICE_CLASSES);
mFakeEventHub->addDevice(DEVICE_ID, String8(DEVICE_NAME), 0);
}
virtual void TearDown() {
delete mDevice;
delete mFakeContext;
mFakeListener.clear();
mFakePolicy.clear();
mFakeEventHub.clear();
}
void addConfigurationProperty(const char* key, const char* value) {
mFakeEventHub->addConfigurationProperty(DEVICE_ID, String8(key), String8(value));
}
void addMapperAndConfigure(InputMapper* mapper) {
mDevice->addMapper(mapper);
mDevice->configure(ARBITRARY_TIME, mFakePolicy->getReaderConfiguration(), 0);
mDevice->reset(ARBITRARY_TIME);
}
void setDisplayInfoAndReconfigure(int32_t displayId, int32_t width, int32_t height,
int32_t orientation) {
mFakePolicy->setDisplayInfo(displayId, width, height, orientation);
mDevice->configure(ARBITRARY_TIME, mFakePolicy->getReaderConfiguration(),
InputReaderConfiguration::CHANGE_DISPLAY_INFO);
}
static void process(InputMapper* mapper, nsecs_t when, int32_t deviceId, int32_t type,
int32_t code, int32_t value) {
RawEvent event;
event.when = when;
event.deviceId = deviceId;
event.type = type;
event.code = code;
event.value = value;
mapper->process(&event);
}
static void assertMotionRange(const InputDeviceInfo& info,
int32_t axis, uint32_t source, float min, float max, float flat, float fuzz) {
const InputDeviceInfo::MotionRange* range = info.getMotionRange(axis, source);
ASSERT_TRUE(range != NULL) << "Axis: " << axis << " Source: " << source;
ASSERT_EQ(axis, range->axis) << "Axis: " << axis << " Source: " << source;
ASSERT_EQ(source, range->source) << "Axis: " << axis << " Source: " << source;
ASSERT_NEAR(min, range->min, EPSILON) << "Axis: " << axis << " Source: " << source;
ASSERT_NEAR(max, range->max, EPSILON) << "Axis: " << axis << " Source: " << source;
ASSERT_NEAR(flat, range->flat, EPSILON) << "Axis: " << axis << " Source: " << source;
ASSERT_NEAR(fuzz, range->fuzz, EPSILON) << "Axis: " << axis << " Source: " << source;
}
static void assertPointerCoords(const PointerCoords& coords,
float x, float y, float pressure, float size,
float touchMajor, float touchMinor, float toolMajor, float toolMinor,
float orientation, float distance) {
ASSERT_NEAR(x, coords.getAxisValue(AMOTION_EVENT_AXIS_X), 1);
ASSERT_NEAR(y, coords.getAxisValue(AMOTION_EVENT_AXIS_Y), 1);
ASSERT_NEAR(pressure, coords.getAxisValue(AMOTION_EVENT_AXIS_PRESSURE), EPSILON);
ASSERT_NEAR(size, coords.getAxisValue(AMOTION_EVENT_AXIS_SIZE), EPSILON);
ASSERT_NEAR(touchMajor, coords.getAxisValue(AMOTION_EVENT_AXIS_TOUCH_MAJOR), 1);
ASSERT_NEAR(touchMinor, coords.getAxisValue(AMOTION_EVENT_AXIS_TOUCH_MINOR), 1);
ASSERT_NEAR(toolMajor, coords.getAxisValue(AMOTION_EVENT_AXIS_TOOL_MAJOR), 1);
ASSERT_NEAR(toolMinor, coords.getAxisValue(AMOTION_EVENT_AXIS_TOOL_MINOR), 1);
ASSERT_NEAR(orientation, coords.getAxisValue(AMOTION_EVENT_AXIS_ORIENTATION), EPSILON);
ASSERT_NEAR(distance, coords.getAxisValue(AMOTION_EVENT_AXIS_DISTANCE), EPSILON);
}
static void assertPosition(const sp<FakePointerController>& controller, float x, float y) {
float actualX, actualY;
controller->getPosition(&actualX, &actualY);
ASSERT_NEAR(x, actualX, 1);
ASSERT_NEAR(y, actualY, 1);
}
};
const char* InputMapperTest::DEVICE_NAME = "device";
const int32_t InputMapperTest::DEVICE_ID = 1;
const int32_t InputMapperTest::DEVICE_GENERATION = 2;
const uint32_t InputMapperTest::DEVICE_CLASSES = 0; // not needed for current tests
// --- SwitchInputMapperTest ---
class SwitchInputMapperTest : public InputMapperTest {
protected:
};
TEST_F(SwitchInputMapperTest, GetSources) {
SwitchInputMapper* mapper = new SwitchInputMapper(mDevice);
addMapperAndConfigure(mapper);
ASSERT_EQ(uint32_t(AINPUT_SOURCE_SWITCH), mapper->getSources());
}
TEST_F(SwitchInputMapperTest, GetSwitchState) {
SwitchInputMapper* mapper = new SwitchInputMapper(mDevice);
addMapperAndConfigure(mapper);
mFakeEventHub->setSwitchState(DEVICE_ID, SW_LID, 1);
ASSERT_EQ(1, mapper->getSwitchState(AINPUT_SOURCE_ANY, SW_LID));
mFakeEventHub->setSwitchState(DEVICE_ID, SW_LID, 0);
ASSERT_EQ(0, mapper->getSwitchState(AINPUT_SOURCE_ANY, SW_LID));
}
TEST_F(SwitchInputMapperTest, Process) {
SwitchInputMapper* mapper = new SwitchInputMapper(mDevice);
addMapperAndConfigure(mapper);
process(mapper, ARBITRARY_TIME, DEVICE_ID, EV_SW, SW_LID, 1);
process(mapper, ARBITRARY_TIME, DEVICE_ID, EV_SW, SW_JACK_PHYSICAL_INSERT, 1);
process(mapper, ARBITRARY_TIME, DEVICE_ID, EV_SW, SW_HEADPHONE_INSERT, 0);
process(mapper, ARBITRARY_TIME, DEVICE_ID, EV_SYN, SYN_REPORT, 0);
NotifySwitchArgs args;
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifySwitchWasCalled(&args));
ASSERT_EQ(ARBITRARY_TIME, args.eventTime);
ASSERT_EQ((1 << SW_LID) | (1 << SW_JACK_PHYSICAL_INSERT), args.switchValues);
ASSERT_EQ((1 << SW_LID) | (1 << SW_JACK_PHYSICAL_INSERT) | (1 << SW_HEADPHONE_INSERT),
args.switchMask);
ASSERT_EQ(uint32_t(0), args.policyFlags);
}
// --- KeyboardInputMapperTest ---
class KeyboardInputMapperTest : public InputMapperTest {
protected:
void testDPadKeyRotation(KeyboardInputMapper* mapper,
int32_t originalScanCode, int32_t originalKeyCode, int32_t rotatedKeyCode);
};
void KeyboardInputMapperTest::testDPadKeyRotation(KeyboardInputMapper* mapper,
int32_t originalScanCode, int32_t originalKeyCode, int32_t rotatedKeyCode) {
NotifyKeyArgs args;
process(mapper, ARBITRARY_TIME, DEVICE_ID, EV_KEY, originalScanCode, 1);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyKeyWasCalled(&args));
ASSERT_EQ(AKEY_EVENT_ACTION_DOWN, args.action);
ASSERT_EQ(originalScanCode, args.scanCode);
ASSERT_EQ(rotatedKeyCode, args.keyCode);
process(mapper, ARBITRARY_TIME, DEVICE_ID, EV_KEY, originalScanCode, 0);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyKeyWasCalled(&args));
ASSERT_EQ(AKEY_EVENT_ACTION_UP, args.action);
ASSERT_EQ(originalScanCode, args.scanCode);
ASSERT_EQ(rotatedKeyCode, args.keyCode);
}
TEST_F(KeyboardInputMapperTest, GetSources) {
KeyboardInputMapper* mapper = new KeyboardInputMapper(mDevice,
AINPUT_SOURCE_KEYBOARD, AINPUT_KEYBOARD_TYPE_ALPHABETIC);
addMapperAndConfigure(mapper);
ASSERT_EQ(AINPUT_SOURCE_KEYBOARD, mapper->getSources());
}
TEST_F(KeyboardInputMapperTest, Process_SimpleKeyPress) {
const int32_t USAGE_A = 0x070004;
const int32_t USAGE_UNKNOWN = 0x07ffff;
mFakeEventHub->addKey(DEVICE_ID, KEY_HOME, 0, AKEYCODE_HOME, POLICY_FLAG_WAKE);
mFakeEventHub->addKey(DEVICE_ID, 0, USAGE_A, AKEYCODE_A, POLICY_FLAG_WAKE);
KeyboardInputMapper* mapper = new KeyboardInputMapper(mDevice,
AINPUT_SOURCE_KEYBOARD, AINPUT_KEYBOARD_TYPE_ALPHABETIC);
addMapperAndConfigure(mapper);
// Key down by scan code.
process(mapper, ARBITRARY_TIME, DEVICE_ID,
EV_KEY, KEY_HOME, 1);
NotifyKeyArgs args;
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyKeyWasCalled(&args));
ASSERT_EQ(DEVICE_ID, args.deviceId);
ASSERT_EQ(AINPUT_SOURCE_KEYBOARD, args.source);
ASSERT_EQ(ARBITRARY_TIME, args.eventTime);
ASSERT_EQ(AKEY_EVENT_ACTION_DOWN, args.action);
ASSERT_EQ(AKEYCODE_HOME, args.keyCode);
ASSERT_EQ(KEY_HOME, args.scanCode);
ASSERT_EQ(AMETA_NONE, args.metaState);
ASSERT_EQ(AKEY_EVENT_FLAG_FROM_SYSTEM, args.flags);
ASSERT_EQ(POLICY_FLAG_WAKE, args.policyFlags);
ASSERT_EQ(ARBITRARY_TIME, args.downTime);
// Key up by scan code.
process(mapper, ARBITRARY_TIME + 1, DEVICE_ID,
EV_KEY, KEY_HOME, 0);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyKeyWasCalled(&args));
ASSERT_EQ(DEVICE_ID, args.deviceId);
ASSERT_EQ(AINPUT_SOURCE_KEYBOARD, args.source);
ASSERT_EQ(ARBITRARY_TIME + 1, args.eventTime);
ASSERT_EQ(AKEY_EVENT_ACTION_UP, args.action);
ASSERT_EQ(AKEYCODE_HOME, args.keyCode);
ASSERT_EQ(KEY_HOME, args.scanCode);
ASSERT_EQ(AMETA_NONE, args.metaState);
ASSERT_EQ(AKEY_EVENT_FLAG_FROM_SYSTEM, args.flags);
ASSERT_EQ(POLICY_FLAG_WAKE, args.policyFlags);
ASSERT_EQ(ARBITRARY_TIME, args.downTime);
// Key down by usage code.
process(mapper, ARBITRARY_TIME, DEVICE_ID,
EV_MSC, MSC_SCAN, USAGE_A);
process(mapper, ARBITRARY_TIME, DEVICE_ID,
EV_KEY, 0, 1);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyKeyWasCalled(&args));
ASSERT_EQ(DEVICE_ID, args.deviceId);
ASSERT_EQ(AINPUT_SOURCE_KEYBOARD, args.source);
ASSERT_EQ(ARBITRARY_TIME, args.eventTime);
ASSERT_EQ(AKEY_EVENT_ACTION_DOWN, args.action);
ASSERT_EQ(AKEYCODE_A, args.keyCode);
ASSERT_EQ(0, args.scanCode);
ASSERT_EQ(AMETA_NONE, args.metaState);
ASSERT_EQ(AKEY_EVENT_FLAG_FROM_SYSTEM, args.flags);
ASSERT_EQ(POLICY_FLAG_WAKE, args.policyFlags);
ASSERT_EQ(ARBITRARY_TIME, args.downTime);
// Key up by usage code.
process(mapper, ARBITRARY_TIME, DEVICE_ID,
EV_MSC, MSC_SCAN, USAGE_A);
process(mapper, ARBITRARY_TIME + 1, DEVICE_ID,
EV_KEY, 0, 0);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyKeyWasCalled(&args));
ASSERT_EQ(DEVICE_ID, args.deviceId);
ASSERT_EQ(AINPUT_SOURCE_KEYBOARD, args.source);
ASSERT_EQ(ARBITRARY_TIME + 1, args.eventTime);
ASSERT_EQ(AKEY_EVENT_ACTION_UP, args.action);
ASSERT_EQ(AKEYCODE_A, args.keyCode);
ASSERT_EQ(0, args.scanCode);
ASSERT_EQ(AMETA_NONE, args.metaState);
ASSERT_EQ(AKEY_EVENT_FLAG_FROM_SYSTEM, args.flags);
ASSERT_EQ(POLICY_FLAG_WAKE, args.policyFlags);
ASSERT_EQ(ARBITRARY_TIME, args.downTime);
// Key down with unknown scan code or usage code.
process(mapper, ARBITRARY_TIME, DEVICE_ID,
EV_MSC, MSC_SCAN, USAGE_UNKNOWN);
process(mapper, ARBITRARY_TIME, DEVICE_ID,
EV_KEY, KEY_UNKNOWN, 1);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyKeyWasCalled(&args));
ASSERT_EQ(DEVICE_ID, args.deviceId);
ASSERT_EQ(AINPUT_SOURCE_KEYBOARD, args.source);
ASSERT_EQ(ARBITRARY_TIME, args.eventTime);
ASSERT_EQ(AKEY_EVENT_ACTION_DOWN, args.action);
ASSERT_EQ(0, args.keyCode);
ASSERT_EQ(KEY_UNKNOWN, args.scanCode);
ASSERT_EQ(AMETA_NONE, args.metaState);
ASSERT_EQ(AKEY_EVENT_FLAG_FROM_SYSTEM, args.flags);
ASSERT_EQ(0U, args.policyFlags);
ASSERT_EQ(ARBITRARY_TIME, args.downTime);
// Key up with unknown scan code or usage code.
process(mapper, ARBITRARY_TIME, DEVICE_ID,
EV_MSC, MSC_SCAN, USAGE_UNKNOWN);
process(mapper, ARBITRARY_TIME + 1, DEVICE_ID,
EV_KEY, KEY_UNKNOWN, 0);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyKeyWasCalled(&args));
ASSERT_EQ(DEVICE_ID, args.deviceId);
ASSERT_EQ(AINPUT_SOURCE_KEYBOARD, args.source);
ASSERT_EQ(ARBITRARY_TIME + 1, args.eventTime);
ASSERT_EQ(AKEY_EVENT_ACTION_UP, args.action);
ASSERT_EQ(0, args.keyCode);
ASSERT_EQ(KEY_UNKNOWN, args.scanCode);
ASSERT_EQ(AMETA_NONE, args.metaState);
ASSERT_EQ(AKEY_EVENT_FLAG_FROM_SYSTEM, args.flags);
ASSERT_EQ(0U, args.policyFlags);
ASSERT_EQ(ARBITRARY_TIME, args.downTime);
}
TEST_F(KeyboardInputMapperTest, Process_ShouldUpdateMetaState) {
mFakeEventHub->addKey(DEVICE_ID, KEY_LEFTSHIFT, 0, AKEYCODE_SHIFT_LEFT, 0);
mFakeEventHub->addKey(DEVICE_ID, KEY_A, 0, AKEYCODE_A, 0);
KeyboardInputMapper* mapper = new KeyboardInputMapper(mDevice,
AINPUT_SOURCE_KEYBOARD, AINPUT_KEYBOARD_TYPE_ALPHABETIC);
addMapperAndConfigure(mapper);
// Initial metastate.
ASSERT_EQ(AMETA_NONE, mapper->getMetaState());
// Metakey down.
process(mapper, ARBITRARY_TIME, DEVICE_ID,
EV_KEY, KEY_LEFTSHIFT, 1);
NotifyKeyArgs args;
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyKeyWasCalled(&args));
ASSERT_EQ(AMETA_SHIFT_LEFT_ON | AMETA_SHIFT_ON, args.metaState);
ASSERT_EQ(AMETA_SHIFT_LEFT_ON | AMETA_SHIFT_ON, mapper->getMetaState());
ASSERT_NO_FATAL_FAILURE(mFakeContext->assertUpdateGlobalMetaStateWasCalled());
// Key down.
process(mapper, ARBITRARY_TIME + 1, DEVICE_ID,
EV_KEY, KEY_A, 1);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyKeyWasCalled(&args));
ASSERT_EQ(AMETA_SHIFT_LEFT_ON | AMETA_SHIFT_ON, args.metaState);
ASSERT_EQ(AMETA_SHIFT_LEFT_ON | AMETA_SHIFT_ON, mapper->getMetaState());
// Key up.
process(mapper, ARBITRARY_TIME + 2, DEVICE_ID,
EV_KEY, KEY_A, 0);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyKeyWasCalled(&args));
ASSERT_EQ(AMETA_SHIFT_LEFT_ON | AMETA_SHIFT_ON, args.metaState);
ASSERT_EQ(AMETA_SHIFT_LEFT_ON | AMETA_SHIFT_ON, mapper->getMetaState());
// Metakey up.
process(mapper, ARBITRARY_TIME + 3, DEVICE_ID,
EV_KEY, KEY_LEFTSHIFT, 0);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyKeyWasCalled(&args));
ASSERT_EQ(AMETA_NONE, args.metaState);
ASSERT_EQ(AMETA_NONE, mapper->getMetaState());
ASSERT_NO_FATAL_FAILURE(mFakeContext->assertUpdateGlobalMetaStateWasCalled());
}
TEST_F(KeyboardInputMapperTest, Process_WhenNotOrientationAware_ShouldNotRotateDPad) {
mFakeEventHub->addKey(DEVICE_ID, KEY_UP, 0, AKEYCODE_DPAD_UP, 0);
mFakeEventHub->addKey(DEVICE_ID, KEY_RIGHT, 0, AKEYCODE_DPAD_RIGHT, 0);
mFakeEventHub->addKey(DEVICE_ID, KEY_DOWN, 0, AKEYCODE_DPAD_DOWN, 0);
mFakeEventHub->addKey(DEVICE_ID, KEY_LEFT, 0, AKEYCODE_DPAD_LEFT, 0);
KeyboardInputMapper* mapper = new KeyboardInputMapper(mDevice,
AINPUT_SOURCE_KEYBOARD, AINPUT_KEYBOARD_TYPE_ALPHABETIC);
addMapperAndConfigure(mapper);
setDisplayInfoAndReconfigure(DISPLAY_ID,
DISPLAY_WIDTH, DISPLAY_HEIGHT,
DISPLAY_ORIENTATION_90);
ASSERT_NO_FATAL_FAILURE(testDPadKeyRotation(mapper,
KEY_UP, AKEYCODE_DPAD_UP, AKEYCODE_DPAD_UP));
ASSERT_NO_FATAL_FAILURE(testDPadKeyRotation(mapper,
KEY_RIGHT, AKEYCODE_DPAD_RIGHT, AKEYCODE_DPAD_RIGHT));
ASSERT_NO_FATAL_FAILURE(testDPadKeyRotation(mapper,
KEY_DOWN, AKEYCODE_DPAD_DOWN, AKEYCODE_DPAD_DOWN));
ASSERT_NO_FATAL_FAILURE(testDPadKeyRotation(mapper,
KEY_LEFT, AKEYCODE_DPAD_LEFT, AKEYCODE_DPAD_LEFT));
}
TEST_F(KeyboardInputMapperTest, Process_WhenOrientationAware_ShouldRotateDPad) {
mFakeEventHub->addKey(DEVICE_ID, KEY_UP, 0, AKEYCODE_DPAD_UP, 0);
mFakeEventHub->addKey(DEVICE_ID, KEY_RIGHT, 0, AKEYCODE_DPAD_RIGHT, 0);
mFakeEventHub->addKey(DEVICE_ID, KEY_DOWN, 0, AKEYCODE_DPAD_DOWN, 0);
mFakeEventHub->addKey(DEVICE_ID, KEY_LEFT, 0, AKEYCODE_DPAD_LEFT, 0);
KeyboardInputMapper* mapper = new KeyboardInputMapper(mDevice,
AINPUT_SOURCE_KEYBOARD, AINPUT_KEYBOARD_TYPE_ALPHABETIC);
addConfigurationProperty("keyboard.orientationAware", "1");
addMapperAndConfigure(mapper);
setDisplayInfoAndReconfigure(DISPLAY_ID,
DISPLAY_WIDTH, DISPLAY_HEIGHT,
DISPLAY_ORIENTATION_0);
ASSERT_NO_FATAL_FAILURE(testDPadKeyRotation(mapper,
KEY_UP, AKEYCODE_DPAD_UP, AKEYCODE_DPAD_UP));
ASSERT_NO_FATAL_FAILURE(testDPadKeyRotation(mapper,
KEY_RIGHT, AKEYCODE_DPAD_RIGHT, AKEYCODE_DPAD_RIGHT));
ASSERT_NO_FATAL_FAILURE(testDPadKeyRotation(mapper,
KEY_DOWN, AKEYCODE_DPAD_DOWN, AKEYCODE_DPAD_DOWN));
ASSERT_NO_FATAL_FAILURE(testDPadKeyRotation(mapper,
KEY_LEFT, AKEYCODE_DPAD_LEFT, AKEYCODE_DPAD_LEFT));
setDisplayInfoAndReconfigure(DISPLAY_ID,
DISPLAY_WIDTH, DISPLAY_HEIGHT,
DISPLAY_ORIENTATION_90);
ASSERT_NO_FATAL_FAILURE(testDPadKeyRotation(mapper,
KEY_UP, AKEYCODE_DPAD_UP, AKEYCODE_DPAD_LEFT));
ASSERT_NO_FATAL_FAILURE(testDPadKeyRotation(mapper,
KEY_RIGHT, AKEYCODE_DPAD_RIGHT, AKEYCODE_DPAD_UP));
ASSERT_NO_FATAL_FAILURE(testDPadKeyRotation(mapper,
KEY_DOWN, AKEYCODE_DPAD_DOWN, AKEYCODE_DPAD_RIGHT));
ASSERT_NO_FATAL_FAILURE(testDPadKeyRotation(mapper,
KEY_LEFT, AKEYCODE_DPAD_LEFT, AKEYCODE_DPAD_DOWN));
setDisplayInfoAndReconfigure(DISPLAY_ID,
DISPLAY_WIDTH, DISPLAY_HEIGHT,
DISPLAY_ORIENTATION_180);
ASSERT_NO_FATAL_FAILURE(testDPadKeyRotation(mapper,
KEY_UP, AKEYCODE_DPAD_UP, AKEYCODE_DPAD_DOWN));
ASSERT_NO_FATAL_FAILURE(testDPadKeyRotation(mapper,
KEY_RIGHT, AKEYCODE_DPAD_RIGHT, AKEYCODE_DPAD_LEFT));
ASSERT_NO_FATAL_FAILURE(testDPadKeyRotation(mapper,
KEY_DOWN, AKEYCODE_DPAD_DOWN, AKEYCODE_DPAD_UP));
ASSERT_NO_FATAL_FAILURE(testDPadKeyRotation(mapper,
KEY_LEFT, AKEYCODE_DPAD_LEFT, AKEYCODE_DPAD_RIGHT));
setDisplayInfoAndReconfigure(DISPLAY_ID,
DISPLAY_WIDTH, DISPLAY_HEIGHT,
DISPLAY_ORIENTATION_270);
ASSERT_NO_FATAL_FAILURE(testDPadKeyRotation(mapper,
KEY_UP, AKEYCODE_DPAD_UP, AKEYCODE_DPAD_RIGHT));
ASSERT_NO_FATAL_FAILURE(testDPadKeyRotation(mapper,
KEY_RIGHT, AKEYCODE_DPAD_RIGHT, AKEYCODE_DPAD_DOWN));
ASSERT_NO_FATAL_FAILURE(testDPadKeyRotation(mapper,
KEY_DOWN, AKEYCODE_DPAD_DOWN, AKEYCODE_DPAD_LEFT));
ASSERT_NO_FATAL_FAILURE(testDPadKeyRotation(mapper,
KEY_LEFT, AKEYCODE_DPAD_LEFT, AKEYCODE_DPAD_UP));
// Special case: if orientation changes while key is down, we still emit the same keycode
// in the key up as we did in the key down.
NotifyKeyArgs args;
setDisplayInfoAndReconfigure(DISPLAY_ID,
DISPLAY_WIDTH, DISPLAY_HEIGHT,
DISPLAY_ORIENTATION_270);
process(mapper, ARBITRARY_TIME, DEVICE_ID, EV_KEY, KEY_UP, 1);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyKeyWasCalled(&args));
ASSERT_EQ(AKEY_EVENT_ACTION_DOWN, args.action);
ASSERT_EQ(KEY_UP, args.scanCode);
ASSERT_EQ(AKEYCODE_DPAD_RIGHT, args.keyCode);
setDisplayInfoAndReconfigure(DISPLAY_ID,
DISPLAY_WIDTH, DISPLAY_HEIGHT,
DISPLAY_ORIENTATION_180);
process(mapper, ARBITRARY_TIME, DEVICE_ID, EV_KEY, KEY_UP, 0);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyKeyWasCalled(&args));
ASSERT_EQ(AKEY_EVENT_ACTION_UP, args.action);
ASSERT_EQ(KEY_UP, args.scanCode);
ASSERT_EQ(AKEYCODE_DPAD_RIGHT, args.keyCode);
}
TEST_F(KeyboardInputMapperTest, GetKeyCodeState) {
KeyboardInputMapper* mapper = new KeyboardInputMapper(mDevice,
AINPUT_SOURCE_KEYBOARD, AINPUT_KEYBOARD_TYPE_ALPHABETIC);
addMapperAndConfigure(mapper);
mFakeEventHub->setKeyCodeState(DEVICE_ID, AKEYCODE_A, 1);
ASSERT_EQ(1, mapper->getKeyCodeState(AINPUT_SOURCE_ANY, AKEYCODE_A));
mFakeEventHub->setKeyCodeState(DEVICE_ID, AKEYCODE_A, 0);
ASSERT_EQ(0, mapper->getKeyCodeState(AINPUT_SOURCE_ANY, AKEYCODE_A));
}
TEST_F(KeyboardInputMapperTest, GetScanCodeState) {
KeyboardInputMapper* mapper = new KeyboardInputMapper(mDevice,
AINPUT_SOURCE_KEYBOARD, AINPUT_KEYBOARD_TYPE_ALPHABETIC);
addMapperAndConfigure(mapper);
mFakeEventHub->setScanCodeState(DEVICE_ID, KEY_A, 1);
ASSERT_EQ(1, mapper->getScanCodeState(AINPUT_SOURCE_ANY, KEY_A));
mFakeEventHub->setScanCodeState(DEVICE_ID, KEY_A, 0);
ASSERT_EQ(0, mapper->getScanCodeState(AINPUT_SOURCE_ANY, KEY_A));
}
TEST_F(KeyboardInputMapperTest, MarkSupportedKeyCodes) {
KeyboardInputMapper* mapper = new KeyboardInputMapper(mDevice,
AINPUT_SOURCE_KEYBOARD, AINPUT_KEYBOARD_TYPE_ALPHABETIC);
addMapperAndConfigure(mapper);
mFakeEventHub->addKey(DEVICE_ID, KEY_A, 0, AKEYCODE_A, 0);
const int32_t keyCodes[2] = { AKEYCODE_A, AKEYCODE_B };
uint8_t flags[2] = { 0, 0 };
ASSERT_TRUE(mapper->markSupportedKeyCodes(AINPUT_SOURCE_ANY, 1, keyCodes, flags));
ASSERT_TRUE(flags[0]);
ASSERT_FALSE(flags[1]);
}
TEST_F(KeyboardInputMapperTest, Process_LockedKeysShouldToggleMetaStateAndLeds) {
mFakeEventHub->addLed(DEVICE_ID, LED_CAPSL, true /*initially on*/);
mFakeEventHub->addLed(DEVICE_ID, LED_NUML, false /*initially off*/);
mFakeEventHub->addLed(DEVICE_ID, LED_SCROLLL, false /*initially off*/);
mFakeEventHub->addKey(DEVICE_ID, KEY_CAPSLOCK, 0, AKEYCODE_CAPS_LOCK, 0);
mFakeEventHub->addKey(DEVICE_ID, KEY_NUMLOCK, 0, AKEYCODE_NUM_LOCK, 0);
mFakeEventHub->addKey(DEVICE_ID, KEY_SCROLLLOCK, 0, AKEYCODE_SCROLL_LOCK, 0);
KeyboardInputMapper* mapper = new KeyboardInputMapper(mDevice,
AINPUT_SOURCE_KEYBOARD, AINPUT_KEYBOARD_TYPE_ALPHABETIC);
addMapperAndConfigure(mapper);
// Initialization should have turned all of the lights off.
ASSERT_FALSE(mFakeEventHub->getLedState(DEVICE_ID, LED_CAPSL));
ASSERT_FALSE(mFakeEventHub->getLedState(DEVICE_ID, LED_NUML));
ASSERT_FALSE(mFakeEventHub->getLedState(DEVICE_ID, LED_SCROLLL));
// Toggle caps lock on.
process(mapper, ARBITRARY_TIME, DEVICE_ID,
EV_KEY, KEY_CAPSLOCK, 1);
process(mapper, ARBITRARY_TIME, DEVICE_ID,
EV_KEY, KEY_CAPSLOCK, 0);
ASSERT_TRUE(mFakeEventHub->getLedState(DEVICE_ID, LED_CAPSL));
ASSERT_FALSE(mFakeEventHub->getLedState(DEVICE_ID, LED_NUML));
ASSERT_FALSE(mFakeEventHub->getLedState(DEVICE_ID, LED_SCROLLL));
ASSERT_EQ(AMETA_CAPS_LOCK_ON, mapper->getMetaState());
// Toggle num lock on.
process(mapper, ARBITRARY_TIME, DEVICE_ID,
EV_KEY, KEY_NUMLOCK, 1);
process(mapper, ARBITRARY_TIME, DEVICE_ID,
EV_KEY, KEY_NUMLOCK, 0);
ASSERT_TRUE(mFakeEventHub->getLedState(DEVICE_ID, LED_CAPSL));
ASSERT_TRUE(mFakeEventHub->getLedState(DEVICE_ID, LED_NUML));
ASSERT_FALSE(mFakeEventHub->getLedState(DEVICE_ID, LED_SCROLLL));
ASSERT_EQ(AMETA_CAPS_LOCK_ON | AMETA_NUM_LOCK_ON, mapper->getMetaState());
// Toggle caps lock off.
process(mapper, ARBITRARY_TIME, DEVICE_ID,
EV_KEY, KEY_CAPSLOCK, 1);
process(mapper, ARBITRARY_TIME, DEVICE_ID,
EV_KEY, KEY_CAPSLOCK, 0);
ASSERT_FALSE(mFakeEventHub->getLedState(DEVICE_ID, LED_CAPSL));
ASSERT_TRUE(mFakeEventHub->getLedState(DEVICE_ID, LED_NUML));
ASSERT_FALSE(mFakeEventHub->getLedState(DEVICE_ID, LED_SCROLLL));
ASSERT_EQ(AMETA_NUM_LOCK_ON, mapper->getMetaState());
// Toggle scroll lock on.
process(mapper, ARBITRARY_TIME, DEVICE_ID,
EV_KEY, KEY_SCROLLLOCK, 1);
process(mapper, ARBITRARY_TIME, DEVICE_ID,
EV_KEY, KEY_SCROLLLOCK, 0);
ASSERT_FALSE(mFakeEventHub->getLedState(DEVICE_ID, LED_CAPSL));
ASSERT_TRUE(mFakeEventHub->getLedState(DEVICE_ID, LED_NUML));
ASSERT_TRUE(mFakeEventHub->getLedState(DEVICE_ID, LED_SCROLLL));
ASSERT_EQ(AMETA_NUM_LOCK_ON | AMETA_SCROLL_LOCK_ON, mapper->getMetaState());
// Toggle num lock off.
process(mapper, ARBITRARY_TIME, DEVICE_ID,
EV_KEY, KEY_NUMLOCK, 1);
process(mapper, ARBITRARY_TIME, DEVICE_ID,
EV_KEY, KEY_NUMLOCK, 0);
ASSERT_FALSE(mFakeEventHub->getLedState(DEVICE_ID, LED_CAPSL));
ASSERT_FALSE(mFakeEventHub->getLedState(DEVICE_ID, LED_NUML));
ASSERT_TRUE(mFakeEventHub->getLedState(DEVICE_ID, LED_SCROLLL));
ASSERT_EQ(AMETA_SCROLL_LOCK_ON, mapper->getMetaState());
// Toggle scroll lock off.
process(mapper, ARBITRARY_TIME, DEVICE_ID,
EV_KEY, KEY_SCROLLLOCK, 1);
process(mapper, ARBITRARY_TIME, DEVICE_ID,
EV_KEY, KEY_SCROLLLOCK, 0);
ASSERT_FALSE(mFakeEventHub->getLedState(DEVICE_ID, LED_CAPSL));
ASSERT_FALSE(mFakeEventHub->getLedState(DEVICE_ID, LED_NUML));
ASSERT_FALSE(mFakeEventHub->getLedState(DEVICE_ID, LED_SCROLLL));
ASSERT_EQ(AMETA_NONE, mapper->getMetaState());
}
// --- CursorInputMapperTest ---
class CursorInputMapperTest : public InputMapperTest {
protected:
static const int32_t TRACKBALL_MOVEMENT_THRESHOLD;
sp<FakePointerController> mFakePointerController;
virtual void SetUp() {
InputMapperTest::SetUp();
mFakePointerController = new FakePointerController();
mFakePolicy->setPointerController(DEVICE_ID, mFakePointerController);
}
void testMotionRotation(CursorInputMapper* mapper,
int32_t originalX, int32_t originalY, int32_t rotatedX, int32_t rotatedY);
};
const int32_t CursorInputMapperTest::TRACKBALL_MOVEMENT_THRESHOLD = 6;
void CursorInputMapperTest::testMotionRotation(CursorInputMapper* mapper,
int32_t originalX, int32_t originalY, int32_t rotatedX, int32_t rotatedY) {
NotifyMotionArgs args;
process(mapper, ARBITRARY_TIME, DEVICE_ID, EV_REL, REL_X, originalX);
process(mapper, ARBITRARY_TIME, DEVICE_ID, EV_REL, REL_Y, originalY);
process(mapper, ARBITRARY_TIME, DEVICE_ID, EV_SYN, SYN_REPORT, 0);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&args));
ASSERT_EQ(AMOTION_EVENT_ACTION_MOVE, args.action);
ASSERT_NO_FATAL_FAILURE(assertPointerCoords(args.pointerCoords[0],
float(rotatedX) / TRACKBALL_MOVEMENT_THRESHOLD,
float(rotatedY) / TRACKBALL_MOVEMENT_THRESHOLD,
0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f));
}
TEST_F(CursorInputMapperTest, WhenModeIsPointer_GetSources_ReturnsMouse) {
CursorInputMapper* mapper = new CursorInputMapper(mDevice);
addConfigurationProperty("cursor.mode", "pointer");
addMapperAndConfigure(mapper);
ASSERT_EQ(AINPUT_SOURCE_MOUSE, mapper->getSources());
}
TEST_F(CursorInputMapperTest, WhenModeIsNavigation_GetSources_ReturnsTrackball) {
CursorInputMapper* mapper = new CursorInputMapper(mDevice);
addConfigurationProperty("cursor.mode", "navigation");
addMapperAndConfigure(mapper);
ASSERT_EQ(AINPUT_SOURCE_TRACKBALL, mapper->getSources());
}
TEST_F(CursorInputMapperTest, WhenModeIsPointer_PopulateDeviceInfo_ReturnsRangeFromPointerController) {
CursorInputMapper* mapper = new CursorInputMapper(mDevice);
addConfigurationProperty("cursor.mode", "pointer");
addMapperAndConfigure(mapper);
InputDeviceInfo info;
mapper->populateDeviceInfo(&info);
// Initially there may not be a valid motion range.
ASSERT_EQ(NULL, info.getMotionRange(AINPUT_MOTION_RANGE_X, AINPUT_SOURCE_MOUSE));
ASSERT_EQ(NULL, info.getMotionRange(AINPUT_MOTION_RANGE_Y, AINPUT_SOURCE_MOUSE));
ASSERT_NO_FATAL_FAILURE(assertMotionRange(info,
AINPUT_MOTION_RANGE_PRESSURE, AINPUT_SOURCE_MOUSE, 0.0f, 1.0f, 0.0f, 0.0f));
// When the bounds are set, then there should be a valid motion range.
mFakePointerController->setBounds(1, 2, 800 - 1, 480 - 1);
InputDeviceInfo info2;
mapper->populateDeviceInfo(&info2);
ASSERT_NO_FATAL_FAILURE(assertMotionRange(info2,
AINPUT_MOTION_RANGE_X, AINPUT_SOURCE_MOUSE,
1, 800 - 1, 0.0f, 0.0f));
ASSERT_NO_FATAL_FAILURE(assertMotionRange(info2,
AINPUT_MOTION_RANGE_Y, AINPUT_SOURCE_MOUSE,
2, 480 - 1, 0.0f, 0.0f));
ASSERT_NO_FATAL_FAILURE(assertMotionRange(info2,
AINPUT_MOTION_RANGE_PRESSURE, AINPUT_SOURCE_MOUSE,
0.0f, 1.0f, 0.0f, 0.0f));
}
TEST_F(CursorInputMapperTest, WhenModeIsNavigation_PopulateDeviceInfo_ReturnsScaledRange) {
CursorInputMapper* mapper = new CursorInputMapper(mDevice);
addConfigurationProperty("cursor.mode", "navigation");
addMapperAndConfigure(mapper);
InputDeviceInfo info;
mapper->populateDeviceInfo(&info);
ASSERT_NO_FATAL_FAILURE(assertMotionRange(info,
AINPUT_MOTION_RANGE_X, AINPUT_SOURCE_TRACKBALL,
-1.0f, 1.0f, 0.0f, 1.0f / TRACKBALL_MOVEMENT_THRESHOLD));
ASSERT_NO_FATAL_FAILURE(assertMotionRange(info,
AINPUT_MOTION_RANGE_Y, AINPUT_SOURCE_TRACKBALL,
-1.0f, 1.0f, 0.0f, 1.0f / TRACKBALL_MOVEMENT_THRESHOLD));
ASSERT_NO_FATAL_FAILURE(assertMotionRange(info,
AINPUT_MOTION_RANGE_PRESSURE, AINPUT_SOURCE_TRACKBALL,
0.0f, 1.0f, 0.0f, 0.0f));
}
TEST_F(CursorInputMapperTest, Process_ShouldSetAllFieldsAndIncludeGlobalMetaState) {
CursorInputMapper* mapper = new CursorInputMapper(mDevice);
addConfigurationProperty("cursor.mode", "navigation");
addMapperAndConfigure(mapper);
mFakeContext->setGlobalMetaState(AMETA_SHIFT_LEFT_ON | AMETA_SHIFT_ON);
NotifyMotionArgs args;
// Button press.
// Mostly testing non x/y behavior here so we don't need to check again elsewhere.
process(mapper, ARBITRARY_TIME, DEVICE_ID, EV_KEY, BTN_MOUSE, 1);
process(mapper, ARBITRARY_TIME, DEVICE_ID, EV_SYN, SYN_REPORT, 0);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&args));
ASSERT_EQ(ARBITRARY_TIME, args.eventTime);
ASSERT_EQ(DEVICE_ID, args.deviceId);
ASSERT_EQ(AINPUT_SOURCE_TRACKBALL, args.source);
ASSERT_EQ(uint32_t(0), args.policyFlags);
ASSERT_EQ(AMOTION_EVENT_ACTION_DOWN, args.action);
ASSERT_EQ(0, args.flags);
ASSERT_EQ(AMETA_SHIFT_LEFT_ON | AMETA_SHIFT_ON, args.metaState);
ASSERT_EQ(AMOTION_EVENT_BUTTON_PRIMARY, args.buttonState);
ASSERT_EQ(0, args.edgeFlags);
ASSERT_EQ(uint32_t(1), args.pointerCount);
ASSERT_EQ(0, args.pointerProperties[0].id);
ASSERT_EQ(AMOTION_EVENT_TOOL_TYPE_MOUSE, args.pointerProperties[0].toolType);
ASSERT_NO_FATAL_FAILURE(assertPointerCoords(args.pointerCoords[0],
0.0f, 0.0f, 1.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f));
ASSERT_EQ(TRACKBALL_MOVEMENT_THRESHOLD, args.xPrecision);
ASSERT_EQ(TRACKBALL_MOVEMENT_THRESHOLD, args.yPrecision);
ASSERT_EQ(ARBITRARY_TIME, args.downTime);
// Button release. Should have same down time.
process(mapper, ARBITRARY_TIME + 1, DEVICE_ID, EV_KEY, BTN_MOUSE, 0);
process(mapper, ARBITRARY_TIME + 1, DEVICE_ID, EV_SYN, SYN_REPORT, 0);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&args));
ASSERT_EQ(ARBITRARY_TIME + 1, args.eventTime);
ASSERT_EQ(DEVICE_ID, args.deviceId);
ASSERT_EQ(AINPUT_SOURCE_TRACKBALL, args.source);
ASSERT_EQ(uint32_t(0), args.policyFlags);
ASSERT_EQ(AMOTION_EVENT_ACTION_UP, args.action);
ASSERT_EQ(0, args.flags);
ASSERT_EQ(AMETA_SHIFT_LEFT_ON | AMETA_SHIFT_ON, args.metaState);
ASSERT_EQ(0, args.buttonState);
ASSERT_EQ(0, args.edgeFlags);
ASSERT_EQ(uint32_t(1), args.pointerCount);
ASSERT_EQ(0, args.pointerProperties[0].id);
ASSERT_EQ(AMOTION_EVENT_TOOL_TYPE_MOUSE, args.pointerProperties[0].toolType);
ASSERT_NO_FATAL_FAILURE(assertPointerCoords(args.pointerCoords[0],
0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f));
ASSERT_EQ(TRACKBALL_MOVEMENT_THRESHOLD, args.xPrecision);
ASSERT_EQ(TRACKBALL_MOVEMENT_THRESHOLD, args.yPrecision);
ASSERT_EQ(ARBITRARY_TIME, args.downTime);
}
TEST_F(CursorInputMapperTest, Process_ShouldHandleIndependentXYUpdates) {
CursorInputMapper* mapper = new CursorInputMapper(mDevice);
addConfigurationProperty("cursor.mode", "navigation");
addMapperAndConfigure(mapper);
NotifyMotionArgs args;
// Motion in X but not Y.
process(mapper, ARBITRARY_TIME, DEVICE_ID, EV_REL, REL_X, 1);
process(mapper, ARBITRARY_TIME, DEVICE_ID, EV_SYN, SYN_REPORT, 0);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&args));
ASSERT_EQ(AMOTION_EVENT_ACTION_MOVE, args.action);
ASSERT_NO_FATAL_FAILURE(assertPointerCoords(args.pointerCoords[0],
1.0f / TRACKBALL_MOVEMENT_THRESHOLD, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f));
// Motion in Y but not X.
process(mapper, ARBITRARY_TIME, DEVICE_ID, EV_REL, REL_Y, -2);
process(mapper, ARBITRARY_TIME, DEVICE_ID, EV_SYN, SYN_REPORT, 0);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&args));
ASSERT_EQ(AMOTION_EVENT_ACTION_MOVE, args.action);
ASSERT_NO_FATAL_FAILURE(assertPointerCoords(args.pointerCoords[0],
0.0f, -2.0f / TRACKBALL_MOVEMENT_THRESHOLD, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f));
}
TEST_F(CursorInputMapperTest, Process_ShouldHandleIndependentButtonUpdates) {
CursorInputMapper* mapper = new CursorInputMapper(mDevice);
addConfigurationProperty("cursor.mode", "navigation");
addMapperAndConfigure(mapper);
NotifyMotionArgs args;
// Button press.
process(mapper, ARBITRARY_TIME, DEVICE_ID, EV_KEY, BTN_MOUSE, 1);
process(mapper, ARBITRARY_TIME, DEVICE_ID, EV_SYN, SYN_REPORT, 0);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&args));
ASSERT_EQ(AMOTION_EVENT_ACTION_DOWN, args.action);
ASSERT_NO_FATAL_FAILURE(assertPointerCoords(args.pointerCoords[0],
0.0f, 0.0f, 1.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f));
// Button release.
process(mapper, ARBITRARY_TIME, DEVICE_ID, EV_KEY, BTN_MOUSE, 0);
process(mapper, ARBITRARY_TIME, DEVICE_ID, EV_SYN, SYN_REPORT, 0);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&args));
ASSERT_EQ(AMOTION_EVENT_ACTION_UP, args.action);
ASSERT_NO_FATAL_FAILURE(assertPointerCoords(args.pointerCoords[0],
0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f));
}
TEST_F(CursorInputMapperTest, Process_ShouldHandleCombinedXYAndButtonUpdates) {
CursorInputMapper* mapper = new CursorInputMapper(mDevice);
addConfigurationProperty("cursor.mode", "navigation");
addMapperAndConfigure(mapper);
NotifyMotionArgs args;
// Combined X, Y and Button.
process(mapper, ARBITRARY_TIME, DEVICE_ID, EV_REL, REL_X, 1);
process(mapper, ARBITRARY_TIME, DEVICE_ID, EV_REL, REL_Y, -2);
process(mapper, ARBITRARY_TIME, DEVICE_ID, EV_KEY, BTN_MOUSE, 1);
process(mapper, ARBITRARY_TIME, DEVICE_ID, EV_SYN, SYN_REPORT, 0);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&args));
ASSERT_EQ(AMOTION_EVENT_ACTION_DOWN, args.action);
ASSERT_NO_FATAL_FAILURE(assertPointerCoords(args.pointerCoords[0],
1.0f / TRACKBALL_MOVEMENT_THRESHOLD, -2.0f / TRACKBALL_MOVEMENT_THRESHOLD,
1.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f));
// Move X, Y a bit while pressed.
process(mapper, ARBITRARY_TIME, DEVICE_ID, EV_REL, REL_X, 2);
process(mapper, ARBITRARY_TIME, DEVICE_ID, EV_REL, REL_Y, 1);
process(mapper, ARBITRARY_TIME, DEVICE_ID, EV_SYN, SYN_REPORT, 0);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&args));
ASSERT_EQ(AMOTION_EVENT_ACTION_MOVE, args.action);
ASSERT_NO_FATAL_FAILURE(assertPointerCoords(args.pointerCoords[0],
2.0f / TRACKBALL_MOVEMENT_THRESHOLD, 1.0f / TRACKBALL_MOVEMENT_THRESHOLD,
1.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f));
// Release Button.
process(mapper, ARBITRARY_TIME, DEVICE_ID, EV_KEY, BTN_MOUSE, 0);
process(mapper, ARBITRARY_TIME, DEVICE_ID, EV_SYN, SYN_REPORT, 0);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&args));
ASSERT_EQ(AMOTION_EVENT_ACTION_UP, args.action);
ASSERT_NO_FATAL_FAILURE(assertPointerCoords(args.pointerCoords[0],
0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f));
}
TEST_F(CursorInputMapperTest, Process_WhenNotOrientationAware_ShouldNotRotateMotions) {
CursorInputMapper* mapper = new CursorInputMapper(mDevice);
addConfigurationProperty("cursor.mode", "navigation");
addMapperAndConfigure(mapper);
setDisplayInfoAndReconfigure(DISPLAY_ID,
DISPLAY_WIDTH, DISPLAY_HEIGHT,
DISPLAY_ORIENTATION_90);
ASSERT_NO_FATAL_FAILURE(testMotionRotation(mapper, 0, 1, 0, 1));
ASSERT_NO_FATAL_FAILURE(testMotionRotation(mapper, 1, 1, 1, 1));
ASSERT_NO_FATAL_FAILURE(testMotionRotation(mapper, 1, 0, 1, 0));
ASSERT_NO_FATAL_FAILURE(testMotionRotation(mapper, 1, -1, 1, -1));
ASSERT_NO_FATAL_FAILURE(testMotionRotation(mapper, 0, -1, 0, -1));
ASSERT_NO_FATAL_FAILURE(testMotionRotation(mapper, -1, -1, -1, -1));
ASSERT_NO_FATAL_FAILURE(testMotionRotation(mapper, -1, 0, -1, 0));
ASSERT_NO_FATAL_FAILURE(testMotionRotation(mapper, -1, 1, -1, 1));
}
TEST_F(CursorInputMapperTest, Process_WhenOrientationAware_ShouldRotateMotions) {
CursorInputMapper* mapper = new CursorInputMapper(mDevice);
addConfigurationProperty("cursor.mode", "navigation");
addConfigurationProperty("cursor.orientationAware", "1");
addMapperAndConfigure(mapper);
setDisplayInfoAndReconfigure(DISPLAY_ID,
DISPLAY_WIDTH, DISPLAY_HEIGHT, DISPLAY_ORIENTATION_0);
ASSERT_NO_FATAL_FAILURE(testMotionRotation(mapper, 0, 1, 0, 1));
ASSERT_NO_FATAL_FAILURE(testMotionRotation(mapper, 1, 1, 1, 1));
ASSERT_NO_FATAL_FAILURE(testMotionRotation(mapper, 1, 0, 1, 0));
ASSERT_NO_FATAL_FAILURE(testMotionRotation(mapper, 1, -1, 1, -1));
ASSERT_NO_FATAL_FAILURE(testMotionRotation(mapper, 0, -1, 0, -1));
ASSERT_NO_FATAL_FAILURE(testMotionRotation(mapper, -1, -1, -1, -1));
ASSERT_NO_FATAL_FAILURE(testMotionRotation(mapper, -1, 0, -1, 0));
ASSERT_NO_FATAL_FAILURE(testMotionRotation(mapper, -1, 1, -1, 1));
setDisplayInfoAndReconfigure(DISPLAY_ID,
DISPLAY_WIDTH, DISPLAY_HEIGHT, DISPLAY_ORIENTATION_90);
ASSERT_NO_FATAL_FAILURE(testMotionRotation(mapper, 0, 1, 1, 0));
ASSERT_NO_FATAL_FAILURE(testMotionRotation(mapper, 1, 1, 1, -1));
ASSERT_NO_FATAL_FAILURE(testMotionRotation(mapper, 1, 0, 0, -1));
ASSERT_NO_FATAL_FAILURE(testMotionRotation(mapper, 1, -1, -1, -1));
ASSERT_NO_FATAL_FAILURE(testMotionRotation(mapper, 0, -1, -1, 0));
ASSERT_NO_FATAL_FAILURE(testMotionRotation(mapper, -1, -1, -1, 1));
ASSERT_NO_FATAL_FAILURE(testMotionRotation(mapper, -1, 0, 0, 1));
ASSERT_NO_FATAL_FAILURE(testMotionRotation(mapper, -1, 1, 1, 1));
setDisplayInfoAndReconfigure(DISPLAY_ID,
DISPLAY_WIDTH, DISPLAY_HEIGHT, DISPLAY_ORIENTATION_180);
ASSERT_NO_FATAL_FAILURE(testMotionRotation(mapper, 0, 1, 0, -1));
ASSERT_NO_FATAL_FAILURE(testMotionRotation(mapper, 1, 1, -1, -1));
ASSERT_NO_FATAL_FAILURE(testMotionRotation(mapper, 1, 0, -1, 0));
ASSERT_NO_FATAL_FAILURE(testMotionRotation(mapper, 1, -1, -1, 1));
ASSERT_NO_FATAL_FAILURE(testMotionRotation(mapper, 0, -1, 0, 1));
ASSERT_NO_FATAL_FAILURE(testMotionRotation(mapper, -1, -1, 1, 1));
ASSERT_NO_FATAL_FAILURE(testMotionRotation(mapper, -1, 0, 1, 0));
ASSERT_NO_FATAL_FAILURE(testMotionRotation(mapper, -1, 1, 1, -1));
setDisplayInfoAndReconfigure(DISPLAY_ID,
DISPLAY_WIDTH, DISPLAY_HEIGHT, DISPLAY_ORIENTATION_270);
ASSERT_NO_FATAL_FAILURE(testMotionRotation(mapper, 0, 1, -1, 0));
ASSERT_NO_FATAL_FAILURE(testMotionRotation(mapper, 1, 1, -1, 1));
ASSERT_NO_FATAL_FAILURE(testMotionRotation(mapper, 1, 0, 0, 1));
ASSERT_NO_FATAL_FAILURE(testMotionRotation(mapper, 1, -1, 1, 1));
ASSERT_NO_FATAL_FAILURE(testMotionRotation(mapper, 0, -1, 1, 0));
ASSERT_NO_FATAL_FAILURE(testMotionRotation(mapper, -1, -1, 1, -1));
ASSERT_NO_FATAL_FAILURE(testMotionRotation(mapper, -1, 0, 0, -1));
ASSERT_NO_FATAL_FAILURE(testMotionRotation(mapper, -1, 1, -1, -1));
}
TEST_F(CursorInputMapperTest, Process_ShouldHandleAllButtons) {
CursorInputMapper* mapper = new CursorInputMapper(mDevice);
addConfigurationProperty("cursor.mode", "pointer");
addMapperAndConfigure(mapper);
mFakePointerController->setBounds(0, 0, 800 - 1, 480 - 1);
mFakePointerController->setPosition(100, 200);
mFakePointerController->setButtonState(0);
NotifyMotionArgs motionArgs;
NotifyKeyArgs keyArgs;
// press BTN_LEFT, release BTN_LEFT
process(mapper, ARBITRARY_TIME, DEVICE_ID, EV_KEY, BTN_LEFT, 1);
process(mapper, ARBITRARY_TIME, DEVICE_ID, EV_SYN, SYN_REPORT, 0);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs));
ASSERT_EQ(AMOTION_EVENT_ACTION_DOWN, motionArgs.action);
ASSERT_EQ(AMOTION_EVENT_BUTTON_PRIMARY, motionArgs.buttonState);
ASSERT_EQ(AMOTION_EVENT_BUTTON_PRIMARY, mFakePointerController->getButtonState());
ASSERT_NO_FATAL_FAILURE(assertPointerCoords(motionArgs.pointerCoords[0],
100.0f, 200.0f, 1.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f));
process(mapper, ARBITRARY_TIME, DEVICE_ID, EV_KEY, BTN_LEFT, 0);
process(mapper, ARBITRARY_TIME, DEVICE_ID, EV_SYN, SYN_REPORT, 0);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs));
ASSERT_EQ(0, motionArgs.buttonState);
ASSERT_EQ(0, mFakePointerController->getButtonState());
ASSERT_EQ(AMOTION_EVENT_ACTION_UP, motionArgs.action);
ASSERT_NO_FATAL_FAILURE(assertPointerCoords(motionArgs.pointerCoords[0],
100.0f, 200.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f));
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs));
ASSERT_EQ(0, motionArgs.buttonState);
ASSERT_EQ(0, mFakePointerController->getButtonState());
ASSERT_EQ(AMOTION_EVENT_ACTION_HOVER_MOVE, motionArgs.action);
ASSERT_NO_FATAL_FAILURE(assertPointerCoords(motionArgs.pointerCoords[0],
100.0f, 200.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f));
// press BTN_RIGHT + BTN_MIDDLE, release BTN_RIGHT, release BTN_MIDDLE
process(mapper, ARBITRARY_TIME, DEVICE_ID, EV_KEY, BTN_RIGHT, 1);
process(mapper, ARBITRARY_TIME, DEVICE_ID, EV_KEY, BTN_MIDDLE, 1);
process(mapper, ARBITRARY_TIME, DEVICE_ID, EV_SYN, SYN_REPORT, 0);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs));
ASSERT_EQ(AMOTION_EVENT_ACTION_DOWN, motionArgs.action);
ASSERT_EQ(AMOTION_EVENT_BUTTON_SECONDARY | AMOTION_EVENT_BUTTON_TERTIARY,
motionArgs.buttonState);
ASSERT_EQ(AMOTION_EVENT_BUTTON_SECONDARY | AMOTION_EVENT_BUTTON_TERTIARY,
mFakePointerController->getButtonState());
ASSERT_NO_FATAL_FAILURE(assertPointerCoords(motionArgs.pointerCoords[0],
100.0f, 200.0f, 1.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f));
process(mapper, ARBITRARY_TIME, DEVICE_ID, EV_KEY, BTN_RIGHT, 0);
process(mapper, ARBITRARY_TIME, DEVICE_ID, EV_SYN, SYN_REPORT, 0);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs));
ASSERT_EQ(AMOTION_EVENT_BUTTON_TERTIARY, motionArgs.buttonState);
ASSERT_EQ(AMOTION_EVENT_BUTTON_TERTIARY, mFakePointerController->getButtonState());
ASSERT_EQ(AMOTION_EVENT_ACTION_MOVE, motionArgs.action);
ASSERT_NO_FATAL_FAILURE(assertPointerCoords(motionArgs.pointerCoords[0],
100.0f, 200.0f, 1.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f));
process(mapper, ARBITRARY_TIME, DEVICE_ID, EV_KEY, BTN_MIDDLE, 0);
process(mapper, ARBITRARY_TIME, DEVICE_ID, EV_SYN, SYN_REPORT, 0);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs));
ASSERT_EQ(0, motionArgs.buttonState);
ASSERT_EQ(0, mFakePointerController->getButtonState());
ASSERT_EQ(AMOTION_EVENT_ACTION_UP, motionArgs.action);
ASSERT_NO_FATAL_FAILURE(assertPointerCoords(motionArgs.pointerCoords[0],
100.0f, 200.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f));
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs));
ASSERT_EQ(0, motionArgs.buttonState);
ASSERT_EQ(0, mFakePointerController->getButtonState());
ASSERT_EQ(AMOTION_EVENT_ACTION_HOVER_MOVE, motionArgs.action);
ASSERT_NO_FATAL_FAILURE(assertPointerCoords(motionArgs.pointerCoords[0],
100.0f, 200.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f));
// press BTN_BACK, release BTN_BACK
process(mapper, ARBITRARY_TIME, DEVICE_ID, EV_KEY, BTN_BACK, 1);
process(mapper, ARBITRARY_TIME, DEVICE_ID, EV_SYN, SYN_REPORT, 0);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyKeyWasCalled(&keyArgs));
ASSERT_EQ(AKEY_EVENT_ACTION_DOWN, keyArgs.action);
ASSERT_EQ(AKEYCODE_BACK, keyArgs.keyCode);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs));
ASSERT_EQ(AMOTION_EVENT_BUTTON_BACK, motionArgs.buttonState);
ASSERT_EQ(AMOTION_EVENT_BUTTON_BACK, mFakePointerController->getButtonState());
ASSERT_EQ(AMOTION_EVENT_ACTION_HOVER_MOVE, motionArgs.action);
ASSERT_NO_FATAL_FAILURE(assertPointerCoords(motionArgs.pointerCoords[0],
100.0f, 200.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f));
process(mapper, ARBITRARY_TIME, DEVICE_ID, EV_KEY, BTN_BACK, 0);
process(mapper, ARBITRARY_TIME, DEVICE_ID, EV_SYN, SYN_REPORT, 0);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs));
ASSERT_EQ(0, motionArgs.buttonState);
ASSERT_EQ(0, mFakePointerController->getButtonState());
ASSERT_EQ(AMOTION_EVENT_ACTION_HOVER_MOVE, motionArgs.action);
ASSERT_NO_FATAL_FAILURE(assertPointerCoords(motionArgs.pointerCoords[0],
100.0f, 200.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f));
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyKeyWasCalled(&keyArgs));
ASSERT_EQ(AKEY_EVENT_ACTION_UP, keyArgs.action);
ASSERT_EQ(AKEYCODE_BACK, keyArgs.keyCode);
// press BTN_SIDE, release BTN_SIDE
process(mapper, ARBITRARY_TIME, DEVICE_ID, EV_KEY, BTN_SIDE, 1);
process(mapper, ARBITRARY_TIME, DEVICE_ID, EV_SYN, SYN_REPORT, 0);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyKeyWasCalled(&keyArgs));
ASSERT_EQ(AKEY_EVENT_ACTION_DOWN, keyArgs.action);
ASSERT_EQ(AKEYCODE_BACK, keyArgs.keyCode);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs));
ASSERT_EQ(AMOTION_EVENT_BUTTON_BACK, motionArgs.buttonState);
ASSERT_EQ(AMOTION_EVENT_BUTTON_BACK, mFakePointerController->getButtonState());
ASSERT_EQ(AMOTION_EVENT_ACTION_HOVER_MOVE, motionArgs.action);
ASSERT_NO_FATAL_FAILURE(assertPointerCoords(motionArgs.pointerCoords[0],
100.0f, 200.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f));
process(mapper, ARBITRARY_TIME, DEVICE_ID, EV_KEY, BTN_SIDE, 0);
process(mapper, ARBITRARY_TIME, DEVICE_ID, EV_SYN, SYN_REPORT, 0);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs));
ASSERT_EQ(0, motionArgs.buttonState);
ASSERT_EQ(0, mFakePointerController->getButtonState());
ASSERT_EQ(AMOTION_EVENT_ACTION_HOVER_MOVE, motionArgs.action);
ASSERT_NO_FATAL_FAILURE(assertPointerCoords(motionArgs.pointerCoords[0],
100.0f, 200.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f));
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyKeyWasCalled(&keyArgs));
ASSERT_EQ(AKEY_EVENT_ACTION_UP, keyArgs.action);
ASSERT_EQ(AKEYCODE_BACK, keyArgs.keyCode);
// press BTN_FORWARD, release BTN_FORWARD
process(mapper, ARBITRARY_TIME, DEVICE_ID, EV_KEY, BTN_FORWARD, 1);
process(mapper, ARBITRARY_TIME, DEVICE_ID, EV_SYN, SYN_REPORT, 0);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyKeyWasCalled(&keyArgs));
ASSERT_EQ(AKEY_EVENT_ACTION_DOWN, keyArgs.action);
ASSERT_EQ(AKEYCODE_FORWARD, keyArgs.keyCode);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs));
ASSERT_EQ(AMOTION_EVENT_BUTTON_FORWARD, motionArgs.buttonState);
ASSERT_EQ(AMOTION_EVENT_BUTTON_FORWARD, mFakePointerController->getButtonState());
ASSERT_EQ(AMOTION_EVENT_ACTION_HOVER_MOVE, motionArgs.action);
ASSERT_NO_FATAL_FAILURE(assertPointerCoords(motionArgs.pointerCoords[0],
100.0f, 200.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f));
process(mapper, ARBITRARY_TIME, DEVICE_ID, EV_KEY, BTN_FORWARD, 0);
process(mapper, ARBITRARY_TIME, DEVICE_ID, EV_SYN, SYN_REPORT, 0);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs));
ASSERT_EQ(0, motionArgs.buttonState);
ASSERT_EQ(0, mFakePointerController->getButtonState());
ASSERT_EQ(AMOTION_EVENT_ACTION_HOVER_MOVE, motionArgs.action);
ASSERT_NO_FATAL_FAILURE(assertPointerCoords(motionArgs.pointerCoords[0],
100.0f, 200.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f));
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyKeyWasCalled(&keyArgs));
ASSERT_EQ(AKEY_EVENT_ACTION_UP, keyArgs.action);
ASSERT_EQ(AKEYCODE_FORWARD, keyArgs.keyCode);
// press BTN_EXTRA, release BTN_EXTRA
process(mapper, ARBITRARY_TIME, DEVICE_ID, EV_KEY, BTN_EXTRA, 1);
process(mapper, ARBITRARY_TIME, DEVICE_ID, EV_SYN, SYN_REPORT, 0);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyKeyWasCalled(&keyArgs));
ASSERT_EQ(AKEY_EVENT_ACTION_DOWN, keyArgs.action);
ASSERT_EQ(AKEYCODE_FORWARD, keyArgs.keyCode);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs));
ASSERT_EQ(AMOTION_EVENT_BUTTON_FORWARD, motionArgs.buttonState);
ASSERT_EQ(AMOTION_EVENT_BUTTON_FORWARD, mFakePointerController->getButtonState());
ASSERT_EQ(AMOTION_EVENT_ACTION_HOVER_MOVE, motionArgs.action);
ASSERT_NO_FATAL_FAILURE(assertPointerCoords(motionArgs.pointerCoords[0],
100.0f, 200.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f));
process(mapper, ARBITRARY_TIME, DEVICE_ID, EV_KEY, BTN_EXTRA, 0);
process(mapper, ARBITRARY_TIME, DEVICE_ID, EV_SYN, SYN_REPORT, 0);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs));
ASSERT_EQ(0, motionArgs.buttonState);
ASSERT_EQ(0, mFakePointerController->getButtonState());
ASSERT_EQ(AMOTION_EVENT_ACTION_HOVER_MOVE, motionArgs.action);
ASSERT_NO_FATAL_FAILURE(assertPointerCoords(motionArgs.pointerCoords[0],
100.0f, 200.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f));
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyKeyWasCalled(&keyArgs));
ASSERT_EQ(AKEY_EVENT_ACTION_UP, keyArgs.action);
ASSERT_EQ(AKEYCODE_FORWARD, keyArgs.keyCode);
}
TEST_F(CursorInputMapperTest, Process_WhenModeIsPointer_ShouldMoveThePointerAround) {
CursorInputMapper* mapper = new CursorInputMapper(mDevice);
addConfigurationProperty("cursor.mode", "pointer");
addMapperAndConfigure(mapper);
mFakePointerController->setBounds(0, 0, 800 - 1, 480 - 1);
mFakePointerController->setPosition(100, 200);
mFakePointerController->setButtonState(0);
NotifyMotionArgs args;
process(mapper, ARBITRARY_TIME, DEVICE_ID, EV_REL, REL_X, 10);
process(mapper, ARBITRARY_TIME, DEVICE_ID, EV_REL, REL_Y, 20);
process(mapper, ARBITRARY_TIME, DEVICE_ID, EV_SYN, SYN_REPORT, 0);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&args));
ASSERT_EQ(AMOTION_EVENT_ACTION_HOVER_MOVE, args.action);
ASSERT_NO_FATAL_FAILURE(assertPointerCoords(args.pointerCoords[0],
110.0f, 220.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f));
ASSERT_NO_FATAL_FAILURE(assertPosition(mFakePointerController, 110.0f, 220.0f));
}
// --- TouchInputMapperTest ---
class TouchInputMapperTest : public InputMapperTest {
protected:
static const int32_t RAW_X_MIN;
static const int32_t RAW_X_MAX;
static const int32_t RAW_Y_MIN;
static const int32_t RAW_Y_MAX;
static const int32_t RAW_TOUCH_MIN;
static const int32_t RAW_TOUCH_MAX;
static const int32_t RAW_TOOL_MIN;
static const int32_t RAW_TOOL_MAX;
static const int32_t RAW_PRESSURE_MIN;
static const int32_t RAW_PRESSURE_MAX;
static const int32_t RAW_ORIENTATION_MIN;
static const int32_t RAW_ORIENTATION_MAX;
static const int32_t RAW_DISTANCE_MIN;
static const int32_t RAW_DISTANCE_MAX;
static const int32_t RAW_TILT_MIN;
static const int32_t RAW_TILT_MAX;
static const int32_t RAW_ID_MIN;
static const int32_t RAW_ID_MAX;
static const int32_t RAW_SLOT_MIN;
static const int32_t RAW_SLOT_MAX;
static const float X_PRECISION;
static const float Y_PRECISION;
static const float GEOMETRIC_SCALE;
static const VirtualKeyDefinition VIRTUAL_KEYS[2];
enum Axes {
POSITION = 1 << 0,
TOUCH = 1 << 1,
TOOL = 1 << 2,
PRESSURE = 1 << 3,
ORIENTATION = 1 << 4,
MINOR = 1 << 5,
ID = 1 << 6,
DISTANCE = 1 << 7,
TILT = 1 << 8,
SLOT = 1 << 9,
TOOL_TYPE = 1 << 10,
};
void prepareDisplay(int32_t orientation);
void prepareVirtualKeys();
int32_t toRawX(float displayX);
int32_t toRawY(float displayY);
float toDisplayX(int32_t rawX);
float toDisplayY(int32_t rawY);
};
const int32_t TouchInputMapperTest::RAW_X_MIN = 25;
const int32_t TouchInputMapperTest::RAW_X_MAX = 1019;
const int32_t TouchInputMapperTest::RAW_Y_MIN = 30;
const int32_t TouchInputMapperTest::RAW_Y_MAX = 1009;
const int32_t TouchInputMapperTest::RAW_TOUCH_MIN = 0;
const int32_t TouchInputMapperTest::RAW_TOUCH_MAX = 31;
const int32_t TouchInputMapperTest::RAW_TOOL_MIN = 0;
const int32_t TouchInputMapperTest::RAW_TOOL_MAX = 15;
const int32_t TouchInputMapperTest::RAW_PRESSURE_MIN = RAW_TOUCH_MIN;
const int32_t TouchInputMapperTest::RAW_PRESSURE_MAX = RAW_TOUCH_MAX;
const int32_t TouchInputMapperTest::RAW_ORIENTATION_MIN = -7;
const int32_t TouchInputMapperTest::RAW_ORIENTATION_MAX = 7;
const int32_t TouchInputMapperTest::RAW_DISTANCE_MIN = 0;
const int32_t TouchInputMapperTest::RAW_DISTANCE_MAX = 7;
const int32_t TouchInputMapperTest::RAW_TILT_MIN = 0;
const int32_t TouchInputMapperTest::RAW_TILT_MAX = 150;
const int32_t TouchInputMapperTest::RAW_ID_MIN = 0;
const int32_t TouchInputMapperTest::RAW_ID_MAX = 9;
const int32_t TouchInputMapperTest::RAW_SLOT_MIN = 0;
const int32_t TouchInputMapperTest::RAW_SLOT_MAX = 9;
const float TouchInputMapperTest::X_PRECISION = float(RAW_X_MAX - RAW_X_MIN + 1) / DISPLAY_WIDTH;
const float TouchInputMapperTest::Y_PRECISION = float(RAW_Y_MAX - RAW_Y_MIN + 1) / DISPLAY_HEIGHT;
const float TouchInputMapperTest::GEOMETRIC_SCALE =
avg(float(DISPLAY_WIDTH) / (RAW_X_MAX - RAW_X_MIN + 1),
float(DISPLAY_HEIGHT) / (RAW_Y_MAX - RAW_Y_MIN + 1));
const VirtualKeyDefinition TouchInputMapperTest::VIRTUAL_KEYS[2] = {
{ KEY_HOME, 60, DISPLAY_HEIGHT + 15, 20, 20 },
{ KEY_MENU, DISPLAY_HEIGHT - 60, DISPLAY_WIDTH + 15, 20, 20 },
};
void TouchInputMapperTest::prepareDisplay(int32_t orientation) {
setDisplayInfoAndReconfigure(DISPLAY_ID, DISPLAY_WIDTH, DISPLAY_HEIGHT, orientation);
}
void TouchInputMapperTest::prepareVirtualKeys() {
mFakeEventHub->addVirtualKeyDefinition(DEVICE_ID, VIRTUAL_KEYS[0]);
mFakeEventHub->addVirtualKeyDefinition(DEVICE_ID, VIRTUAL_KEYS[1]);
mFakeEventHub->addKey(DEVICE_ID, KEY_HOME, 0, AKEYCODE_HOME, POLICY_FLAG_WAKE);
mFakeEventHub->addKey(DEVICE_ID, KEY_MENU, 0, AKEYCODE_MENU, POLICY_FLAG_WAKE);
}
int32_t TouchInputMapperTest::toRawX(float displayX) {
return int32_t(displayX * (RAW_X_MAX - RAW_X_MIN + 1) / DISPLAY_WIDTH + RAW_X_MIN);
}
int32_t TouchInputMapperTest::toRawY(float displayY) {
return int32_t(displayY * (RAW_Y_MAX - RAW_Y_MIN + 1) / DISPLAY_HEIGHT + RAW_Y_MIN);
}
float TouchInputMapperTest::toDisplayX(int32_t rawX) {
return float(rawX - RAW_X_MIN) * DISPLAY_WIDTH / (RAW_X_MAX - RAW_X_MIN + 1);
}
float TouchInputMapperTest::toDisplayY(int32_t rawY) {
return float(rawY - RAW_Y_MIN) * DISPLAY_HEIGHT / (RAW_Y_MAX - RAW_Y_MIN + 1);
}
// --- SingleTouchInputMapperTest ---
class SingleTouchInputMapperTest : public TouchInputMapperTest {
protected:
void prepareButtons();
void prepareAxes(int axes);
void processDown(SingleTouchInputMapper* mapper, int32_t x, int32_t y);
void processMove(SingleTouchInputMapper* mapper, int32_t x, int32_t y);
void processUp(SingleTouchInputMapper* mappery);
void processPressure(SingleTouchInputMapper* mapper, int32_t pressure);
void processToolMajor(SingleTouchInputMapper* mapper, int32_t toolMajor);
void processDistance(SingleTouchInputMapper* mapper, int32_t distance);
void processTilt(SingleTouchInputMapper* mapper, int32_t tiltX, int32_t tiltY);
void processKey(SingleTouchInputMapper* mapper, int32_t code, int32_t value);
void processSync(SingleTouchInputMapper* mapper);
};
void SingleTouchInputMapperTest::prepareButtons() {
mFakeEventHub->addKey(DEVICE_ID, BTN_TOUCH, 0, AKEYCODE_UNKNOWN, 0);
}
void SingleTouchInputMapperTest::prepareAxes(int axes) {
if (axes & POSITION) {
mFakeEventHub->addAbsoluteAxis(DEVICE_ID, ABS_X,
RAW_X_MIN, RAW_X_MAX, 0, 0);
mFakeEventHub->addAbsoluteAxis(DEVICE_ID, ABS_Y,
RAW_Y_MIN, RAW_Y_MAX, 0, 0);
}
if (axes & PRESSURE) {
mFakeEventHub->addAbsoluteAxis(DEVICE_ID, ABS_PRESSURE,
RAW_PRESSURE_MIN, RAW_PRESSURE_MAX, 0, 0);
}
if (axes & TOOL) {
mFakeEventHub->addAbsoluteAxis(DEVICE_ID, ABS_TOOL_WIDTH,
RAW_TOOL_MIN, RAW_TOOL_MAX, 0, 0);
}
if (axes & DISTANCE) {
mFakeEventHub->addAbsoluteAxis(DEVICE_ID, ABS_DISTANCE,
RAW_DISTANCE_MIN, RAW_DISTANCE_MAX, 0, 0);
}
if (axes & TILT) {
mFakeEventHub->addAbsoluteAxis(DEVICE_ID, ABS_TILT_X,
RAW_TILT_MIN, RAW_TILT_MAX, 0, 0);
mFakeEventHub->addAbsoluteAxis(DEVICE_ID, ABS_TILT_Y,
RAW_TILT_MIN, RAW_TILT_MAX, 0, 0);
}
}
void SingleTouchInputMapperTest::processDown(SingleTouchInputMapper* mapper, int32_t x, int32_t y) {
process(mapper, ARBITRARY_TIME, DEVICE_ID, EV_KEY, BTN_TOUCH, 1);
process(mapper, ARBITRARY_TIME, DEVICE_ID, EV_ABS, ABS_X, x);
process(mapper, ARBITRARY_TIME, DEVICE_ID, EV_ABS, ABS_Y, y);
}
void SingleTouchInputMapperTest::processMove(SingleTouchInputMapper* mapper, int32_t x, int32_t y) {
process(mapper, ARBITRARY_TIME, DEVICE_ID, EV_ABS, ABS_X, x);
process(mapper, ARBITRARY_TIME, DEVICE_ID, EV_ABS, ABS_Y, y);
}
void SingleTouchInputMapperTest::processUp(SingleTouchInputMapper* mapper) {
process(mapper, ARBITRARY_TIME, DEVICE_ID, EV_KEY, BTN_TOUCH, 0);
}
void SingleTouchInputMapperTest::processPressure(
SingleTouchInputMapper* mapper, int32_t pressure) {
process(mapper, ARBITRARY_TIME, DEVICE_ID, EV_ABS, ABS_PRESSURE, pressure);
}
void SingleTouchInputMapperTest::processToolMajor(
SingleTouchInputMapper* mapper, int32_t toolMajor) {
process(mapper, ARBITRARY_TIME, DEVICE_ID, EV_ABS, ABS_TOOL_WIDTH, toolMajor);
}
void SingleTouchInputMapperTest::processDistance(
SingleTouchInputMapper* mapper, int32_t distance) {
process(mapper, ARBITRARY_TIME, DEVICE_ID, EV_ABS, ABS_DISTANCE, distance);
}
void SingleTouchInputMapperTest::processTilt(
SingleTouchInputMapper* mapper, int32_t tiltX, int32_t tiltY) {
process(mapper, ARBITRARY_TIME, DEVICE_ID, EV_ABS, ABS_TILT_X, tiltX);
process(mapper, ARBITRARY_TIME, DEVICE_ID, EV_ABS, ABS_TILT_Y, tiltY);
}
void SingleTouchInputMapperTest::processKey(
SingleTouchInputMapper* mapper, int32_t code, int32_t value) {
process(mapper, ARBITRARY_TIME, DEVICE_ID, EV_KEY, code, value);
}
void SingleTouchInputMapperTest::processSync(SingleTouchInputMapper* mapper) {
process(mapper, ARBITRARY_TIME, DEVICE_ID, EV_SYN, SYN_REPORT, 0);
}
TEST_F(SingleTouchInputMapperTest, GetSources_WhenDeviceTypeIsNotSpecifiedAndNotACursor_ReturnsPointer) {
SingleTouchInputMapper* mapper = new SingleTouchInputMapper(mDevice);
prepareButtons();
prepareAxes(POSITION);
addMapperAndConfigure(mapper);
ASSERT_EQ(AINPUT_SOURCE_MOUSE, mapper->getSources());
}
TEST_F(SingleTouchInputMapperTest, GetSources_WhenDeviceTypeIsNotSpecifiedAndIsACursor_ReturnsTouchPad) {
SingleTouchInputMapper* mapper = new SingleTouchInputMapper(mDevice);
mFakeEventHub->addRelativeAxis(DEVICE_ID, REL_X);
mFakeEventHub->addRelativeAxis(DEVICE_ID, REL_Y);
prepareButtons();
prepareAxes(POSITION);
addMapperAndConfigure(mapper);
ASSERT_EQ(AINPUT_SOURCE_TOUCHPAD, mapper->getSources());
}
TEST_F(SingleTouchInputMapperTest, GetSources_WhenDeviceTypeIsTouchPad_ReturnsTouchPad) {
SingleTouchInputMapper* mapper = new SingleTouchInputMapper(mDevice);
prepareButtons();
prepareAxes(POSITION);
addConfigurationProperty("touch.deviceType", "touchPad");
addMapperAndConfigure(mapper);
ASSERT_EQ(AINPUT_SOURCE_TOUCHPAD, mapper->getSources());
}
TEST_F(SingleTouchInputMapperTest, GetSources_WhenDeviceTypeIsTouchScreen_ReturnsTouchScreen) {
SingleTouchInputMapper* mapper = new SingleTouchInputMapper(mDevice);
prepareButtons();
prepareAxes(POSITION);
addConfigurationProperty("touch.deviceType", "touchScreen");
addMapperAndConfigure(mapper);
ASSERT_EQ(AINPUT_SOURCE_TOUCHSCREEN, mapper->getSources());
}
TEST_F(SingleTouchInputMapperTest, GetKeyCodeState) {
SingleTouchInputMapper* mapper = new SingleTouchInputMapper(mDevice);
addConfigurationProperty("touch.deviceType", "touchScreen");
prepareDisplay(DISPLAY_ORIENTATION_0);
prepareButtons();
prepareAxes(POSITION);
prepareVirtualKeys();
addMapperAndConfigure(mapper);
// Unknown key.
ASSERT_EQ(AKEY_STATE_UNKNOWN, mapper->getKeyCodeState(AINPUT_SOURCE_ANY, AKEYCODE_A));
// Virtual key is down.
int32_t x = toRawX(VIRTUAL_KEYS[0].centerX);
int32_t y = toRawY(VIRTUAL_KEYS[0].centerY);
processDown(mapper, x, y);
processSync(mapper);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyKeyWasCalled());
ASSERT_EQ(AKEY_STATE_VIRTUAL, mapper->getKeyCodeState(AINPUT_SOURCE_ANY, AKEYCODE_HOME));
// Virtual key is up.
processUp(mapper);
processSync(mapper);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyKeyWasCalled());
ASSERT_EQ(AKEY_STATE_UP, mapper->getKeyCodeState(AINPUT_SOURCE_ANY, AKEYCODE_HOME));
}
TEST_F(SingleTouchInputMapperTest, GetScanCodeState) {
SingleTouchInputMapper* mapper = new SingleTouchInputMapper(mDevice);
addConfigurationProperty("touch.deviceType", "touchScreen");
prepareDisplay(DISPLAY_ORIENTATION_0);
prepareButtons();
prepareAxes(POSITION);
prepareVirtualKeys();
addMapperAndConfigure(mapper);
// Unknown key.
ASSERT_EQ(AKEY_STATE_UNKNOWN, mapper->getScanCodeState(AINPUT_SOURCE_ANY, KEY_A));
// Virtual key is down.
int32_t x = toRawX(VIRTUAL_KEYS[0].centerX);
int32_t y = toRawY(VIRTUAL_KEYS[0].centerY);
processDown(mapper, x, y);
processSync(mapper);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyKeyWasCalled());
ASSERT_EQ(AKEY_STATE_VIRTUAL, mapper->getScanCodeState(AINPUT_SOURCE_ANY, KEY_HOME));
// Virtual key is up.
processUp(mapper);
processSync(mapper);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyKeyWasCalled());
ASSERT_EQ(AKEY_STATE_UP, mapper->getScanCodeState(AINPUT_SOURCE_ANY, KEY_HOME));
}
TEST_F(SingleTouchInputMapperTest, MarkSupportedKeyCodes) {
SingleTouchInputMapper* mapper = new SingleTouchInputMapper(mDevice);
addConfigurationProperty("touch.deviceType", "touchScreen");
prepareDisplay(DISPLAY_ORIENTATION_0);
prepareButtons();
prepareAxes(POSITION);
prepareVirtualKeys();
addMapperAndConfigure(mapper);
const int32_t keys[2] = { AKEYCODE_HOME, AKEYCODE_A };
uint8_t flags[2] = { 0, 0 };
ASSERT_TRUE(mapper->markSupportedKeyCodes(AINPUT_SOURCE_ANY, 2, keys, flags));
ASSERT_TRUE(flags[0]);
ASSERT_FALSE(flags[1]);
}
TEST_F(SingleTouchInputMapperTest, Process_WhenVirtualKeyIsPressedAndReleasedNormally_SendsKeyDownAndKeyUp) {
SingleTouchInputMapper* mapper = new SingleTouchInputMapper(mDevice);
addConfigurationProperty("touch.deviceType", "touchScreen");
prepareDisplay(DISPLAY_ORIENTATION_0);
prepareButtons();
prepareAxes(POSITION);
prepareVirtualKeys();
addMapperAndConfigure(mapper);
mFakeContext->setGlobalMetaState(AMETA_SHIFT_LEFT_ON | AMETA_SHIFT_ON);
NotifyKeyArgs args;
// Press virtual key.
int32_t x = toRawX(VIRTUAL_KEYS[0].centerX);
int32_t y = toRawY(VIRTUAL_KEYS[0].centerY);
processDown(mapper, x, y);
processSync(mapper);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyKeyWasCalled(&args));
ASSERT_EQ(ARBITRARY_TIME, args.eventTime);
ASSERT_EQ(DEVICE_ID, args.deviceId);
ASSERT_EQ(AINPUT_SOURCE_KEYBOARD, args.source);
ASSERT_EQ(POLICY_FLAG_VIRTUAL, args.policyFlags);
ASSERT_EQ(AKEY_EVENT_ACTION_DOWN, args.action);
ASSERT_EQ(AKEY_EVENT_FLAG_FROM_SYSTEM | AKEY_EVENT_FLAG_VIRTUAL_HARD_KEY, args.flags);
ASSERT_EQ(AKEYCODE_HOME, args.keyCode);
ASSERT_EQ(KEY_HOME, args.scanCode);
ASSERT_EQ(AMETA_SHIFT_LEFT_ON | AMETA_SHIFT_ON, args.metaState);
ASSERT_EQ(ARBITRARY_TIME, args.downTime);
// Release virtual key.
processUp(mapper);
processSync(mapper);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyKeyWasCalled(&args));
ASSERT_EQ(ARBITRARY_TIME, args.eventTime);
ASSERT_EQ(DEVICE_ID, args.deviceId);
ASSERT_EQ(AINPUT_SOURCE_KEYBOARD, args.source);
ASSERT_EQ(POLICY_FLAG_VIRTUAL, args.policyFlags);
ASSERT_EQ(AKEY_EVENT_ACTION_UP, args.action);
ASSERT_EQ(AKEY_EVENT_FLAG_FROM_SYSTEM | AKEY_EVENT_FLAG_VIRTUAL_HARD_KEY, args.flags);
ASSERT_EQ(AKEYCODE_HOME, args.keyCode);
ASSERT_EQ(KEY_HOME, args.scanCode);
ASSERT_EQ(AMETA_SHIFT_LEFT_ON | AMETA_SHIFT_ON, args.metaState);
ASSERT_EQ(ARBITRARY_TIME, args.downTime);
// Should not have sent any motions.
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyKeyWasNotCalled());
}
TEST_F(SingleTouchInputMapperTest, Process_WhenVirtualKeyIsPressedAndMovedOutOfBounds_SendsKeyDownAndKeyCancel) {
SingleTouchInputMapper* mapper = new SingleTouchInputMapper(mDevice);
addConfigurationProperty("touch.deviceType", "touchScreen");
prepareDisplay(DISPLAY_ORIENTATION_0);
prepareButtons();
prepareAxes(POSITION);
prepareVirtualKeys();
addMapperAndConfigure(mapper);
mFakeContext->setGlobalMetaState(AMETA_SHIFT_LEFT_ON | AMETA_SHIFT_ON);
NotifyKeyArgs keyArgs;
// Press virtual key.
int32_t x = toRawX(VIRTUAL_KEYS[0].centerX);
int32_t y = toRawY(VIRTUAL_KEYS[0].centerY);
processDown(mapper, x, y);
processSync(mapper);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyKeyWasCalled(&keyArgs));
ASSERT_EQ(ARBITRARY_TIME, keyArgs.eventTime);
ASSERT_EQ(DEVICE_ID, keyArgs.deviceId);
ASSERT_EQ(AINPUT_SOURCE_KEYBOARD, keyArgs.source);
ASSERT_EQ(POLICY_FLAG_VIRTUAL, keyArgs.policyFlags);
ASSERT_EQ(AKEY_EVENT_ACTION_DOWN, keyArgs.action);
ASSERT_EQ(AKEY_EVENT_FLAG_FROM_SYSTEM | AKEY_EVENT_FLAG_VIRTUAL_HARD_KEY, keyArgs.flags);
ASSERT_EQ(AKEYCODE_HOME, keyArgs.keyCode);
ASSERT_EQ(KEY_HOME, keyArgs.scanCode);
ASSERT_EQ(AMETA_SHIFT_LEFT_ON | AMETA_SHIFT_ON, keyArgs.metaState);
ASSERT_EQ(ARBITRARY_TIME, keyArgs.downTime);
// Move out of bounds. This should generate a cancel and a pointer down since we moved
// into the display area.
y -= 100;
processMove(mapper, x, y);
processSync(mapper);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyKeyWasCalled(&keyArgs));
ASSERT_EQ(ARBITRARY_TIME, keyArgs.eventTime);
ASSERT_EQ(DEVICE_ID, keyArgs.deviceId);
ASSERT_EQ(AINPUT_SOURCE_KEYBOARD, keyArgs.source);
ASSERT_EQ(POLICY_FLAG_VIRTUAL, keyArgs.policyFlags);
ASSERT_EQ(AKEY_EVENT_ACTION_UP, keyArgs.action);
ASSERT_EQ(AKEY_EVENT_FLAG_FROM_SYSTEM | AKEY_EVENT_FLAG_VIRTUAL_HARD_KEY
| AKEY_EVENT_FLAG_CANCELED, keyArgs.flags);
ASSERT_EQ(AKEYCODE_HOME, keyArgs.keyCode);
ASSERT_EQ(KEY_HOME, keyArgs.scanCode);
ASSERT_EQ(AMETA_SHIFT_LEFT_ON | AMETA_SHIFT_ON, keyArgs.metaState);
ASSERT_EQ(ARBITRARY_TIME, keyArgs.downTime);
NotifyMotionArgs motionArgs;
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs));
ASSERT_EQ(ARBITRARY_TIME, motionArgs.eventTime);
ASSERT_EQ(DEVICE_ID, motionArgs.deviceId);
ASSERT_EQ(AINPUT_SOURCE_TOUCHSCREEN, motionArgs.source);
ASSERT_EQ(uint32_t(0), motionArgs.policyFlags);
ASSERT_EQ(AMOTION_EVENT_ACTION_DOWN, motionArgs.action);
ASSERT_EQ(0, motionArgs.flags);
ASSERT_EQ(AMETA_SHIFT_LEFT_ON | AMETA_SHIFT_ON, motionArgs.metaState);
ASSERT_EQ(0, motionArgs.buttonState);
ASSERT_EQ(0, motionArgs.edgeFlags);
ASSERT_EQ(size_t(1), motionArgs.pointerCount);
ASSERT_EQ(0, motionArgs.pointerProperties[0].id);
ASSERT_EQ(AMOTION_EVENT_TOOL_TYPE_FINGER, motionArgs.pointerProperties[0].toolType);
ASSERT_NO_FATAL_FAILURE(assertPointerCoords(motionArgs.pointerCoords[0],
toDisplayX(x), toDisplayY(y), 1, 0, 0, 0, 0, 0, 0, 0));
ASSERT_NEAR(X_PRECISION, motionArgs.xPrecision, EPSILON);
ASSERT_NEAR(Y_PRECISION, motionArgs.yPrecision, EPSILON);
ASSERT_EQ(ARBITRARY_TIME, motionArgs.downTime);
// Keep moving out of bounds. Should generate a pointer move.
y -= 50;
processMove(mapper, x, y);
processSync(mapper);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs));
ASSERT_EQ(ARBITRARY_TIME, motionArgs.eventTime);
ASSERT_EQ(DEVICE_ID, motionArgs.deviceId);
ASSERT_EQ(AINPUT_SOURCE_TOUCHSCREEN, motionArgs.source);
ASSERT_EQ(uint32_t(0), motionArgs.policyFlags);
ASSERT_EQ(AMOTION_EVENT_ACTION_MOVE, motionArgs.action);
ASSERT_EQ(0, motionArgs.flags);
ASSERT_EQ(AMETA_SHIFT_LEFT_ON | AMETA_SHIFT_ON, motionArgs.metaState);
ASSERT_EQ(0, motionArgs.buttonState);
ASSERT_EQ(0, motionArgs.edgeFlags);
ASSERT_EQ(size_t(1), motionArgs.pointerCount);
ASSERT_EQ(0, motionArgs.pointerProperties[0].id);
ASSERT_EQ(AMOTION_EVENT_TOOL_TYPE_FINGER, motionArgs.pointerProperties[0].toolType);
ASSERT_NO_FATAL_FAILURE(assertPointerCoords(motionArgs.pointerCoords[0],
toDisplayX(x), toDisplayY(y), 1, 0, 0, 0, 0, 0, 0, 0));
ASSERT_NEAR(X_PRECISION, motionArgs.xPrecision, EPSILON);
ASSERT_NEAR(Y_PRECISION, motionArgs.yPrecision, EPSILON);
ASSERT_EQ(ARBITRARY_TIME, motionArgs.downTime);
// Release out of bounds. Should generate a pointer up.
processUp(mapper);
processSync(mapper);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs));
ASSERT_EQ(ARBITRARY_TIME, motionArgs.eventTime);
ASSERT_EQ(DEVICE_ID, motionArgs.deviceId);
ASSERT_EQ(AINPUT_SOURCE_TOUCHSCREEN, motionArgs.source);
ASSERT_EQ(uint32_t(0), motionArgs.policyFlags);
ASSERT_EQ(AMOTION_EVENT_ACTION_UP, motionArgs.action);
ASSERT_EQ(0, motionArgs.flags);
ASSERT_EQ(AMETA_SHIFT_LEFT_ON | AMETA_SHIFT_ON, motionArgs.metaState);
ASSERT_EQ(0, motionArgs.buttonState);
ASSERT_EQ(0, motionArgs.edgeFlags);
ASSERT_EQ(size_t(1), motionArgs.pointerCount);
ASSERT_EQ(0, motionArgs.pointerProperties[0].id);
ASSERT_EQ(AMOTION_EVENT_TOOL_TYPE_FINGER, motionArgs.pointerProperties[0].toolType);
ASSERT_NO_FATAL_FAILURE(assertPointerCoords(motionArgs.pointerCoords[0],
toDisplayX(x), toDisplayY(y), 1, 0, 0, 0, 0, 0, 0, 0));
ASSERT_NEAR(X_PRECISION, motionArgs.xPrecision, EPSILON);
ASSERT_NEAR(Y_PRECISION, motionArgs.yPrecision, EPSILON);
ASSERT_EQ(ARBITRARY_TIME, motionArgs.downTime);
// Should not have sent any more keys or motions.
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyKeyWasNotCalled());
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasNotCalled());
}
TEST_F(SingleTouchInputMapperTest, Process_WhenTouchStartsOutsideDisplayAndMovesIn_SendsDownAsTouchEntersDisplay) {
SingleTouchInputMapper* mapper = new SingleTouchInputMapper(mDevice);
addConfigurationProperty("touch.deviceType", "touchScreen");
prepareDisplay(DISPLAY_ORIENTATION_0);
prepareButtons();
prepareAxes(POSITION);
prepareVirtualKeys();
addMapperAndConfigure(mapper);
mFakeContext->setGlobalMetaState(AMETA_SHIFT_LEFT_ON | AMETA_SHIFT_ON);
NotifyMotionArgs motionArgs;
// Initially go down out of bounds.
int32_t x = -10;
int32_t y = -10;
processDown(mapper, x, y);
processSync(mapper);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasNotCalled());
// Move into the display area. Should generate a pointer down.
x = 50;
y = 75;
processMove(mapper, x, y);
processSync(mapper);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs));
ASSERT_EQ(ARBITRARY_TIME, motionArgs.eventTime);
ASSERT_EQ(DEVICE_ID, motionArgs.deviceId);
ASSERT_EQ(AINPUT_SOURCE_TOUCHSCREEN, motionArgs.source);
ASSERT_EQ(uint32_t(0), motionArgs.policyFlags);
ASSERT_EQ(AMOTION_EVENT_ACTION_DOWN, motionArgs.action);
ASSERT_EQ(0, motionArgs.flags);
ASSERT_EQ(AMETA_SHIFT_LEFT_ON | AMETA_SHIFT_ON, motionArgs.metaState);
ASSERT_EQ(0, motionArgs.buttonState);
ASSERT_EQ(0, motionArgs.edgeFlags);
ASSERT_EQ(size_t(1), motionArgs.pointerCount);
ASSERT_EQ(0, motionArgs.pointerProperties[0].id);
ASSERT_EQ(AMOTION_EVENT_TOOL_TYPE_FINGER, motionArgs.pointerProperties[0].toolType);
ASSERT_NO_FATAL_FAILURE(assertPointerCoords(motionArgs.pointerCoords[0],
toDisplayX(x), toDisplayY(y), 1, 0, 0, 0, 0, 0, 0, 0));
ASSERT_NEAR(X_PRECISION, motionArgs.xPrecision, EPSILON);
ASSERT_NEAR(Y_PRECISION, motionArgs.yPrecision, EPSILON);
ASSERT_EQ(ARBITRARY_TIME, motionArgs.downTime);
// Release. Should generate a pointer up.
processUp(mapper);
processSync(mapper);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs));
ASSERT_EQ(ARBITRARY_TIME, motionArgs.eventTime);
ASSERT_EQ(DEVICE_ID, motionArgs.deviceId);
ASSERT_EQ(AINPUT_SOURCE_TOUCHSCREEN, motionArgs.source);
ASSERT_EQ(uint32_t(0), motionArgs.policyFlags);
ASSERT_EQ(AMOTION_EVENT_ACTION_UP, motionArgs.action);
ASSERT_EQ(0, motionArgs.flags);
ASSERT_EQ(AMETA_SHIFT_LEFT_ON | AMETA_SHIFT_ON, motionArgs.metaState);
ASSERT_EQ(0, motionArgs.buttonState);
ASSERT_EQ(0, motionArgs.edgeFlags);
ASSERT_EQ(size_t(1), motionArgs.pointerCount);
ASSERT_EQ(0, motionArgs.pointerProperties[0].id);
ASSERT_EQ(AMOTION_EVENT_TOOL_TYPE_FINGER, motionArgs.pointerProperties[0].toolType);
ASSERT_NO_FATAL_FAILURE(assertPointerCoords(motionArgs.pointerCoords[0],
toDisplayX(x), toDisplayY(y), 1, 0, 0, 0, 0, 0, 0, 0));
ASSERT_NEAR(X_PRECISION, motionArgs.xPrecision, EPSILON);
ASSERT_NEAR(Y_PRECISION, motionArgs.yPrecision, EPSILON);
ASSERT_EQ(ARBITRARY_TIME, motionArgs.downTime);
// Should not have sent any more keys or motions.
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyKeyWasNotCalled());
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasNotCalled());
}
TEST_F(SingleTouchInputMapperTest, Process_NormalSingleTouchGesture) {
SingleTouchInputMapper* mapper = new SingleTouchInputMapper(mDevice);
addConfigurationProperty("touch.deviceType", "touchScreen");
prepareDisplay(DISPLAY_ORIENTATION_0);
prepareButtons();
prepareAxes(POSITION);
prepareVirtualKeys();
addMapperAndConfigure(mapper);
mFakeContext->setGlobalMetaState(AMETA_SHIFT_LEFT_ON | AMETA_SHIFT_ON);
NotifyMotionArgs motionArgs;
// Down.
int32_t x = 100;
int32_t y = 125;
processDown(mapper, x, y);
processSync(mapper);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs));
ASSERT_EQ(ARBITRARY_TIME, motionArgs.eventTime);
ASSERT_EQ(DEVICE_ID, motionArgs.deviceId);
ASSERT_EQ(AINPUT_SOURCE_TOUCHSCREEN, motionArgs.source);
ASSERT_EQ(uint32_t(0), motionArgs.policyFlags);
ASSERT_EQ(AMOTION_EVENT_ACTION_DOWN, motionArgs.action);
ASSERT_EQ(0, motionArgs.flags);
ASSERT_EQ(AMETA_SHIFT_LEFT_ON | AMETA_SHIFT_ON, motionArgs.metaState);
ASSERT_EQ(0, motionArgs.buttonState);
ASSERT_EQ(0, motionArgs.edgeFlags);
ASSERT_EQ(size_t(1), motionArgs.pointerCount);
ASSERT_EQ(0, motionArgs.pointerProperties[0].id);
ASSERT_EQ(AMOTION_EVENT_TOOL_TYPE_FINGER, motionArgs.pointerProperties[0].toolType);
ASSERT_NO_FATAL_FAILURE(assertPointerCoords(motionArgs.pointerCoords[0],
toDisplayX(x), toDisplayY(y), 1, 0, 0, 0, 0, 0, 0, 0));
ASSERT_NEAR(X_PRECISION, motionArgs.xPrecision, EPSILON);
ASSERT_NEAR(Y_PRECISION, motionArgs.yPrecision, EPSILON);
ASSERT_EQ(ARBITRARY_TIME, motionArgs.downTime);
// Move.
x += 50;
y += 75;
processMove(mapper, x, y);
processSync(mapper);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs));
ASSERT_EQ(ARBITRARY_TIME, motionArgs.eventTime);
ASSERT_EQ(DEVICE_ID, motionArgs.deviceId);
ASSERT_EQ(AINPUT_SOURCE_TOUCHSCREEN, motionArgs.source);
ASSERT_EQ(uint32_t(0), motionArgs.policyFlags);
ASSERT_EQ(AMOTION_EVENT_ACTION_MOVE, motionArgs.action);
ASSERT_EQ(0, motionArgs.flags);
ASSERT_EQ(AMETA_SHIFT_LEFT_ON | AMETA_SHIFT_ON, motionArgs.metaState);
ASSERT_EQ(0, motionArgs.buttonState);
ASSERT_EQ(0, motionArgs.edgeFlags);
ASSERT_EQ(size_t(1), motionArgs.pointerCount);
ASSERT_EQ(0, motionArgs.pointerProperties[0].id);
ASSERT_EQ(AMOTION_EVENT_TOOL_TYPE_FINGER, motionArgs.pointerProperties[0].toolType);
ASSERT_NO_FATAL_FAILURE(assertPointerCoords(motionArgs.pointerCoords[0],
toDisplayX(x), toDisplayY(y), 1, 0, 0, 0, 0, 0, 0, 0));
ASSERT_NEAR(X_PRECISION, motionArgs.xPrecision, EPSILON);
ASSERT_NEAR(Y_PRECISION, motionArgs.yPrecision, EPSILON);
ASSERT_EQ(ARBITRARY_TIME, motionArgs.downTime);
// Up.
processUp(mapper);
processSync(mapper);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs));
ASSERT_EQ(ARBITRARY_TIME, motionArgs.eventTime);
ASSERT_EQ(DEVICE_ID, motionArgs.deviceId);
ASSERT_EQ(AINPUT_SOURCE_TOUCHSCREEN, motionArgs.source);
ASSERT_EQ(uint32_t(0), motionArgs.policyFlags);
ASSERT_EQ(AMOTION_EVENT_ACTION_UP, motionArgs.action);
ASSERT_EQ(0, motionArgs.flags);
ASSERT_EQ(AMETA_SHIFT_LEFT_ON | AMETA_SHIFT_ON, motionArgs.metaState);
ASSERT_EQ(0, motionArgs.buttonState);
ASSERT_EQ(0, motionArgs.edgeFlags);
ASSERT_EQ(size_t(1), motionArgs.pointerCount);
ASSERT_EQ(0, motionArgs.pointerProperties[0].id);
ASSERT_EQ(AMOTION_EVENT_TOOL_TYPE_FINGER, motionArgs.pointerProperties[0].toolType);
ASSERT_NO_FATAL_FAILURE(assertPointerCoords(motionArgs.pointerCoords[0],
toDisplayX(x), toDisplayY(y), 1, 0, 0, 0, 0, 0, 0, 0));
ASSERT_NEAR(X_PRECISION, motionArgs.xPrecision, EPSILON);
ASSERT_NEAR(Y_PRECISION, motionArgs.yPrecision, EPSILON);
ASSERT_EQ(ARBITRARY_TIME, motionArgs.downTime);
// Should not have sent any more keys or motions.
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyKeyWasNotCalled());
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasNotCalled());
}
TEST_F(SingleTouchInputMapperTest, Process_WhenNotOrientationAware_DoesNotRotateMotions) {
SingleTouchInputMapper* mapper = new SingleTouchInputMapper(mDevice);
addConfigurationProperty("touch.deviceType", "touchScreen");
prepareButtons();
prepareAxes(POSITION);
addConfigurationProperty("touch.orientationAware", "0");
addMapperAndConfigure(mapper);
NotifyMotionArgs args;
// Rotation 90.
prepareDisplay(DISPLAY_ORIENTATION_90);
processDown(mapper, toRawX(50), toRawY(75));
processSync(mapper);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&args));
ASSERT_NEAR(50, args.pointerCoords[0].getAxisValue(AMOTION_EVENT_AXIS_X), 1);
ASSERT_NEAR(75, args.pointerCoords[0].getAxisValue(AMOTION_EVENT_AXIS_Y), 1);
processUp(mapper);
processSync(mapper);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled());
}
TEST_F(SingleTouchInputMapperTest, Process_WhenOrientationAware_RotatesMotions) {
SingleTouchInputMapper* mapper = new SingleTouchInputMapper(mDevice);
addConfigurationProperty("touch.deviceType", "touchScreen");
prepareButtons();
prepareAxes(POSITION);
addMapperAndConfigure(mapper);
NotifyMotionArgs args;
// Rotation 0.
prepareDisplay(DISPLAY_ORIENTATION_0);
processDown(mapper, toRawX(50), toRawY(75));
processSync(mapper);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&args));
ASSERT_NEAR(50, args.pointerCoords[0].getAxisValue(AMOTION_EVENT_AXIS_X), 1);
ASSERT_NEAR(75, args.pointerCoords[0].getAxisValue(AMOTION_EVENT_AXIS_Y), 1);
processUp(mapper);
processSync(mapper);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled());
// Rotation 90.
prepareDisplay(DISPLAY_ORIENTATION_90);
processDown(mapper, RAW_X_MAX - toRawX(75) + RAW_X_MIN, toRawY(50));
processSync(mapper);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&args));
ASSERT_NEAR(50, args.pointerCoords[0].getAxisValue(AMOTION_EVENT_AXIS_X), 1);
ASSERT_NEAR(75, args.pointerCoords[0].getAxisValue(AMOTION_EVENT_AXIS_Y), 1);
processUp(mapper);
processSync(mapper);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled());
// Rotation 180.
prepareDisplay(DISPLAY_ORIENTATION_180);
processDown(mapper, RAW_X_MAX - toRawX(50) + RAW_X_MIN, RAW_Y_MAX - toRawY(75) + RAW_Y_MIN);
processSync(mapper);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&args));
ASSERT_NEAR(50, args.pointerCoords[0].getAxisValue(AMOTION_EVENT_AXIS_X), 1);
ASSERT_NEAR(75, args.pointerCoords[0].getAxisValue(AMOTION_EVENT_AXIS_Y), 1);
processUp(mapper);
processSync(mapper);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled());
// Rotation 270.
prepareDisplay(DISPLAY_ORIENTATION_270);
processDown(mapper, toRawX(75), RAW_Y_MAX - toRawY(50) + RAW_Y_MIN);
processSync(mapper);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&args));
ASSERT_NEAR(50, args.pointerCoords[0].getAxisValue(AMOTION_EVENT_AXIS_X), 1);
ASSERT_NEAR(75, args.pointerCoords[0].getAxisValue(AMOTION_EVENT_AXIS_Y), 1);
processUp(mapper);
processSync(mapper);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled());
}
TEST_F(SingleTouchInputMapperTest, Process_AllAxes_DefaultCalibration) {
SingleTouchInputMapper* mapper = new SingleTouchInputMapper(mDevice);
addConfigurationProperty("touch.deviceType", "touchScreen");
prepareDisplay(DISPLAY_ORIENTATION_0);
prepareButtons();
prepareAxes(POSITION | PRESSURE | TOOL | DISTANCE | TILT);
addMapperAndConfigure(mapper);
// These calculations are based on the input device calibration documentation.
int32_t rawX = 100;
int32_t rawY = 200;
int32_t rawPressure = 10;
int32_t rawToolMajor = 12;
int32_t rawDistance = 2;
int32_t rawTiltX = 30;
int32_t rawTiltY = 110;
float x = toDisplayX(rawX);
float y = toDisplayY(rawY);
float pressure = float(rawPressure) / RAW_PRESSURE_MAX;
float size = float(rawToolMajor) / RAW_TOOL_MAX;
float tool = float(rawToolMajor) * GEOMETRIC_SCALE;
float distance = float(rawDistance);
float tiltCenter = (RAW_TILT_MAX + RAW_TILT_MIN) * 0.5f;
float tiltScale = M_PI / 180;
float tiltXAngle = (rawTiltX - tiltCenter) * tiltScale;
float tiltYAngle = (rawTiltY - tiltCenter) * tiltScale;
float orientation = atan2f(-sinf(tiltXAngle), sinf(tiltYAngle));
float tilt = acosf(cosf(tiltXAngle) * cosf(tiltYAngle));
processDown(mapper, rawX, rawY);
processPressure(mapper, rawPressure);
processToolMajor(mapper, rawToolMajor);
processDistance(mapper, rawDistance);
processTilt(mapper, rawTiltX, rawTiltY);
processSync(mapper);
NotifyMotionArgs args;
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&args));
ASSERT_NO_FATAL_FAILURE(assertPointerCoords(args.pointerCoords[0],
x, y, pressure, size, tool, tool, tool, tool, orientation, distance));
ASSERT_EQ(tilt, args.pointerCoords[0].getAxisValue(AMOTION_EVENT_AXIS_TILT));
}
TEST_F(SingleTouchInputMapperTest, Process_ShouldHandleAllButtons) {
SingleTouchInputMapper* mapper = new SingleTouchInputMapper(mDevice);
addConfigurationProperty("touch.deviceType", "touchScreen");
prepareDisplay(DISPLAY_ORIENTATION_0);
prepareButtons();
prepareAxes(POSITION);
addMapperAndConfigure(mapper);
NotifyMotionArgs motionArgs;
NotifyKeyArgs keyArgs;
processDown(mapper, 100, 200);
processSync(mapper);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs));
ASSERT_EQ(AMOTION_EVENT_ACTION_DOWN, motionArgs.action);
ASSERT_EQ(0, motionArgs.buttonState);
// press BTN_LEFT, release BTN_LEFT
processKey(mapper, BTN_LEFT, 1);
processSync(mapper);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs));
ASSERT_EQ(AMOTION_EVENT_ACTION_MOVE, motionArgs.action);
ASSERT_EQ(AMOTION_EVENT_BUTTON_PRIMARY, motionArgs.buttonState);
processKey(mapper, BTN_LEFT, 0);
processSync(mapper);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs));
ASSERT_EQ(0, motionArgs.buttonState);
ASSERT_EQ(AMOTION_EVENT_ACTION_MOVE, motionArgs.action);
// press BTN_RIGHT + BTN_MIDDLE, release BTN_RIGHT, release BTN_MIDDLE
processKey(mapper, BTN_RIGHT, 1);
processKey(mapper, BTN_MIDDLE, 1);
processSync(mapper);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs));
ASSERT_EQ(AMOTION_EVENT_ACTION_MOVE, motionArgs.action);
ASSERT_EQ(AMOTION_EVENT_BUTTON_SECONDARY | AMOTION_EVENT_BUTTON_TERTIARY,
motionArgs.buttonState);
processKey(mapper, BTN_RIGHT, 0);
processSync(mapper);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs));
ASSERT_EQ(AMOTION_EVENT_BUTTON_TERTIARY, motionArgs.buttonState);
ASSERT_EQ(AMOTION_EVENT_ACTION_MOVE, motionArgs.action);
processKey(mapper, BTN_MIDDLE, 0);
processSync(mapper);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs));
ASSERT_EQ(0, motionArgs.buttonState);
ASSERT_EQ(AMOTION_EVENT_ACTION_MOVE, motionArgs.action);
// press BTN_BACK, release BTN_BACK
processKey(mapper, BTN_BACK, 1);
processSync(mapper);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyKeyWasCalled(&keyArgs));
ASSERT_EQ(AKEY_EVENT_ACTION_DOWN, keyArgs.action);
ASSERT_EQ(AKEYCODE_BACK, keyArgs.keyCode);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs));
ASSERT_EQ(AMOTION_EVENT_BUTTON_BACK, motionArgs.buttonState);
ASSERT_EQ(AMOTION_EVENT_ACTION_MOVE, motionArgs.action);
processKey(mapper, BTN_BACK, 0);
processSync(mapper);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs));
ASSERT_EQ(0, motionArgs.buttonState);
ASSERT_EQ(AMOTION_EVENT_ACTION_MOVE, motionArgs.action);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyKeyWasCalled(&keyArgs));
ASSERT_EQ(AKEY_EVENT_ACTION_UP, keyArgs.action);
ASSERT_EQ(AKEYCODE_BACK, keyArgs.keyCode);
// press BTN_SIDE, release BTN_SIDE
processKey(mapper, BTN_SIDE, 1);
processSync(mapper);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyKeyWasCalled(&keyArgs));
ASSERT_EQ(AKEY_EVENT_ACTION_DOWN, keyArgs.action);
ASSERT_EQ(AKEYCODE_BACK, keyArgs.keyCode);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs));
ASSERT_EQ(AMOTION_EVENT_BUTTON_BACK, motionArgs.buttonState);
ASSERT_EQ(AMOTION_EVENT_ACTION_MOVE, motionArgs.action);
processKey(mapper, BTN_SIDE, 0);
processSync(mapper);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs));
ASSERT_EQ(0, motionArgs.buttonState);
ASSERT_EQ(AMOTION_EVENT_ACTION_MOVE, motionArgs.action);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyKeyWasCalled(&keyArgs));
ASSERT_EQ(AKEY_EVENT_ACTION_UP, keyArgs.action);
ASSERT_EQ(AKEYCODE_BACK, keyArgs.keyCode);
// press BTN_FORWARD, release BTN_FORWARD
processKey(mapper, BTN_FORWARD, 1);
processSync(mapper);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyKeyWasCalled(&keyArgs));
ASSERT_EQ(AKEY_EVENT_ACTION_DOWN, keyArgs.action);
ASSERT_EQ(AKEYCODE_FORWARD, keyArgs.keyCode);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs));
ASSERT_EQ(AMOTION_EVENT_BUTTON_FORWARD, motionArgs.buttonState);
ASSERT_EQ(AMOTION_EVENT_ACTION_MOVE, motionArgs.action);
processKey(mapper, BTN_FORWARD, 0);
processSync(mapper);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs));
ASSERT_EQ(0, motionArgs.buttonState);
ASSERT_EQ(AMOTION_EVENT_ACTION_MOVE, motionArgs.action);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyKeyWasCalled(&keyArgs));
ASSERT_EQ(AKEY_EVENT_ACTION_UP, keyArgs.action);
ASSERT_EQ(AKEYCODE_FORWARD, keyArgs.keyCode);
// press BTN_EXTRA, release BTN_EXTRA
processKey(mapper, BTN_EXTRA, 1);
processSync(mapper);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyKeyWasCalled(&keyArgs));
ASSERT_EQ(AKEY_EVENT_ACTION_DOWN, keyArgs.action);
ASSERT_EQ(AKEYCODE_FORWARD, keyArgs.keyCode);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs));
ASSERT_EQ(AMOTION_EVENT_BUTTON_FORWARD, motionArgs.buttonState);
ASSERT_EQ(AMOTION_EVENT_ACTION_MOVE, motionArgs.action);
processKey(mapper, BTN_EXTRA, 0);
processSync(mapper);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs));
ASSERT_EQ(0, motionArgs.buttonState);
ASSERT_EQ(AMOTION_EVENT_ACTION_MOVE, motionArgs.action);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyKeyWasCalled(&keyArgs));
ASSERT_EQ(AKEY_EVENT_ACTION_UP, keyArgs.action);
ASSERT_EQ(AKEYCODE_FORWARD, keyArgs.keyCode);
// press BTN_STYLUS, release BTN_STYLUS
processKey(mapper, BTN_STYLUS, 1);
processSync(mapper);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs));
ASSERT_EQ(AMOTION_EVENT_ACTION_MOVE, motionArgs.action);
ASSERT_EQ(AMOTION_EVENT_BUTTON_SECONDARY, motionArgs.buttonState);
processKey(mapper, BTN_STYLUS, 0);
processSync(mapper);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs));
ASSERT_EQ(0, motionArgs.buttonState);
ASSERT_EQ(AMOTION_EVENT_ACTION_MOVE, motionArgs.action);
// press BTN_STYLUS2, release BTN_STYLUS2
processKey(mapper, BTN_STYLUS2, 1);
processSync(mapper);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs));
ASSERT_EQ(AMOTION_EVENT_ACTION_MOVE, motionArgs.action);
ASSERT_EQ(AMOTION_EVENT_BUTTON_TERTIARY, motionArgs.buttonState);
processKey(mapper, BTN_STYLUS2, 0);
processSync(mapper);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs));
ASSERT_EQ(0, motionArgs.buttonState);
ASSERT_EQ(AMOTION_EVENT_ACTION_MOVE, motionArgs.action);
// release touch
processUp(mapper);
processSync(mapper);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs));
ASSERT_EQ(AMOTION_EVENT_ACTION_UP, motionArgs.action);
ASSERT_EQ(0, motionArgs.buttonState);
}
TEST_F(SingleTouchInputMapperTest, Process_ShouldHandleAllToolTypes) {
SingleTouchInputMapper* mapper = new SingleTouchInputMapper(mDevice);
addConfigurationProperty("touch.deviceType", "touchScreen");
prepareDisplay(DISPLAY_ORIENTATION_0);
prepareButtons();
prepareAxes(POSITION);
addMapperAndConfigure(mapper);
NotifyMotionArgs motionArgs;
// default tool type is finger
processDown(mapper, 100, 200);
processSync(mapper);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs));
ASSERT_EQ(AMOTION_EVENT_ACTION_DOWN, motionArgs.action);
ASSERT_EQ(AMOTION_EVENT_TOOL_TYPE_FINGER, motionArgs.pointerProperties[0].toolType);
// eraser
processKey(mapper, BTN_TOOL_RUBBER, 1);
processSync(mapper);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs));
ASSERT_EQ(AMOTION_EVENT_ACTION_MOVE, motionArgs.action);
ASSERT_EQ(AMOTION_EVENT_TOOL_TYPE_ERASER, motionArgs.pointerProperties[0].toolType);
// stylus
processKey(mapper, BTN_TOOL_RUBBER, 0);
processKey(mapper, BTN_TOOL_PEN, 1);
processSync(mapper);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs));
ASSERT_EQ(AMOTION_EVENT_ACTION_MOVE, motionArgs.action);
ASSERT_EQ(AMOTION_EVENT_TOOL_TYPE_STYLUS, motionArgs.pointerProperties[0].toolType);
// brush
processKey(mapper, BTN_TOOL_PEN, 0);
processKey(mapper, BTN_TOOL_BRUSH, 1);
processSync(mapper);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs));
ASSERT_EQ(AMOTION_EVENT_ACTION_MOVE, motionArgs.action);
ASSERT_EQ(AMOTION_EVENT_TOOL_TYPE_STYLUS, motionArgs.pointerProperties[0].toolType);
// pencil
processKey(mapper, BTN_TOOL_BRUSH, 0);
processKey(mapper, BTN_TOOL_PENCIL, 1);
processSync(mapper);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs));
ASSERT_EQ(AMOTION_EVENT_ACTION_MOVE, motionArgs.action);
ASSERT_EQ(AMOTION_EVENT_TOOL_TYPE_STYLUS, motionArgs.pointerProperties[0].toolType);
// airbrush
processKey(mapper, BTN_TOOL_PENCIL, 0);
processKey(mapper, BTN_TOOL_AIRBRUSH, 1);
processSync(mapper);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs));
ASSERT_EQ(AMOTION_EVENT_ACTION_MOVE, motionArgs.action);
ASSERT_EQ(AMOTION_EVENT_TOOL_TYPE_STYLUS, motionArgs.pointerProperties[0].toolType);
// mouse
processKey(mapper, BTN_TOOL_AIRBRUSH, 0);
processKey(mapper, BTN_TOOL_MOUSE, 1);
processSync(mapper);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs));
ASSERT_EQ(AMOTION_EVENT_ACTION_MOVE, motionArgs.action);
ASSERT_EQ(AMOTION_EVENT_TOOL_TYPE_MOUSE, motionArgs.pointerProperties[0].toolType);
// lens
processKey(mapper, BTN_TOOL_MOUSE, 0);
processKey(mapper, BTN_TOOL_LENS, 1);
processSync(mapper);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs));
ASSERT_EQ(AMOTION_EVENT_ACTION_MOVE, motionArgs.action);
ASSERT_EQ(AMOTION_EVENT_TOOL_TYPE_MOUSE, motionArgs.pointerProperties[0].toolType);
// double-tap
processKey(mapper, BTN_TOOL_LENS, 0);
processKey(mapper, BTN_TOOL_DOUBLETAP, 1);
processSync(mapper);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs));
ASSERT_EQ(AMOTION_EVENT_ACTION_MOVE, motionArgs.action);
ASSERT_EQ(AMOTION_EVENT_TOOL_TYPE_FINGER, motionArgs.pointerProperties[0].toolType);
// triple-tap
processKey(mapper, BTN_TOOL_DOUBLETAP, 0);
processKey(mapper, BTN_TOOL_TRIPLETAP, 1);
processSync(mapper);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs));
ASSERT_EQ(AMOTION_EVENT_ACTION_MOVE, motionArgs.action);
ASSERT_EQ(AMOTION_EVENT_TOOL_TYPE_FINGER, motionArgs.pointerProperties[0].toolType);
// quad-tap
processKey(mapper, BTN_TOOL_TRIPLETAP, 0);
processKey(mapper, BTN_TOOL_QUADTAP, 1);
processSync(mapper);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs));
ASSERT_EQ(AMOTION_EVENT_ACTION_MOVE, motionArgs.action);
ASSERT_EQ(AMOTION_EVENT_TOOL_TYPE_FINGER, motionArgs.pointerProperties[0].toolType);
// finger
processKey(mapper, BTN_TOOL_QUADTAP, 0);
processKey(mapper, BTN_TOOL_FINGER, 1);
processSync(mapper);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs));
ASSERT_EQ(AMOTION_EVENT_ACTION_MOVE, motionArgs.action);
ASSERT_EQ(AMOTION_EVENT_TOOL_TYPE_FINGER, motionArgs.pointerProperties[0].toolType);
// stylus trumps finger
processKey(mapper, BTN_TOOL_PEN, 1);
processSync(mapper);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs));
ASSERT_EQ(AMOTION_EVENT_ACTION_MOVE, motionArgs.action);
ASSERT_EQ(AMOTION_EVENT_TOOL_TYPE_STYLUS, motionArgs.pointerProperties[0].toolType);
// eraser trumps stylus
processKey(mapper, BTN_TOOL_RUBBER, 1);
processSync(mapper);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs));
ASSERT_EQ(AMOTION_EVENT_ACTION_MOVE, motionArgs.action);
ASSERT_EQ(AMOTION_EVENT_TOOL_TYPE_ERASER, motionArgs.pointerProperties[0].toolType);
// mouse trumps eraser
processKey(mapper, BTN_TOOL_MOUSE, 1);
processSync(mapper);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs));
ASSERT_EQ(AMOTION_EVENT_ACTION_MOVE, motionArgs.action);
ASSERT_EQ(AMOTION_EVENT_TOOL_TYPE_MOUSE, motionArgs.pointerProperties[0].toolType);
// back to default tool type
processKey(mapper, BTN_TOOL_MOUSE, 0);
processKey(mapper, BTN_TOOL_RUBBER, 0);
processKey(mapper, BTN_TOOL_PEN, 0);
processKey(mapper, BTN_TOOL_FINGER, 0);
processSync(mapper);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs));
ASSERT_EQ(AMOTION_EVENT_ACTION_MOVE, motionArgs.action);
ASSERT_EQ(AMOTION_EVENT_TOOL_TYPE_FINGER, motionArgs.pointerProperties[0].toolType);
}
TEST_F(SingleTouchInputMapperTest, Process_WhenBtnTouchPresent_HoversIfItsValueIsZero) {
SingleTouchInputMapper* mapper = new SingleTouchInputMapper(mDevice);
addConfigurationProperty("touch.deviceType", "touchScreen");
prepareDisplay(DISPLAY_ORIENTATION_0);
prepareButtons();
prepareAxes(POSITION);
mFakeEventHub->addKey(DEVICE_ID, BTN_TOOL_FINGER, 0, AKEYCODE_UNKNOWN, 0);
addMapperAndConfigure(mapper);
NotifyMotionArgs motionArgs;
// initially hovering because BTN_TOUCH not sent yet, pressure defaults to 0
processKey(mapper, BTN_TOOL_FINGER, 1);
processMove(mapper, 100, 200);
processSync(mapper);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs));
ASSERT_EQ(AMOTION_EVENT_ACTION_HOVER_ENTER, motionArgs.action);
ASSERT_NO_FATAL_FAILURE(assertPointerCoords(motionArgs.pointerCoords[0],
toDisplayX(100), toDisplayY(200), 0, 0, 0, 0, 0, 0, 0, 0));
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs));
ASSERT_EQ(AMOTION_EVENT_ACTION_HOVER_MOVE, motionArgs.action);
ASSERT_NO_FATAL_FAILURE(assertPointerCoords(motionArgs.pointerCoords[0],
toDisplayX(100), toDisplayY(200), 0, 0, 0, 0, 0, 0, 0, 0));
// move a little
processMove(mapper, 150, 250);
processSync(mapper);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs));
ASSERT_EQ(AMOTION_EVENT_ACTION_HOVER_MOVE, motionArgs.action);
ASSERT_NO_FATAL_FAILURE(assertPointerCoords(motionArgs.pointerCoords[0],
toDisplayX(150), toDisplayY(250), 0, 0, 0, 0, 0, 0, 0, 0));
// down when BTN_TOUCH is pressed, pressure defaults to 1
processKey(mapper, BTN_TOUCH, 1);
processSync(mapper);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs));
ASSERT_EQ(AMOTION_EVENT_ACTION_HOVER_EXIT, motionArgs.action);
ASSERT_NO_FATAL_FAILURE(assertPointerCoords(motionArgs.pointerCoords[0],
toDisplayX(150), toDisplayY(250), 0, 0, 0, 0, 0, 0, 0, 0));
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs));
ASSERT_EQ(AMOTION_EVENT_ACTION_DOWN, motionArgs.action);
ASSERT_NO_FATAL_FAILURE(assertPointerCoords(motionArgs.pointerCoords[0],
toDisplayX(150), toDisplayY(250), 1, 0, 0, 0, 0, 0, 0, 0));
// up when BTN_TOUCH is released, hover restored
processKey(mapper, BTN_TOUCH, 0);
processSync(mapper);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs));
ASSERT_EQ(AMOTION_EVENT_ACTION_UP, motionArgs.action);
ASSERT_NO_FATAL_FAILURE(assertPointerCoords(motionArgs.pointerCoords[0],
toDisplayX(150), toDisplayY(250), 1, 0, 0, 0, 0, 0, 0, 0));
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs));
ASSERT_EQ(AMOTION_EVENT_ACTION_HOVER_ENTER, motionArgs.action);
ASSERT_NO_FATAL_FAILURE(assertPointerCoords(motionArgs.pointerCoords[0],
toDisplayX(150), toDisplayY(250), 0, 0, 0, 0, 0, 0, 0, 0));
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs));
ASSERT_EQ(AMOTION_EVENT_ACTION_HOVER_MOVE, motionArgs.action);
ASSERT_NO_FATAL_FAILURE(assertPointerCoords(motionArgs.pointerCoords[0],
toDisplayX(150), toDisplayY(250), 0, 0, 0, 0, 0, 0, 0, 0));
// exit hover when pointer goes away
processKey(mapper, BTN_TOOL_FINGER, 0);
processSync(mapper);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs));
ASSERT_EQ(AMOTION_EVENT_ACTION_HOVER_EXIT, motionArgs.action);
ASSERT_NO_FATAL_FAILURE(assertPointerCoords(motionArgs.pointerCoords[0],
toDisplayX(150), toDisplayY(250), 0, 0, 0, 0, 0, 0, 0, 0));
}
TEST_F(SingleTouchInputMapperTest, Process_WhenAbsPressureIsPresent_HoversIfItsValueIsZero) {
SingleTouchInputMapper* mapper = new SingleTouchInputMapper(mDevice);
addConfigurationProperty("touch.deviceType", "touchScreen");
prepareDisplay(DISPLAY_ORIENTATION_0);
prepareButtons();
prepareAxes(POSITION | PRESSURE);
addMapperAndConfigure(mapper);
NotifyMotionArgs motionArgs;
// initially hovering because pressure is 0
processDown(mapper, 100, 200);
processPressure(mapper, 0);
processSync(mapper);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs));
ASSERT_EQ(AMOTION_EVENT_ACTION_HOVER_ENTER, motionArgs.action);
ASSERT_NO_FATAL_FAILURE(assertPointerCoords(motionArgs.pointerCoords[0],
toDisplayX(100), toDisplayY(200), 0, 0, 0, 0, 0, 0, 0, 0));
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs));
ASSERT_EQ(AMOTION_EVENT_ACTION_HOVER_MOVE, motionArgs.action);
ASSERT_NO_FATAL_FAILURE(assertPointerCoords(motionArgs.pointerCoords[0],
toDisplayX(100), toDisplayY(200), 0, 0, 0, 0, 0, 0, 0, 0));
// move a little
processMove(mapper, 150, 250);
processSync(mapper);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs));
ASSERT_EQ(AMOTION_EVENT_ACTION_HOVER_MOVE, motionArgs.action);
ASSERT_NO_FATAL_FAILURE(assertPointerCoords(motionArgs.pointerCoords[0],
toDisplayX(150), toDisplayY(250), 0, 0, 0, 0, 0, 0, 0, 0));
// down when pressure is non-zero
processPressure(mapper, RAW_PRESSURE_MAX);
processSync(mapper);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs));
ASSERT_EQ(AMOTION_EVENT_ACTION_HOVER_EXIT, motionArgs.action);
ASSERT_NO_FATAL_FAILURE(assertPointerCoords(motionArgs.pointerCoords[0],
toDisplayX(150), toDisplayY(250), 0, 0, 0, 0, 0, 0, 0, 0));
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs));
ASSERT_EQ(AMOTION_EVENT_ACTION_DOWN, motionArgs.action);
ASSERT_NO_FATAL_FAILURE(assertPointerCoords(motionArgs.pointerCoords[0],
toDisplayX(150), toDisplayY(250), 1, 0, 0, 0, 0, 0, 0, 0));
// up when pressure becomes 0, hover restored
processPressure(mapper, 0);
processSync(mapper);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs));
ASSERT_EQ(AMOTION_EVENT_ACTION_UP, motionArgs.action);
ASSERT_NO_FATAL_FAILURE(assertPointerCoords(motionArgs.pointerCoords[0],
toDisplayX(150), toDisplayY(250), 1, 0, 0, 0, 0, 0, 0, 0));
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs));
ASSERT_EQ(AMOTION_EVENT_ACTION_HOVER_ENTER, motionArgs.action);
ASSERT_NO_FATAL_FAILURE(assertPointerCoords(motionArgs.pointerCoords[0],
toDisplayX(150), toDisplayY(250), 0, 0, 0, 0, 0, 0, 0, 0));
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs));
ASSERT_EQ(AMOTION_EVENT_ACTION_HOVER_MOVE, motionArgs.action);
ASSERT_NO_FATAL_FAILURE(assertPointerCoords(motionArgs.pointerCoords[0],
toDisplayX(150), toDisplayY(250), 0, 0, 0, 0, 0, 0, 0, 0));
// exit hover when pointer goes away
processUp(mapper);
processSync(mapper);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs));
ASSERT_EQ(AMOTION_EVENT_ACTION_HOVER_EXIT, motionArgs.action);
ASSERT_NO_FATAL_FAILURE(assertPointerCoords(motionArgs.pointerCoords[0],
toDisplayX(150), toDisplayY(250), 0, 0, 0, 0, 0, 0, 0, 0));
}
// --- MultiTouchInputMapperTest ---
class MultiTouchInputMapperTest : public TouchInputMapperTest {
protected:
void prepareAxes(int axes);
void processPosition(MultiTouchInputMapper* mapper, int32_t x, int32_t y);
void processTouchMajor(MultiTouchInputMapper* mapper, int32_t touchMajor);
void processTouchMinor(MultiTouchInputMapper* mapper, int32_t touchMinor);
void processToolMajor(MultiTouchInputMapper* mapper, int32_t toolMajor);
void processToolMinor(MultiTouchInputMapper* mapper, int32_t toolMinor);
void processOrientation(MultiTouchInputMapper* mapper, int32_t orientation);
void processPressure(MultiTouchInputMapper* mapper, int32_t pressure);
void processDistance(MultiTouchInputMapper* mapper, int32_t distance);
void processId(MultiTouchInputMapper* mapper, int32_t id);
void processSlot(MultiTouchInputMapper* mapper, int32_t slot);
void processToolType(MultiTouchInputMapper* mapper, int32_t toolType);
void processKey(MultiTouchInputMapper* mapper, int32_t code, int32_t value);
void processMTSync(MultiTouchInputMapper* mapper);
void processSync(MultiTouchInputMapper* mapper);
};
void MultiTouchInputMapperTest::prepareAxes(int axes) {
if (axes & POSITION) {
mFakeEventHub->addAbsoluteAxis(DEVICE_ID, ABS_MT_POSITION_X,
RAW_X_MIN, RAW_X_MAX, 0, 0);
mFakeEventHub->addAbsoluteAxis(DEVICE_ID, ABS_MT_POSITION_Y,
RAW_Y_MIN, RAW_Y_MAX, 0, 0);
}
if (axes & TOUCH) {
mFakeEventHub->addAbsoluteAxis(DEVICE_ID, ABS_MT_TOUCH_MAJOR,
RAW_TOUCH_MIN, RAW_TOUCH_MAX, 0, 0);
if (axes & MINOR) {
mFakeEventHub->addAbsoluteAxis(DEVICE_ID, ABS_MT_TOUCH_MINOR,
RAW_TOUCH_MIN, RAW_TOUCH_MAX, 0, 0);
}
}
if (axes & TOOL) {
mFakeEventHub->addAbsoluteAxis(DEVICE_ID, ABS_MT_WIDTH_MAJOR,
RAW_TOOL_MIN, RAW_TOOL_MAX, 0, 0);
if (axes & MINOR) {
mFakeEventHub->addAbsoluteAxis(DEVICE_ID, ABS_MT_WIDTH_MINOR,
RAW_TOOL_MAX, RAW_TOOL_MAX, 0, 0);
}
}
if (axes & ORIENTATION) {
mFakeEventHub->addAbsoluteAxis(DEVICE_ID, ABS_MT_ORIENTATION,
RAW_ORIENTATION_MIN, RAW_ORIENTATION_MAX, 0, 0);
}
if (axes & PRESSURE) {
mFakeEventHub->addAbsoluteAxis(DEVICE_ID, ABS_MT_PRESSURE,
RAW_PRESSURE_MIN, RAW_PRESSURE_MAX, 0, 0);
}
if (axes & DISTANCE) {
mFakeEventHub->addAbsoluteAxis(DEVICE_ID, ABS_MT_DISTANCE,
RAW_DISTANCE_MIN, RAW_DISTANCE_MAX, 0, 0);
}
if (axes & ID) {
mFakeEventHub->addAbsoluteAxis(DEVICE_ID, ABS_MT_TRACKING_ID,
RAW_ID_MIN, RAW_ID_MAX, 0, 0);
}
if (axes & SLOT) {
mFakeEventHub->addAbsoluteAxis(DEVICE_ID, ABS_MT_SLOT,
RAW_SLOT_MIN, RAW_SLOT_MAX, 0, 0);
mFakeEventHub->setAbsoluteAxisValue(DEVICE_ID, ABS_MT_SLOT, 0);
}
if (axes & TOOL_TYPE) {
mFakeEventHub->addAbsoluteAxis(DEVICE_ID, ABS_MT_TOOL_TYPE,
0, MT_TOOL_MAX, 0, 0);
}
}
void MultiTouchInputMapperTest::processPosition(
MultiTouchInputMapper* mapper, int32_t x, int32_t y) {
process(mapper, ARBITRARY_TIME, DEVICE_ID, EV_ABS, ABS_MT_POSITION_X, x);
process(mapper, ARBITRARY_TIME, DEVICE_ID, EV_ABS, ABS_MT_POSITION_Y, y);
}
void MultiTouchInputMapperTest::processTouchMajor(
MultiTouchInputMapper* mapper, int32_t touchMajor) {
process(mapper, ARBITRARY_TIME, DEVICE_ID, EV_ABS, ABS_MT_TOUCH_MAJOR, touchMajor);
}
void MultiTouchInputMapperTest::processTouchMinor(
MultiTouchInputMapper* mapper, int32_t touchMinor) {
process(mapper, ARBITRARY_TIME, DEVICE_ID, EV_ABS, ABS_MT_TOUCH_MINOR, touchMinor);
}
void MultiTouchInputMapperTest::processToolMajor(
MultiTouchInputMapper* mapper, int32_t toolMajor) {
process(mapper, ARBITRARY_TIME, DEVICE_ID, EV_ABS, ABS_MT_WIDTH_MAJOR, toolMajor);
}
void MultiTouchInputMapperTest::processToolMinor(
MultiTouchInputMapper* mapper, int32_t toolMinor) {
process(mapper, ARBITRARY_TIME, DEVICE_ID, EV_ABS, ABS_MT_WIDTH_MINOR, toolMinor);
}
void MultiTouchInputMapperTest::processOrientation(
MultiTouchInputMapper* mapper, int32_t orientation) {
process(mapper, ARBITRARY_TIME, DEVICE_ID, EV_ABS, ABS_MT_ORIENTATION, orientation);
}
void MultiTouchInputMapperTest::processPressure(
MultiTouchInputMapper* mapper, int32_t pressure) {
process(mapper, ARBITRARY_TIME, DEVICE_ID, EV_ABS, ABS_MT_PRESSURE, pressure);
}
void MultiTouchInputMapperTest::processDistance(
MultiTouchInputMapper* mapper, int32_t distance) {
process(mapper, ARBITRARY_TIME, DEVICE_ID, EV_ABS, ABS_MT_DISTANCE, distance);
}
void MultiTouchInputMapperTest::processId(
MultiTouchInputMapper* mapper, int32_t id) {
process(mapper, ARBITRARY_TIME, DEVICE_ID, EV_ABS, ABS_MT_TRACKING_ID, id);
}
void MultiTouchInputMapperTest::processSlot(
MultiTouchInputMapper* mapper, int32_t slot) {
process(mapper, ARBITRARY_TIME, DEVICE_ID, EV_ABS, ABS_MT_SLOT, slot);
}
void MultiTouchInputMapperTest::processToolType(
MultiTouchInputMapper* mapper, int32_t toolType) {
process(mapper, ARBITRARY_TIME, DEVICE_ID, EV_ABS, ABS_MT_TOOL_TYPE, toolType);
}
void MultiTouchInputMapperTest::processKey(
MultiTouchInputMapper* mapper, int32_t code, int32_t value) {
process(mapper, ARBITRARY_TIME, DEVICE_ID, EV_KEY, code, value);
}
void MultiTouchInputMapperTest::processMTSync(MultiTouchInputMapper* mapper) {
process(mapper, ARBITRARY_TIME, DEVICE_ID, EV_SYN, SYN_MT_REPORT, 0);
}
void MultiTouchInputMapperTest::processSync(MultiTouchInputMapper* mapper) {
process(mapper, ARBITRARY_TIME, DEVICE_ID, EV_SYN, SYN_REPORT, 0);
}
TEST_F(MultiTouchInputMapperTest, Process_NormalMultiTouchGesture_WithoutTrackingIds) {
MultiTouchInputMapper* mapper = new MultiTouchInputMapper(mDevice);
addConfigurationProperty("touch.deviceType", "touchScreen");
prepareDisplay(DISPLAY_ORIENTATION_0);
prepareAxes(POSITION);
prepareVirtualKeys();
addMapperAndConfigure(mapper);
mFakeContext->setGlobalMetaState(AMETA_SHIFT_LEFT_ON | AMETA_SHIFT_ON);
NotifyMotionArgs motionArgs;
// Two fingers down at once.
int32_t x1 = 100, y1 = 125, x2 = 300, y2 = 500;
processPosition(mapper, x1, y1);
processMTSync(mapper);
processPosition(mapper, x2, y2);
processMTSync(mapper);
processSync(mapper);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs));
ASSERT_EQ(ARBITRARY_TIME, motionArgs.eventTime);
ASSERT_EQ(DEVICE_ID, motionArgs.deviceId);
ASSERT_EQ(AINPUT_SOURCE_TOUCHSCREEN, motionArgs.source);
ASSERT_EQ(uint32_t(0), motionArgs.policyFlags);
ASSERT_EQ(AMOTION_EVENT_ACTION_DOWN, motionArgs.action);
ASSERT_EQ(0, motionArgs.flags);
ASSERT_EQ(AMETA_SHIFT_LEFT_ON | AMETA_SHIFT_ON, motionArgs.metaState);
ASSERT_EQ(0, motionArgs.buttonState);
ASSERT_EQ(0, motionArgs.edgeFlags);
ASSERT_EQ(size_t(1), motionArgs.pointerCount);
ASSERT_EQ(0, motionArgs.pointerProperties[0].id);
ASSERT_EQ(AMOTION_EVENT_TOOL_TYPE_FINGER, motionArgs.pointerProperties[0].toolType);
ASSERT_NO_FATAL_FAILURE(assertPointerCoords(motionArgs.pointerCoords[0],
toDisplayX(x1), toDisplayY(y1), 1, 0, 0, 0, 0, 0, 0, 0));
ASSERT_NEAR(X_PRECISION, motionArgs.xPrecision, EPSILON);
ASSERT_NEAR(Y_PRECISION, motionArgs.yPrecision, EPSILON);
ASSERT_EQ(ARBITRARY_TIME, motionArgs.downTime);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs));
ASSERT_EQ(ARBITRARY_TIME, motionArgs.eventTime);
ASSERT_EQ(DEVICE_ID, motionArgs.deviceId);
ASSERT_EQ(AINPUT_SOURCE_TOUCHSCREEN, motionArgs.source);
ASSERT_EQ(uint32_t(0), motionArgs.policyFlags);
ASSERT_EQ(AMOTION_EVENT_ACTION_POINTER_DOWN | (1 << AMOTION_EVENT_ACTION_POINTER_INDEX_SHIFT),
motionArgs.action);
ASSERT_EQ(0, motionArgs.flags);
ASSERT_EQ(AMETA_SHIFT_LEFT_ON | AMETA_SHIFT_ON, motionArgs.metaState);
ASSERT_EQ(0, motionArgs.buttonState);
ASSERT_EQ(0, motionArgs.edgeFlags);
ASSERT_EQ(size_t(2), motionArgs.pointerCount);
ASSERT_EQ(0, motionArgs.pointerProperties[0].id);
ASSERT_EQ(AMOTION_EVENT_TOOL_TYPE_FINGER, motionArgs.pointerProperties[0].toolType);
ASSERT_EQ(1, motionArgs.pointerProperties[1].id);
ASSERT_EQ(AMOTION_EVENT_TOOL_TYPE_FINGER, motionArgs.pointerProperties[1].toolType);
ASSERT_NO_FATAL_FAILURE(assertPointerCoords(motionArgs.pointerCoords[0],
toDisplayX(x1), toDisplayY(y1), 1, 0, 0, 0, 0, 0, 0, 0));
ASSERT_NO_FATAL_FAILURE(assertPointerCoords(motionArgs.pointerCoords[1],
toDisplayX(x2), toDisplayY(y2), 1, 0, 0, 0, 0, 0, 0, 0));
ASSERT_NEAR(X_PRECISION, motionArgs.xPrecision, EPSILON);
ASSERT_NEAR(Y_PRECISION, motionArgs.yPrecision, EPSILON);
ASSERT_EQ(ARBITRARY_TIME, motionArgs.downTime);
// Move.
x1 += 10; y1 += 15; x2 += 5; y2 -= 10;
processPosition(mapper, x1, y1);
processMTSync(mapper);
processPosition(mapper, x2, y2);
processMTSync(mapper);
processSync(mapper);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs));
ASSERT_EQ(ARBITRARY_TIME, motionArgs.eventTime);
ASSERT_EQ(DEVICE_ID, motionArgs.deviceId);
ASSERT_EQ(AINPUT_SOURCE_TOUCHSCREEN, motionArgs.source);
ASSERT_EQ(uint32_t(0), motionArgs.policyFlags);
ASSERT_EQ(AMOTION_EVENT_ACTION_MOVE, motionArgs.action);
ASSERT_EQ(0, motionArgs.flags);
ASSERT_EQ(AMETA_SHIFT_LEFT_ON | AMETA_SHIFT_ON, motionArgs.metaState);
ASSERT_EQ(0, motionArgs.buttonState);
ASSERT_EQ(0, motionArgs.edgeFlags);
ASSERT_EQ(size_t(2), motionArgs.pointerCount);
ASSERT_EQ(0, motionArgs.pointerProperties[0].id);
ASSERT_EQ(AMOTION_EVENT_TOOL_TYPE_FINGER, motionArgs.pointerProperties[0].toolType);
ASSERT_EQ(1, motionArgs.pointerProperties[1].id);
ASSERT_EQ(AMOTION_EVENT_TOOL_TYPE_FINGER, motionArgs.pointerProperties[1].toolType);
ASSERT_NO_FATAL_FAILURE(assertPointerCoords(motionArgs.pointerCoords[0],
toDisplayX(x1), toDisplayY(y1), 1, 0, 0, 0, 0, 0, 0, 0));
ASSERT_NO_FATAL_FAILURE(assertPointerCoords(motionArgs.pointerCoords[1],
toDisplayX(x2), toDisplayY(y2), 1, 0, 0, 0, 0, 0, 0, 0));
ASSERT_NEAR(X_PRECISION, motionArgs.xPrecision, EPSILON);
ASSERT_NEAR(Y_PRECISION, motionArgs.yPrecision, EPSILON);
ASSERT_EQ(ARBITRARY_TIME, motionArgs.downTime);
// First finger up.
x2 += 15; y2 -= 20;
processPosition(mapper, x2, y2);
processMTSync(mapper);
processSync(mapper);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs));
ASSERT_EQ(ARBITRARY_TIME, motionArgs.eventTime);
ASSERT_EQ(DEVICE_ID, motionArgs.deviceId);
ASSERT_EQ(AINPUT_SOURCE_TOUCHSCREEN, motionArgs.source);
ASSERT_EQ(uint32_t(0), motionArgs.policyFlags);
ASSERT_EQ(AMOTION_EVENT_ACTION_POINTER_UP | (0 << AMOTION_EVENT_ACTION_POINTER_INDEX_SHIFT),
motionArgs.action);
ASSERT_EQ(0, motionArgs.flags);
ASSERT_EQ(AMETA_SHIFT_LEFT_ON | AMETA_SHIFT_ON, motionArgs.metaState);
ASSERT_EQ(0, motionArgs.buttonState);
ASSERT_EQ(0, motionArgs.edgeFlags);
ASSERT_EQ(size_t(2), motionArgs.pointerCount);
ASSERT_EQ(0, motionArgs.pointerProperties[0].id);
ASSERT_EQ(AMOTION_EVENT_TOOL_TYPE_FINGER, motionArgs.pointerProperties[0].toolType);
ASSERT_EQ(1, motionArgs.pointerProperties[1].id);
ASSERT_EQ(AMOTION_EVENT_TOOL_TYPE_FINGER, motionArgs.pointerProperties[1].toolType);
ASSERT_NO_FATAL_FAILURE(assertPointerCoords(motionArgs.pointerCoords[0],
toDisplayX(x1), toDisplayY(y1), 1, 0, 0, 0, 0, 0, 0, 0));
ASSERT_NO_FATAL_FAILURE(assertPointerCoords(motionArgs.pointerCoords[1],
toDisplayX(x2), toDisplayY(y2), 1, 0, 0, 0, 0, 0, 0, 0));
ASSERT_NEAR(X_PRECISION, motionArgs.xPrecision, EPSILON);
ASSERT_NEAR(Y_PRECISION, motionArgs.yPrecision, EPSILON);
ASSERT_EQ(ARBITRARY_TIME, motionArgs.downTime);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs));
ASSERT_EQ(ARBITRARY_TIME, motionArgs.eventTime);
ASSERT_EQ(DEVICE_ID, motionArgs.deviceId);
ASSERT_EQ(AINPUT_SOURCE_TOUCHSCREEN, motionArgs.source);
ASSERT_EQ(uint32_t(0), motionArgs.policyFlags);
ASSERT_EQ(AMOTION_EVENT_ACTION_MOVE, motionArgs.action);
ASSERT_EQ(0, motionArgs.flags);
ASSERT_EQ(AMETA_SHIFT_LEFT_ON | AMETA_SHIFT_ON, motionArgs.metaState);
ASSERT_EQ(0, motionArgs.buttonState);
ASSERT_EQ(0, motionArgs.edgeFlags);
ASSERT_EQ(size_t(1), motionArgs.pointerCount);
ASSERT_EQ(1, motionArgs.pointerProperties[0].id);
ASSERT_EQ(AMOTION_EVENT_TOOL_TYPE_FINGER, motionArgs.pointerProperties[0].toolType);
ASSERT_NO_FATAL_FAILURE(assertPointerCoords(motionArgs.pointerCoords[0],
toDisplayX(x2), toDisplayY(y2), 1, 0, 0, 0, 0, 0, 0, 0));
ASSERT_NEAR(X_PRECISION, motionArgs.xPrecision, EPSILON);
ASSERT_NEAR(Y_PRECISION, motionArgs.yPrecision, EPSILON);
ASSERT_EQ(ARBITRARY_TIME, motionArgs.downTime);
// Move.
x2 += 20; y2 -= 25;
processPosition(mapper, x2, y2);
processMTSync(mapper);
processSync(mapper);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs));
ASSERT_EQ(ARBITRARY_TIME, motionArgs.eventTime);
ASSERT_EQ(DEVICE_ID, motionArgs.deviceId);
ASSERT_EQ(AINPUT_SOURCE_TOUCHSCREEN, motionArgs.source);
ASSERT_EQ(uint32_t(0), motionArgs.policyFlags);
ASSERT_EQ(AMOTION_EVENT_ACTION_MOVE, motionArgs.action);
ASSERT_EQ(0, motionArgs.flags);
ASSERT_EQ(AMETA_SHIFT_LEFT_ON | AMETA_SHIFT_ON, motionArgs.metaState);
ASSERT_EQ(0, motionArgs.buttonState);
ASSERT_EQ(0, motionArgs.edgeFlags);
ASSERT_EQ(size_t(1), motionArgs.pointerCount);
ASSERT_EQ(1, motionArgs.pointerProperties[0].id);
ASSERT_EQ(AMOTION_EVENT_TOOL_TYPE_FINGER, motionArgs.pointerProperties[0].toolType);
ASSERT_NO_FATAL_FAILURE(assertPointerCoords(motionArgs.pointerCoords[0],
toDisplayX(x2), toDisplayY(y2), 1, 0, 0, 0, 0, 0, 0, 0));
ASSERT_NEAR(X_PRECISION, motionArgs.xPrecision, EPSILON);
ASSERT_NEAR(Y_PRECISION, motionArgs.yPrecision, EPSILON);
ASSERT_EQ(ARBITRARY_TIME, motionArgs.downTime);
// New finger down.
int32_t x3 = 700, y3 = 300;
processPosition(mapper, x2, y2);
processMTSync(mapper);
processPosition(mapper, x3, y3);
processMTSync(mapper);
processSync(mapper);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs));
ASSERT_EQ(ARBITRARY_TIME, motionArgs.eventTime);
ASSERT_EQ(DEVICE_ID, motionArgs.deviceId);
ASSERT_EQ(AINPUT_SOURCE_TOUCHSCREEN, motionArgs.source);
ASSERT_EQ(uint32_t(0), motionArgs.policyFlags);
ASSERT_EQ(AMOTION_EVENT_ACTION_POINTER_DOWN | (0 << AMOTION_EVENT_ACTION_POINTER_INDEX_SHIFT),
motionArgs.action);
ASSERT_EQ(0, motionArgs.flags);
ASSERT_EQ(AMETA_SHIFT_LEFT_ON | AMETA_SHIFT_ON, motionArgs.metaState);
ASSERT_EQ(0, motionArgs.buttonState);
ASSERT_EQ(0, motionArgs.edgeFlags);
ASSERT_EQ(size_t(2), motionArgs.pointerCount);
ASSERT_EQ(0, motionArgs.pointerProperties[0].id);
ASSERT_EQ(AMOTION_EVENT_TOOL_TYPE_FINGER, motionArgs.pointerProperties[0].toolType);
ASSERT_EQ(1, motionArgs.pointerProperties[1].id);
ASSERT_EQ(AMOTION_EVENT_TOOL_TYPE_FINGER, motionArgs.pointerProperties[1].toolType);
ASSERT_NO_FATAL_FAILURE(assertPointerCoords(motionArgs.pointerCoords[0],
toDisplayX(x3), toDisplayY(y3), 1, 0, 0, 0, 0, 0, 0, 0));
ASSERT_NO_FATAL_FAILURE(assertPointerCoords(motionArgs.pointerCoords[1],
toDisplayX(x2), toDisplayY(y2), 1, 0, 0, 0, 0, 0, 0, 0));
ASSERT_NEAR(X_PRECISION, motionArgs.xPrecision, EPSILON);
ASSERT_NEAR(Y_PRECISION, motionArgs.yPrecision, EPSILON);
ASSERT_EQ(ARBITRARY_TIME, motionArgs.downTime);
// Second finger up.
x3 += 30; y3 -= 20;
processPosition(mapper, x3, y3);
processMTSync(mapper);
processSync(mapper);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs));
ASSERT_EQ(ARBITRARY_TIME, motionArgs.eventTime);
ASSERT_EQ(DEVICE_ID, motionArgs.deviceId);
ASSERT_EQ(AINPUT_SOURCE_TOUCHSCREEN, motionArgs.source);
ASSERT_EQ(uint32_t(0), motionArgs.policyFlags);
ASSERT_EQ(AMOTION_EVENT_ACTION_POINTER_UP | (1 << AMOTION_EVENT_ACTION_POINTER_INDEX_SHIFT),
motionArgs.action);
ASSERT_EQ(0, motionArgs.flags);
ASSERT_EQ(AMETA_SHIFT_LEFT_ON | AMETA_SHIFT_ON, motionArgs.metaState);
ASSERT_EQ(0, motionArgs.buttonState);
ASSERT_EQ(0, motionArgs.edgeFlags);
ASSERT_EQ(size_t(2), motionArgs.pointerCount);
ASSERT_EQ(0, motionArgs.pointerProperties[0].id);
ASSERT_EQ(AMOTION_EVENT_TOOL_TYPE_FINGER, motionArgs.pointerProperties[0].toolType);
ASSERT_EQ(1, motionArgs.pointerProperties[1].id);
ASSERT_EQ(AMOTION_EVENT_TOOL_TYPE_FINGER, motionArgs.pointerProperties[1].toolType);
ASSERT_NO_FATAL_FAILURE(assertPointerCoords(motionArgs.pointerCoords[0],
toDisplayX(x3), toDisplayY(y3), 1, 0, 0, 0, 0, 0, 0, 0));
ASSERT_NO_FATAL_FAILURE(assertPointerCoords(motionArgs.pointerCoords[1],
toDisplayX(x2), toDisplayY(y2), 1, 0, 0, 0, 0, 0, 0, 0));
ASSERT_NEAR(X_PRECISION, motionArgs.xPrecision, EPSILON);
ASSERT_NEAR(Y_PRECISION, motionArgs.yPrecision, EPSILON);
ASSERT_EQ(ARBITRARY_TIME, motionArgs.downTime);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs));
ASSERT_EQ(ARBITRARY_TIME, motionArgs.eventTime);
ASSERT_EQ(DEVICE_ID, motionArgs.deviceId);
ASSERT_EQ(AINPUT_SOURCE_TOUCHSCREEN, motionArgs.source);
ASSERT_EQ(uint32_t(0), motionArgs.policyFlags);
ASSERT_EQ(AMOTION_EVENT_ACTION_MOVE, motionArgs.action);
ASSERT_EQ(0, motionArgs.flags);
ASSERT_EQ(AMETA_SHIFT_LEFT_ON | AMETA_SHIFT_ON, motionArgs.metaState);
ASSERT_EQ(0, motionArgs.buttonState);
ASSERT_EQ(0, motionArgs.edgeFlags);
ASSERT_EQ(size_t(1), motionArgs.pointerCount);
ASSERT_EQ(0, motionArgs.pointerProperties[0].id);
ASSERT_EQ(AMOTION_EVENT_TOOL_TYPE_FINGER, motionArgs.pointerProperties[0].toolType);
ASSERT_NO_FATAL_FAILURE(assertPointerCoords(motionArgs.pointerCoords[0],
toDisplayX(x3), toDisplayY(y3), 1, 0, 0, 0, 0, 0, 0, 0));
ASSERT_NEAR(X_PRECISION, motionArgs.xPrecision, EPSILON);
ASSERT_NEAR(Y_PRECISION, motionArgs.yPrecision, EPSILON);
ASSERT_EQ(ARBITRARY_TIME, motionArgs.downTime);
// Last finger up.
processMTSync(mapper);
processSync(mapper);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs));
ASSERT_EQ(ARBITRARY_TIME, motionArgs.eventTime);
ASSERT_EQ(DEVICE_ID, motionArgs.deviceId);
ASSERT_EQ(AINPUT_SOURCE_TOUCHSCREEN, motionArgs.source);
ASSERT_EQ(uint32_t(0), motionArgs.policyFlags);
ASSERT_EQ(AMOTION_EVENT_ACTION_UP, motionArgs.action);
ASSERT_EQ(0, motionArgs.flags);
ASSERT_EQ(AMETA_SHIFT_LEFT_ON | AMETA_SHIFT_ON, motionArgs.metaState);
ASSERT_EQ(0, motionArgs.buttonState);
ASSERT_EQ(0, motionArgs.edgeFlags);
ASSERT_EQ(size_t(1), motionArgs.pointerCount);
ASSERT_EQ(0, motionArgs.pointerProperties[0].id);
ASSERT_EQ(AMOTION_EVENT_TOOL_TYPE_FINGER, motionArgs.pointerProperties[0].toolType);
ASSERT_NO_FATAL_FAILURE(assertPointerCoords(motionArgs.pointerCoords[0],
toDisplayX(x3), toDisplayY(y3), 1, 0, 0, 0, 0, 0, 0, 0));
ASSERT_NEAR(X_PRECISION, motionArgs.xPrecision, EPSILON);
ASSERT_NEAR(Y_PRECISION, motionArgs.yPrecision, EPSILON);
ASSERT_EQ(ARBITRARY_TIME, motionArgs.downTime);
// Should not have sent any more keys or motions.
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyKeyWasNotCalled());
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasNotCalled());
}
TEST_F(MultiTouchInputMapperTest, Process_NormalMultiTouchGesture_WithTrackingIds) {
MultiTouchInputMapper* mapper = new MultiTouchInputMapper(mDevice);
addConfigurationProperty("touch.deviceType", "touchScreen");
prepareDisplay(DISPLAY_ORIENTATION_0);
prepareAxes(POSITION | ID);
prepareVirtualKeys();
addMapperAndConfigure(mapper);
mFakeContext->setGlobalMetaState(AMETA_SHIFT_LEFT_ON | AMETA_SHIFT_ON);
NotifyMotionArgs motionArgs;
// Two fingers down at once.
int32_t x1 = 100, y1 = 125, x2 = 300, y2 = 500;
processPosition(mapper, x1, y1);
processId(mapper, 1);
processMTSync(mapper);
processPosition(mapper, x2, y2);
processId(mapper, 2);
processMTSync(mapper);
processSync(mapper);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs));
ASSERT_EQ(AMOTION_EVENT_ACTION_DOWN, motionArgs.action);
ASSERT_EQ(size_t(1), motionArgs.pointerCount);
ASSERT_EQ(0, motionArgs.pointerProperties[0].id);
ASSERT_EQ(AMOTION_EVENT_TOOL_TYPE_FINGER, motionArgs.pointerProperties[0].toolType);
ASSERT_NO_FATAL_FAILURE(assertPointerCoords(motionArgs.pointerCoords[0],
toDisplayX(x1), toDisplayY(y1), 1, 0, 0, 0, 0, 0, 0, 0));
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs));
ASSERT_EQ(AMOTION_EVENT_ACTION_POINTER_DOWN | (1 << AMOTION_EVENT_ACTION_POINTER_INDEX_SHIFT),
motionArgs.action);
ASSERT_EQ(size_t(2), motionArgs.pointerCount);
ASSERT_EQ(0, motionArgs.pointerProperties[0].id);
ASSERT_EQ(AMOTION_EVENT_TOOL_TYPE_FINGER, motionArgs.pointerProperties[0].toolType);
ASSERT_EQ(1, motionArgs.pointerProperties[1].id);
ASSERT_EQ(AMOTION_EVENT_TOOL_TYPE_FINGER, motionArgs.pointerProperties[1].toolType);
ASSERT_NO_FATAL_FAILURE(assertPointerCoords(motionArgs.pointerCoords[0],
toDisplayX(x1), toDisplayY(y1), 1, 0, 0, 0, 0, 0, 0, 0));
ASSERT_NO_FATAL_FAILURE(assertPointerCoords(motionArgs.pointerCoords[1],
toDisplayX(x2), toDisplayY(y2), 1, 0, 0, 0, 0, 0, 0, 0));
// Move.
x1 += 10; y1 += 15; x2 += 5; y2 -= 10;
processPosition(mapper, x1, y1);
processId(mapper, 1);
processMTSync(mapper);
processPosition(mapper, x2, y2);
processId(mapper, 2);
processMTSync(mapper);
processSync(mapper);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs));
ASSERT_EQ(AMOTION_EVENT_ACTION_MOVE, motionArgs.action);
ASSERT_EQ(size_t(2), motionArgs.pointerCount);
ASSERT_EQ(0, motionArgs.pointerProperties[0].id);
ASSERT_EQ(AMOTION_EVENT_TOOL_TYPE_FINGER, motionArgs.pointerProperties[0].toolType);
ASSERT_EQ(1, motionArgs.pointerProperties[1].id);
ASSERT_EQ(AMOTION_EVENT_TOOL_TYPE_FINGER, motionArgs.pointerProperties[1].toolType);
ASSERT_NO_FATAL_FAILURE(assertPointerCoords(motionArgs.pointerCoords[0],
toDisplayX(x1), toDisplayY(y1), 1, 0, 0, 0, 0, 0, 0, 0));
ASSERT_NO_FATAL_FAILURE(assertPointerCoords(motionArgs.pointerCoords[1],
toDisplayX(x2), toDisplayY(y2), 1, 0, 0, 0, 0, 0, 0, 0));
// First finger up.
x2 += 15; y2 -= 20;
processPosition(mapper, x2, y2);
processId(mapper, 2);
processMTSync(mapper);
processSync(mapper);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs));
ASSERT_EQ(AMOTION_EVENT_ACTION_POINTER_UP | (0 << AMOTION_EVENT_ACTION_POINTER_INDEX_SHIFT),
motionArgs.action);
ASSERT_EQ(size_t(2), motionArgs.pointerCount);
ASSERT_EQ(0, motionArgs.pointerProperties[0].id);
ASSERT_EQ(AMOTION_EVENT_TOOL_TYPE_FINGER, motionArgs.pointerProperties[0].toolType);
ASSERT_EQ(1, motionArgs.pointerProperties[1].id);
ASSERT_EQ(AMOTION_EVENT_TOOL_TYPE_FINGER, motionArgs.pointerProperties[1].toolType);
ASSERT_NO_FATAL_FAILURE(assertPointerCoords(motionArgs.pointerCoords[0],
toDisplayX(x1), toDisplayY(y1), 1, 0, 0, 0, 0, 0, 0, 0));
ASSERT_NO_FATAL_FAILURE(assertPointerCoords(motionArgs.pointerCoords[1],
toDisplayX(x2), toDisplayY(y2), 1, 0, 0, 0, 0, 0, 0, 0));
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs));
ASSERT_EQ(AMOTION_EVENT_ACTION_MOVE, motionArgs.action);
ASSERT_EQ(size_t(1), motionArgs.pointerCount);
ASSERT_EQ(1, motionArgs.pointerProperties[0].id);
ASSERT_EQ(AMOTION_EVENT_TOOL_TYPE_FINGER, motionArgs.pointerProperties[0].toolType);
ASSERT_NO_FATAL_FAILURE(assertPointerCoords(motionArgs.pointerCoords[0],
toDisplayX(x2), toDisplayY(y2), 1, 0, 0, 0, 0, 0, 0, 0));
// Move.
x2 += 20; y2 -= 25;
processPosition(mapper, x2, y2);
processId(mapper, 2);
processMTSync(mapper);
processSync(mapper);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs));
ASSERT_EQ(AMOTION_EVENT_ACTION_MOVE, motionArgs.action);
ASSERT_EQ(size_t(1), motionArgs.pointerCount);
ASSERT_EQ(1, motionArgs.pointerProperties[0].id);
ASSERT_EQ(AMOTION_EVENT_TOOL_TYPE_FINGER, motionArgs.pointerProperties[0].toolType);
ASSERT_NO_FATAL_FAILURE(assertPointerCoords(motionArgs.pointerCoords[0],
toDisplayX(x2), toDisplayY(y2), 1, 0, 0, 0, 0, 0, 0, 0));
// New finger down.
int32_t x3 = 700, y3 = 300;
processPosition(mapper, x2, y2);
processId(mapper, 2);
processMTSync(mapper);
processPosition(mapper, x3, y3);
processId(mapper, 3);
processMTSync(mapper);
processSync(mapper);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs));
ASSERT_EQ(AMOTION_EVENT_ACTION_POINTER_DOWN | (0 << AMOTION_EVENT_ACTION_POINTER_INDEX_SHIFT),
motionArgs.action);
ASSERT_EQ(size_t(2), motionArgs.pointerCount);
ASSERT_EQ(0, motionArgs.pointerProperties[0].id);
ASSERT_EQ(AMOTION_EVENT_TOOL_TYPE_FINGER, motionArgs.pointerProperties[0].toolType);
ASSERT_EQ(1, motionArgs.pointerProperties[1].id);
ASSERT_EQ(AMOTION_EVENT_TOOL_TYPE_FINGER, motionArgs.pointerProperties[1].toolType);
ASSERT_NO_FATAL_FAILURE(assertPointerCoords(motionArgs.pointerCoords[0],
toDisplayX(x3), toDisplayY(y3), 1, 0, 0, 0, 0, 0, 0, 0));
ASSERT_NO_FATAL_FAILURE(assertPointerCoords(motionArgs.pointerCoords[1],
toDisplayX(x2), toDisplayY(y2), 1, 0, 0, 0, 0, 0, 0, 0));
// Second finger up.
x3 += 30; y3 -= 20;
processPosition(mapper, x3, y3);
processId(mapper, 3);
processMTSync(mapper);
processSync(mapper);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs));
ASSERT_EQ(AMOTION_EVENT_ACTION_POINTER_UP | (1 << AMOTION_EVENT_ACTION_POINTER_INDEX_SHIFT),
motionArgs.action);
ASSERT_EQ(size_t(2), motionArgs.pointerCount);
ASSERT_EQ(0, motionArgs.pointerProperties[0].id);
ASSERT_EQ(AMOTION_EVENT_TOOL_TYPE_FINGER, motionArgs.pointerProperties[0].toolType);
ASSERT_EQ(1, motionArgs.pointerProperties[1].id);
ASSERT_EQ(AMOTION_EVENT_TOOL_TYPE_FINGER, motionArgs.pointerProperties[1].toolType);
ASSERT_NO_FATAL_FAILURE(assertPointerCoords(motionArgs.pointerCoords[0],
toDisplayX(x3), toDisplayY(y3), 1, 0, 0, 0, 0, 0, 0, 0));
ASSERT_NO_FATAL_FAILURE(assertPointerCoords(motionArgs.pointerCoords[1],
toDisplayX(x2), toDisplayY(y2), 1, 0, 0, 0, 0, 0, 0, 0));
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs));
ASSERT_EQ(AMOTION_EVENT_ACTION_MOVE, motionArgs.action);
ASSERT_EQ(size_t(1), motionArgs.pointerCount);
ASSERT_EQ(0, motionArgs.pointerProperties[0].id);
ASSERT_EQ(AMOTION_EVENT_TOOL_TYPE_FINGER, motionArgs.pointerProperties[0].toolType);
ASSERT_NO_FATAL_FAILURE(assertPointerCoords(motionArgs.pointerCoords[0],
toDisplayX(x3), toDisplayY(y3), 1, 0, 0, 0, 0, 0, 0, 0));
// Last finger up.
processMTSync(mapper);
processSync(mapper);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs));
ASSERT_EQ(AMOTION_EVENT_ACTION_UP, motionArgs.action);
ASSERT_EQ(size_t(1), motionArgs.pointerCount);
ASSERT_EQ(0, motionArgs.pointerProperties[0].id);
ASSERT_EQ(AMOTION_EVENT_TOOL_TYPE_FINGER, motionArgs.pointerProperties[0].toolType);
ASSERT_NO_FATAL_FAILURE(assertPointerCoords(motionArgs.pointerCoords[0],
toDisplayX(x3), toDisplayY(y3), 1, 0, 0, 0, 0, 0, 0, 0));
// Should not have sent any more keys or motions.
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyKeyWasNotCalled());
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasNotCalled());
}
TEST_F(MultiTouchInputMapperTest, Process_NormalMultiTouchGesture_WithSlots) {
MultiTouchInputMapper* mapper = new MultiTouchInputMapper(mDevice);
addConfigurationProperty("touch.deviceType", "touchScreen");
prepareDisplay(DISPLAY_ORIENTATION_0);
prepareAxes(POSITION | ID | SLOT);
prepareVirtualKeys();
addMapperAndConfigure(mapper);
mFakeContext->setGlobalMetaState(AMETA_SHIFT_LEFT_ON | AMETA_SHIFT_ON);
NotifyMotionArgs motionArgs;
// Two fingers down at once.
int32_t x1 = 100, y1 = 125, x2 = 300, y2 = 500;
processPosition(mapper, x1, y1);
processId(mapper, 1);
processSlot(mapper, 1);
processPosition(mapper, x2, y2);
processId(mapper, 2);
processSync(mapper);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs));
ASSERT_EQ(AMOTION_EVENT_ACTION_DOWN, motionArgs.action);
ASSERT_EQ(size_t(1), motionArgs.pointerCount);
ASSERT_EQ(0, motionArgs.pointerProperties[0].id);
ASSERT_EQ(AMOTION_EVENT_TOOL_TYPE_FINGER, motionArgs.pointerProperties[0].toolType);
ASSERT_NO_FATAL_FAILURE(assertPointerCoords(motionArgs.pointerCoords[0],
toDisplayX(x1), toDisplayY(y1), 1, 0, 0, 0, 0, 0, 0, 0));
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs));
ASSERT_EQ(AMOTION_EVENT_ACTION_POINTER_DOWN | (1 << AMOTION_EVENT_ACTION_POINTER_INDEX_SHIFT),
motionArgs.action);
ASSERT_EQ(size_t(2), motionArgs.pointerCount);
ASSERT_EQ(0, motionArgs.pointerProperties[0].id);
ASSERT_EQ(AMOTION_EVENT_TOOL_TYPE_FINGER, motionArgs.pointerProperties[0].toolType);
ASSERT_EQ(1, motionArgs.pointerProperties[1].id);
ASSERT_EQ(AMOTION_EVENT_TOOL_TYPE_FINGER, motionArgs.pointerProperties[1].toolType);
ASSERT_NO_FATAL_FAILURE(assertPointerCoords(motionArgs.pointerCoords[0],
toDisplayX(x1), toDisplayY(y1), 1, 0, 0, 0, 0, 0, 0, 0));
ASSERT_NO_FATAL_FAILURE(assertPointerCoords(motionArgs.pointerCoords[1],
toDisplayX(x2), toDisplayY(y2), 1, 0, 0, 0, 0, 0, 0, 0));
// Move.
x1 += 10; y1 += 15; x2 += 5; y2 -= 10;
processSlot(mapper, 0);
processPosition(mapper, x1, y1);
processSlot(mapper, 1);
processPosition(mapper, x2, y2);
processSync(mapper);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs));
ASSERT_EQ(AMOTION_EVENT_ACTION_MOVE, motionArgs.action);
ASSERT_EQ(size_t(2), motionArgs.pointerCount);
ASSERT_EQ(0, motionArgs.pointerProperties[0].id);
ASSERT_EQ(AMOTION_EVENT_TOOL_TYPE_FINGER, motionArgs.pointerProperties[0].toolType);
ASSERT_EQ(1, motionArgs.pointerProperties[1].id);
ASSERT_EQ(AMOTION_EVENT_TOOL_TYPE_FINGER, motionArgs.pointerProperties[1].toolType);
ASSERT_NO_FATAL_FAILURE(assertPointerCoords(motionArgs.pointerCoords[0],
toDisplayX(x1), toDisplayY(y1), 1, 0, 0, 0, 0, 0, 0, 0));
ASSERT_NO_FATAL_FAILURE(assertPointerCoords(motionArgs.pointerCoords[1],
toDisplayX(x2), toDisplayY(y2), 1, 0, 0, 0, 0, 0, 0, 0));
// First finger up.
x2 += 15; y2 -= 20;
processSlot(mapper, 0);
processId(mapper, -1);
processSlot(mapper, 1);
processPosition(mapper, x2, y2);
processSync(mapper);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs));
ASSERT_EQ(AMOTION_EVENT_ACTION_POINTER_UP | (0 << AMOTION_EVENT_ACTION_POINTER_INDEX_SHIFT),
motionArgs.action);
ASSERT_EQ(size_t(2), motionArgs.pointerCount);
ASSERT_EQ(0, motionArgs.pointerProperties[0].id);
ASSERT_EQ(AMOTION_EVENT_TOOL_TYPE_FINGER, motionArgs.pointerProperties[0].toolType);
ASSERT_EQ(1, motionArgs.pointerProperties[1].id);
ASSERT_EQ(AMOTION_EVENT_TOOL_TYPE_FINGER, motionArgs.pointerProperties[1].toolType);
ASSERT_NO_FATAL_FAILURE(assertPointerCoords(motionArgs.pointerCoords[0],
toDisplayX(x1), toDisplayY(y1), 1, 0, 0, 0, 0, 0, 0, 0));
ASSERT_NO_FATAL_FAILURE(assertPointerCoords(motionArgs.pointerCoords[1],
toDisplayX(x2), toDisplayY(y2), 1, 0, 0, 0, 0, 0, 0, 0));
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs));
ASSERT_EQ(AMOTION_EVENT_ACTION_MOVE, motionArgs.action);
ASSERT_EQ(size_t(1), motionArgs.pointerCount);
ASSERT_EQ(1, motionArgs.pointerProperties[0].id);
ASSERT_EQ(AMOTION_EVENT_TOOL_TYPE_FINGER, motionArgs.pointerProperties[0].toolType);
ASSERT_NO_FATAL_FAILURE(assertPointerCoords(motionArgs.pointerCoords[0],
toDisplayX(x2), toDisplayY(y2), 1, 0, 0, 0, 0, 0, 0, 0));
// Move.
x2 += 20; y2 -= 25;
processPosition(mapper, x2, y2);
processSync(mapper);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs));
ASSERT_EQ(AMOTION_EVENT_ACTION_MOVE, motionArgs.action);
ASSERT_EQ(size_t(1), motionArgs.pointerCount);
ASSERT_EQ(1, motionArgs.pointerProperties[0].id);
ASSERT_EQ(AMOTION_EVENT_TOOL_TYPE_FINGER, motionArgs.pointerProperties[0].toolType);
ASSERT_NO_FATAL_FAILURE(assertPointerCoords(motionArgs.pointerCoords[0],
toDisplayX(x2), toDisplayY(y2), 1, 0, 0, 0, 0, 0, 0, 0));
// New finger down.
int32_t x3 = 700, y3 = 300;
processPosition(mapper, x2, y2);
processSlot(mapper, 0);
processId(mapper, 3);
processPosition(mapper, x3, y3);
processSync(mapper);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs));
ASSERT_EQ(AMOTION_EVENT_ACTION_POINTER_DOWN | (0 << AMOTION_EVENT_ACTION_POINTER_INDEX_SHIFT),
motionArgs.action);
ASSERT_EQ(size_t(2), motionArgs.pointerCount);
ASSERT_EQ(0, motionArgs.pointerProperties[0].id);
ASSERT_EQ(AMOTION_EVENT_TOOL_TYPE_FINGER, motionArgs.pointerProperties[0].toolType);
ASSERT_EQ(1, motionArgs.pointerProperties[1].id);
ASSERT_EQ(AMOTION_EVENT_TOOL_TYPE_FINGER, motionArgs.pointerProperties[1].toolType);
ASSERT_NO_FATAL_FAILURE(assertPointerCoords(motionArgs.pointerCoords[0],
toDisplayX(x3), toDisplayY(y3), 1, 0, 0, 0, 0, 0, 0, 0));
ASSERT_NO_FATAL_FAILURE(assertPointerCoords(motionArgs.pointerCoords[1],
toDisplayX(x2), toDisplayY(y2), 1, 0, 0, 0, 0, 0, 0, 0));
// Second finger up.
x3 += 30; y3 -= 20;
processSlot(mapper, 1);
processId(mapper, -1);
processSlot(mapper, 0);
processPosition(mapper, x3, y3);
processSync(mapper);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs));
ASSERT_EQ(AMOTION_EVENT_ACTION_POINTER_UP | (1 << AMOTION_EVENT_ACTION_POINTER_INDEX_SHIFT),
motionArgs.action);
ASSERT_EQ(size_t(2), motionArgs.pointerCount);
ASSERT_EQ(0, motionArgs.pointerProperties[0].id);
ASSERT_EQ(AMOTION_EVENT_TOOL_TYPE_FINGER, motionArgs.pointerProperties[0].toolType);
ASSERT_EQ(1, motionArgs.pointerProperties[1].id);
ASSERT_EQ(AMOTION_EVENT_TOOL_TYPE_FINGER, motionArgs.pointerProperties[1].toolType);
ASSERT_NO_FATAL_FAILURE(assertPointerCoords(motionArgs.pointerCoords[0],
toDisplayX(x3), toDisplayY(y3), 1, 0, 0, 0, 0, 0, 0, 0));
ASSERT_NO_FATAL_FAILURE(assertPointerCoords(motionArgs.pointerCoords[1],
toDisplayX(x2), toDisplayY(y2), 1, 0, 0, 0, 0, 0, 0, 0));
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs));
ASSERT_EQ(AMOTION_EVENT_ACTION_MOVE, motionArgs.action);
ASSERT_EQ(size_t(1), motionArgs.pointerCount);
ASSERT_EQ(0, motionArgs.pointerProperties[0].id);
ASSERT_EQ(AMOTION_EVENT_TOOL_TYPE_FINGER, motionArgs.pointerProperties[0].toolType);
ASSERT_NO_FATAL_FAILURE(assertPointerCoords(motionArgs.pointerCoords[0],
toDisplayX(x3), toDisplayY(y3), 1, 0, 0, 0, 0, 0, 0, 0));
// Last finger up.
processId(mapper, -1);
processSync(mapper);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs));
ASSERT_EQ(AMOTION_EVENT_ACTION_UP, motionArgs.action);
ASSERT_EQ(size_t(1), motionArgs.pointerCount);
ASSERT_EQ(0, motionArgs.pointerProperties[0].id);
ASSERT_EQ(AMOTION_EVENT_TOOL_TYPE_FINGER, motionArgs.pointerProperties[0].toolType);
ASSERT_NO_FATAL_FAILURE(assertPointerCoords(motionArgs.pointerCoords[0],
toDisplayX(x3), toDisplayY(y3), 1, 0, 0, 0, 0, 0, 0, 0));
// Should not have sent any more keys or motions.
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyKeyWasNotCalled());
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasNotCalled());
}
TEST_F(MultiTouchInputMapperTest, Process_AllAxes_WithDefaultCalibration) {
MultiTouchInputMapper* mapper = new MultiTouchInputMapper(mDevice);
addConfigurationProperty("touch.deviceType", "touchScreen");
prepareDisplay(DISPLAY_ORIENTATION_0);
prepareAxes(POSITION | TOUCH | TOOL | PRESSURE | ORIENTATION | ID | MINOR | DISTANCE);
addMapperAndConfigure(mapper);
// These calculations are based on the input device calibration documentation.
int32_t rawX = 100;
int32_t rawY = 200;
int32_t rawTouchMajor = 7;
int32_t rawTouchMinor = 6;
int32_t rawToolMajor = 9;
int32_t rawToolMinor = 8;
int32_t rawPressure = 11;
int32_t rawDistance = 0;
int32_t rawOrientation = 3;
int32_t id = 5;
float x = toDisplayX(rawX);
float y = toDisplayY(rawY);
float pressure = float(rawPressure) / RAW_PRESSURE_MAX;
float size = avg(rawTouchMajor, rawTouchMinor) / RAW_TOUCH_MAX;
float toolMajor = float(rawToolMajor) * GEOMETRIC_SCALE;
float toolMinor = float(rawToolMinor) * GEOMETRIC_SCALE;
float touchMajor = float(rawTouchMajor) * GEOMETRIC_SCALE;
float touchMinor = float(rawTouchMinor) * GEOMETRIC_SCALE;
float orientation = float(rawOrientation) / RAW_ORIENTATION_MAX * M_PI_2;
float distance = float(rawDistance);
processPosition(mapper, rawX, rawY);
processTouchMajor(mapper, rawTouchMajor);
processTouchMinor(mapper, rawTouchMinor);
processToolMajor(mapper, rawToolMajor);
processToolMinor(mapper, rawToolMinor);
processPressure(mapper, rawPressure);
processOrientation(mapper, rawOrientation);
processDistance(mapper, rawDistance);
processId(mapper, id);
processMTSync(mapper);
processSync(mapper);
NotifyMotionArgs args;
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&args));
ASSERT_EQ(0, args.pointerProperties[0].id);
ASSERT_NO_FATAL_FAILURE(assertPointerCoords(args.pointerCoords[0],
x, y, pressure, size, touchMajor, touchMinor, toolMajor, toolMinor,
orientation, distance));
}
TEST_F(MultiTouchInputMapperTest, Process_TouchAndToolAxes_GeometricCalibration) {
MultiTouchInputMapper* mapper = new MultiTouchInputMapper(mDevice);
addConfigurationProperty("touch.deviceType", "touchScreen");
prepareDisplay(DISPLAY_ORIENTATION_0);
prepareAxes(POSITION | TOUCH | TOOL | MINOR);
addConfigurationProperty("touch.size.calibration", "geometric");
addMapperAndConfigure(mapper);
// These calculations are based on the input device calibration documentation.
int32_t rawX = 100;
int32_t rawY = 200;
int32_t rawTouchMajor = 140;
int32_t rawTouchMinor = 120;
int32_t rawToolMajor = 180;
int32_t rawToolMinor = 160;
float x = toDisplayX(rawX);
float y = toDisplayY(rawY);
float size = avg(rawTouchMajor, rawTouchMinor) / RAW_TOUCH_MAX;
float toolMajor = float(rawToolMajor) * GEOMETRIC_SCALE;
float toolMinor = float(rawToolMinor) * GEOMETRIC_SCALE;
float touchMajor = float(rawTouchMajor) * GEOMETRIC_SCALE;
float touchMinor = float(rawTouchMinor) * GEOMETRIC_SCALE;
processPosition(mapper, rawX, rawY);
processTouchMajor(mapper, rawTouchMajor);
processTouchMinor(mapper, rawTouchMinor);
processToolMajor(mapper, rawToolMajor);
processToolMinor(mapper, rawToolMinor);
processMTSync(mapper);
processSync(mapper);
NotifyMotionArgs args;
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&args));
ASSERT_NO_FATAL_FAILURE(assertPointerCoords(args.pointerCoords[0],
x, y, 1.0f, size, touchMajor, touchMinor, toolMajor, toolMinor, 0, 0));
}
TEST_F(MultiTouchInputMapperTest, Process_TouchAndToolAxes_SummedLinearCalibration) {
MultiTouchInputMapper* mapper = new MultiTouchInputMapper(mDevice);
addConfigurationProperty("touch.deviceType", "touchScreen");
prepareDisplay(DISPLAY_ORIENTATION_0);
prepareAxes(POSITION | TOUCH | TOOL);
addConfigurationProperty("touch.size.calibration", "diameter");
addConfigurationProperty("touch.size.scale", "10");
addConfigurationProperty("touch.size.bias", "160");
addConfigurationProperty("touch.size.isSummed", "1");
addMapperAndConfigure(mapper);
// These calculations are based on the input device calibration documentation.
// Note: We only provide a single common touch/tool value because the device is assumed
// not to emit separate values for each pointer (isSummed = 1).
int32_t rawX = 100;
int32_t rawY = 200;
int32_t rawX2 = 150;
int32_t rawY2 = 250;
int32_t rawTouchMajor = 5;
int32_t rawToolMajor = 8;
float x = toDisplayX(rawX);
float y = toDisplayY(rawY);
float x2 = toDisplayX(rawX2);
float y2 = toDisplayY(rawY2);
float size = float(rawTouchMajor) / 2 / RAW_TOUCH_MAX;
float touch = float(rawTouchMajor) / 2 * 10.0f + 160.0f;
float tool = float(rawToolMajor) / 2 * 10.0f + 160.0f;
processPosition(mapper, rawX, rawY);
processTouchMajor(mapper, rawTouchMajor);
processToolMajor(mapper, rawToolMajor);
processMTSync(mapper);
processPosition(mapper, rawX2, rawY2);
processTouchMajor(mapper, rawTouchMajor);
processToolMajor(mapper, rawToolMajor);
processMTSync(mapper);
processSync(mapper);
NotifyMotionArgs args;
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&args));
ASSERT_EQ(AMOTION_EVENT_ACTION_DOWN, args.action);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&args));
ASSERT_EQ(AMOTION_EVENT_ACTION_POINTER_DOWN | (1 << AMOTION_EVENT_ACTION_POINTER_INDEX_SHIFT),
args.action);
ASSERT_EQ(size_t(2), args.pointerCount);
ASSERT_NO_FATAL_FAILURE(assertPointerCoords(args.pointerCoords[0],
x, y, 1.0f, size, touch, touch, tool, tool, 0, 0));
ASSERT_NO_FATAL_FAILURE(assertPointerCoords(args.pointerCoords[1],
x2, y2, 1.0f, size, touch, touch, tool, tool, 0, 0));
}
TEST_F(MultiTouchInputMapperTest, Process_TouchAndToolAxes_AreaCalibration) {
MultiTouchInputMapper* mapper = new MultiTouchInputMapper(mDevice);
addConfigurationProperty("touch.deviceType", "touchScreen");
prepareDisplay(DISPLAY_ORIENTATION_0);
prepareAxes(POSITION | TOUCH | TOOL);
addConfigurationProperty("touch.size.calibration", "area");
addConfigurationProperty("touch.size.scale", "43");
addConfigurationProperty("touch.size.bias", "3");
addMapperAndConfigure(mapper);
// These calculations are based on the input device calibration documentation.
int32_t rawX = 100;
int32_t rawY = 200;
int32_t rawTouchMajor = 5;
int32_t rawToolMajor = 8;
float x = toDisplayX(rawX);
float y = toDisplayY(rawY);
float size = float(rawTouchMajor) / RAW_TOUCH_MAX;
float touch = sqrtf(rawTouchMajor) * 43.0f + 3.0f;
float tool = sqrtf(rawToolMajor) * 43.0f + 3.0f;
processPosition(mapper, rawX, rawY);
processTouchMajor(mapper, rawTouchMajor);
processToolMajor(mapper, rawToolMajor);
processMTSync(mapper);
processSync(mapper);
NotifyMotionArgs args;
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&args));
ASSERT_NO_FATAL_FAILURE(assertPointerCoords(args.pointerCoords[0],
x, y, 1.0f, size, touch, touch, tool, tool, 0, 0));
}
TEST_F(MultiTouchInputMapperTest, Process_PressureAxis_AmplitudeCalibration) {
MultiTouchInputMapper* mapper = new MultiTouchInputMapper(mDevice);
addConfigurationProperty("touch.deviceType", "touchScreen");
prepareDisplay(DISPLAY_ORIENTATION_0);
prepareAxes(POSITION | PRESSURE);
addConfigurationProperty("touch.pressure.calibration", "amplitude");
addConfigurationProperty("touch.pressure.scale", "0.01");
addMapperAndConfigure(mapper);
// These calculations are based on the input device calibration documentation.
int32_t rawX = 100;
int32_t rawY = 200;
int32_t rawPressure = 60;
float x = toDisplayX(rawX);
float y = toDisplayY(rawY);
float pressure = float(rawPressure) * 0.01f;
processPosition(mapper, rawX, rawY);
processPressure(mapper, rawPressure);
processMTSync(mapper);
processSync(mapper);
NotifyMotionArgs args;
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&args));
ASSERT_NO_FATAL_FAILURE(assertPointerCoords(args.pointerCoords[0],
x, y, pressure, 0, 0, 0, 0, 0, 0, 0));
}
TEST_F(MultiTouchInputMapperTest, Process_ShouldHandleAllButtons) {
MultiTouchInputMapper* mapper = new MultiTouchInputMapper(mDevice);
addConfigurationProperty("touch.deviceType", "touchScreen");
prepareDisplay(DISPLAY_ORIENTATION_0);
prepareAxes(POSITION | ID | SLOT);
addMapperAndConfigure(mapper);
NotifyMotionArgs motionArgs;
NotifyKeyArgs keyArgs;
processId(mapper, 1);
processPosition(mapper, 100, 200);
processSync(mapper);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs));
ASSERT_EQ(AMOTION_EVENT_ACTION_DOWN, motionArgs.action);
ASSERT_EQ(0, motionArgs.buttonState);
// press BTN_LEFT, release BTN_LEFT
processKey(mapper, BTN_LEFT, 1);
processSync(mapper);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs));
ASSERT_EQ(AMOTION_EVENT_ACTION_MOVE, motionArgs.action);
ASSERT_EQ(AMOTION_EVENT_BUTTON_PRIMARY, motionArgs.buttonState);
processKey(mapper, BTN_LEFT, 0);
processSync(mapper);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs));
ASSERT_EQ(0, motionArgs.buttonState);
ASSERT_EQ(AMOTION_EVENT_ACTION_MOVE, motionArgs.action);
// press BTN_RIGHT + BTN_MIDDLE, release BTN_RIGHT, release BTN_MIDDLE
processKey(mapper, BTN_RIGHT, 1);
processKey(mapper, BTN_MIDDLE, 1);
processSync(mapper);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs));
ASSERT_EQ(AMOTION_EVENT_ACTION_MOVE, motionArgs.action);
ASSERT_EQ(AMOTION_EVENT_BUTTON_SECONDARY | AMOTION_EVENT_BUTTON_TERTIARY,
motionArgs.buttonState);
processKey(mapper, BTN_RIGHT, 0);
processSync(mapper);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs));
ASSERT_EQ(AMOTION_EVENT_BUTTON_TERTIARY, motionArgs.buttonState);
ASSERT_EQ(AMOTION_EVENT_ACTION_MOVE, motionArgs.action);
processKey(mapper, BTN_MIDDLE, 0);
processSync(mapper);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs));
ASSERT_EQ(0, motionArgs.buttonState);
ASSERT_EQ(AMOTION_EVENT_ACTION_MOVE, motionArgs.action);
// press BTN_BACK, release BTN_BACK
processKey(mapper, BTN_BACK, 1);
processSync(mapper);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyKeyWasCalled(&keyArgs));
ASSERT_EQ(AKEY_EVENT_ACTION_DOWN, keyArgs.action);
ASSERT_EQ(AKEYCODE_BACK, keyArgs.keyCode);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs));
ASSERT_EQ(AMOTION_EVENT_BUTTON_BACK, motionArgs.buttonState);
ASSERT_EQ(AMOTION_EVENT_ACTION_MOVE, motionArgs.action);
processKey(mapper, BTN_BACK, 0);
processSync(mapper);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs));
ASSERT_EQ(0, motionArgs.buttonState);
ASSERT_EQ(AMOTION_EVENT_ACTION_MOVE, motionArgs.action);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyKeyWasCalled(&keyArgs));
ASSERT_EQ(AKEY_EVENT_ACTION_UP, keyArgs.action);
ASSERT_EQ(AKEYCODE_BACK, keyArgs.keyCode);
// press BTN_SIDE, release BTN_SIDE
processKey(mapper, BTN_SIDE, 1);
processSync(mapper);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyKeyWasCalled(&keyArgs));
ASSERT_EQ(AKEY_EVENT_ACTION_DOWN, keyArgs.action);
ASSERT_EQ(AKEYCODE_BACK, keyArgs.keyCode);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs));
ASSERT_EQ(AMOTION_EVENT_BUTTON_BACK, motionArgs.buttonState);
ASSERT_EQ(AMOTION_EVENT_ACTION_MOVE, motionArgs.action);
processKey(mapper, BTN_SIDE, 0);
processSync(mapper);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs));
ASSERT_EQ(0, motionArgs.buttonState);
ASSERT_EQ(AMOTION_EVENT_ACTION_MOVE, motionArgs.action);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyKeyWasCalled(&keyArgs));
ASSERT_EQ(AKEY_EVENT_ACTION_UP, keyArgs.action);
ASSERT_EQ(AKEYCODE_BACK, keyArgs.keyCode);
// press BTN_FORWARD, release BTN_FORWARD
processKey(mapper, BTN_FORWARD, 1);
processSync(mapper);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyKeyWasCalled(&keyArgs));
ASSERT_EQ(AKEY_EVENT_ACTION_DOWN, keyArgs.action);
ASSERT_EQ(AKEYCODE_FORWARD, keyArgs.keyCode);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs));
ASSERT_EQ(AMOTION_EVENT_BUTTON_FORWARD, motionArgs.buttonState);
ASSERT_EQ(AMOTION_EVENT_ACTION_MOVE, motionArgs.action);
processKey(mapper, BTN_FORWARD, 0);
processSync(mapper);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs));
ASSERT_EQ(0, motionArgs.buttonState);
ASSERT_EQ(AMOTION_EVENT_ACTION_MOVE, motionArgs.action);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyKeyWasCalled(&keyArgs));
ASSERT_EQ(AKEY_EVENT_ACTION_UP, keyArgs.action);
ASSERT_EQ(AKEYCODE_FORWARD, keyArgs.keyCode);
// press BTN_EXTRA, release BTN_EXTRA
processKey(mapper, BTN_EXTRA, 1);
processSync(mapper);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyKeyWasCalled(&keyArgs));
ASSERT_EQ(AKEY_EVENT_ACTION_DOWN, keyArgs.action);
ASSERT_EQ(AKEYCODE_FORWARD, keyArgs.keyCode);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs));
ASSERT_EQ(AMOTION_EVENT_BUTTON_FORWARD, motionArgs.buttonState);
ASSERT_EQ(AMOTION_EVENT_ACTION_MOVE, motionArgs.action);
processKey(mapper, BTN_EXTRA, 0);
processSync(mapper);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs));
ASSERT_EQ(0, motionArgs.buttonState);
ASSERT_EQ(AMOTION_EVENT_ACTION_MOVE, motionArgs.action);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyKeyWasCalled(&keyArgs));
ASSERT_EQ(AKEY_EVENT_ACTION_UP, keyArgs.action);
ASSERT_EQ(AKEYCODE_FORWARD, keyArgs.keyCode);
// press BTN_STYLUS, release BTN_STYLUS
processKey(mapper, BTN_STYLUS, 1);
processSync(mapper);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs));
ASSERT_EQ(AMOTION_EVENT_ACTION_MOVE, motionArgs.action);
ASSERT_EQ(AMOTION_EVENT_BUTTON_SECONDARY, motionArgs.buttonState);
processKey(mapper, BTN_STYLUS, 0);
processSync(mapper);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs));
ASSERT_EQ(0, motionArgs.buttonState);
ASSERT_EQ(AMOTION_EVENT_ACTION_MOVE, motionArgs.action);
// press BTN_STYLUS2, release BTN_STYLUS2
processKey(mapper, BTN_STYLUS2, 1);
processSync(mapper);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs));
ASSERT_EQ(AMOTION_EVENT_ACTION_MOVE, motionArgs.action);
ASSERT_EQ(AMOTION_EVENT_BUTTON_TERTIARY, motionArgs.buttonState);
processKey(mapper, BTN_STYLUS2, 0);
processSync(mapper);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs));
ASSERT_EQ(0, motionArgs.buttonState);
ASSERT_EQ(AMOTION_EVENT_ACTION_MOVE, motionArgs.action);
// release touch
processId(mapper, -1);
processSync(mapper);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs));
ASSERT_EQ(AMOTION_EVENT_ACTION_UP, motionArgs.action);
ASSERT_EQ(0, motionArgs.buttonState);
}
TEST_F(MultiTouchInputMapperTest, Process_ShouldHandleAllToolTypes) {
MultiTouchInputMapper* mapper = new MultiTouchInputMapper(mDevice);
addConfigurationProperty("touch.deviceType", "touchScreen");
prepareDisplay(DISPLAY_ORIENTATION_0);
prepareAxes(POSITION | ID | SLOT | TOOL_TYPE);
addMapperAndConfigure(mapper);
NotifyMotionArgs motionArgs;
// default tool type is finger
processId(mapper, 1);
processPosition(mapper, 100, 200);
processSync(mapper);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs));
ASSERT_EQ(AMOTION_EVENT_ACTION_DOWN, motionArgs.action);
ASSERT_EQ(AMOTION_EVENT_TOOL_TYPE_FINGER, motionArgs.pointerProperties[0].toolType);
// eraser
processKey(mapper, BTN_TOOL_RUBBER, 1);
processSync(mapper);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs));
ASSERT_EQ(AMOTION_EVENT_ACTION_MOVE, motionArgs.action);
ASSERT_EQ(AMOTION_EVENT_TOOL_TYPE_ERASER, motionArgs.pointerProperties[0].toolType);
// stylus
processKey(mapper, BTN_TOOL_RUBBER, 0);
processKey(mapper, BTN_TOOL_PEN, 1);
processSync(mapper);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs));
ASSERT_EQ(AMOTION_EVENT_ACTION_MOVE, motionArgs.action);
ASSERT_EQ(AMOTION_EVENT_TOOL_TYPE_STYLUS, motionArgs.pointerProperties[0].toolType);
// brush
processKey(mapper, BTN_TOOL_PEN, 0);
processKey(mapper, BTN_TOOL_BRUSH, 1);
processSync(mapper);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs));
ASSERT_EQ(AMOTION_EVENT_ACTION_MOVE, motionArgs.action);
ASSERT_EQ(AMOTION_EVENT_TOOL_TYPE_STYLUS, motionArgs.pointerProperties[0].toolType);
// pencil
processKey(mapper, BTN_TOOL_BRUSH, 0);
processKey(mapper, BTN_TOOL_PENCIL, 1);
processSync(mapper);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs));
ASSERT_EQ(AMOTION_EVENT_ACTION_MOVE, motionArgs.action);
ASSERT_EQ(AMOTION_EVENT_TOOL_TYPE_STYLUS, motionArgs.pointerProperties[0].toolType);
// airbrush
processKey(mapper, BTN_TOOL_PENCIL, 0);
processKey(mapper, BTN_TOOL_AIRBRUSH, 1);
processSync(mapper);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs));
ASSERT_EQ(AMOTION_EVENT_ACTION_MOVE, motionArgs.action);
ASSERT_EQ(AMOTION_EVENT_TOOL_TYPE_STYLUS, motionArgs.pointerProperties[0].toolType);
// mouse
processKey(mapper, BTN_TOOL_AIRBRUSH, 0);
processKey(mapper, BTN_TOOL_MOUSE, 1);
processSync(mapper);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs));
ASSERT_EQ(AMOTION_EVENT_ACTION_MOVE, motionArgs.action);
ASSERT_EQ(AMOTION_EVENT_TOOL_TYPE_MOUSE, motionArgs.pointerProperties[0].toolType);
// lens
processKey(mapper, BTN_TOOL_MOUSE, 0);
processKey(mapper, BTN_TOOL_LENS, 1);
processSync(mapper);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs));
ASSERT_EQ(AMOTION_EVENT_ACTION_MOVE, motionArgs.action);
ASSERT_EQ(AMOTION_EVENT_TOOL_TYPE_MOUSE, motionArgs.pointerProperties[0].toolType);
// double-tap
processKey(mapper, BTN_TOOL_LENS, 0);
processKey(mapper, BTN_TOOL_DOUBLETAP, 1);
processSync(mapper);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs));
ASSERT_EQ(AMOTION_EVENT_ACTION_MOVE, motionArgs.action);
ASSERT_EQ(AMOTION_EVENT_TOOL_TYPE_FINGER, motionArgs.pointerProperties[0].toolType);
// triple-tap
processKey(mapper, BTN_TOOL_DOUBLETAP, 0);
processKey(mapper, BTN_TOOL_TRIPLETAP, 1);
processSync(mapper);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs));
ASSERT_EQ(AMOTION_EVENT_ACTION_MOVE, motionArgs.action);
ASSERT_EQ(AMOTION_EVENT_TOOL_TYPE_FINGER, motionArgs.pointerProperties[0].toolType);
// quad-tap
processKey(mapper, BTN_TOOL_TRIPLETAP, 0);
processKey(mapper, BTN_TOOL_QUADTAP, 1);
processSync(mapper);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs));
ASSERT_EQ(AMOTION_EVENT_ACTION_MOVE, motionArgs.action);
ASSERT_EQ(AMOTION_EVENT_TOOL_TYPE_FINGER, motionArgs.pointerProperties[0].toolType);
// finger
processKey(mapper, BTN_TOOL_QUADTAP, 0);
processKey(mapper, BTN_TOOL_FINGER, 1);
processSync(mapper);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs));
ASSERT_EQ(AMOTION_EVENT_ACTION_MOVE, motionArgs.action);
ASSERT_EQ(AMOTION_EVENT_TOOL_TYPE_FINGER, motionArgs.pointerProperties[0].toolType);
// stylus trumps finger
processKey(mapper, BTN_TOOL_PEN, 1);
processSync(mapper);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs));
ASSERT_EQ(AMOTION_EVENT_ACTION_MOVE, motionArgs.action);
ASSERT_EQ(AMOTION_EVENT_TOOL_TYPE_STYLUS, motionArgs.pointerProperties[0].toolType);
// eraser trumps stylus
processKey(mapper, BTN_TOOL_RUBBER, 1);
processSync(mapper);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs));
ASSERT_EQ(AMOTION_EVENT_ACTION_MOVE, motionArgs.action);
ASSERT_EQ(AMOTION_EVENT_TOOL_TYPE_ERASER, motionArgs.pointerProperties[0].toolType);
// mouse trumps eraser
processKey(mapper, BTN_TOOL_MOUSE, 1);
processSync(mapper);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs));
ASSERT_EQ(AMOTION_EVENT_ACTION_MOVE, motionArgs.action);
ASSERT_EQ(AMOTION_EVENT_TOOL_TYPE_MOUSE, motionArgs.pointerProperties[0].toolType);
// MT tool type trumps BTN tool types: MT_TOOL_FINGER
processToolType(mapper, MT_TOOL_FINGER); // this is the first time we send MT_TOOL_TYPE
processSync(mapper);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs));
ASSERT_EQ(AMOTION_EVENT_ACTION_MOVE, motionArgs.action);
ASSERT_EQ(AMOTION_EVENT_TOOL_TYPE_FINGER, motionArgs.pointerProperties[0].toolType);
// MT tool type trumps BTN tool types: MT_TOOL_PEN
processToolType(mapper, MT_TOOL_PEN);
processSync(mapper);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs));
ASSERT_EQ(AMOTION_EVENT_ACTION_MOVE, motionArgs.action);
ASSERT_EQ(AMOTION_EVENT_TOOL_TYPE_STYLUS, motionArgs.pointerProperties[0].toolType);
// back to default tool type
processToolType(mapper, -1); // use a deliberately undefined tool type, for testing
processKey(mapper, BTN_TOOL_MOUSE, 0);
processKey(mapper, BTN_TOOL_RUBBER, 0);
processKey(mapper, BTN_TOOL_PEN, 0);
processKey(mapper, BTN_TOOL_FINGER, 0);
processSync(mapper);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs));
ASSERT_EQ(AMOTION_EVENT_ACTION_MOVE, motionArgs.action);
ASSERT_EQ(AMOTION_EVENT_TOOL_TYPE_FINGER, motionArgs.pointerProperties[0].toolType);
}
TEST_F(MultiTouchInputMapperTest, Process_WhenBtnTouchPresent_HoversIfItsValueIsZero) {
MultiTouchInputMapper* mapper = new MultiTouchInputMapper(mDevice);
addConfigurationProperty("touch.deviceType", "touchScreen");
prepareDisplay(DISPLAY_ORIENTATION_0);
prepareAxes(POSITION | ID | SLOT);
mFakeEventHub->addKey(DEVICE_ID, BTN_TOUCH, 0, AKEYCODE_UNKNOWN, 0);
addMapperAndConfigure(mapper);
NotifyMotionArgs motionArgs;
// initially hovering because BTN_TOUCH not sent yet, pressure defaults to 0
processId(mapper, 1);
processPosition(mapper, 100, 200);
processSync(mapper);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs));
ASSERT_EQ(AMOTION_EVENT_ACTION_HOVER_ENTER, motionArgs.action);
ASSERT_NO_FATAL_FAILURE(assertPointerCoords(motionArgs.pointerCoords[0],
toDisplayX(100), toDisplayY(200), 0, 0, 0, 0, 0, 0, 0, 0));
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs));
ASSERT_EQ(AMOTION_EVENT_ACTION_HOVER_MOVE, motionArgs.action);
ASSERT_NO_FATAL_FAILURE(assertPointerCoords(motionArgs.pointerCoords[0],
toDisplayX(100), toDisplayY(200), 0, 0, 0, 0, 0, 0, 0, 0));
// move a little
processPosition(mapper, 150, 250);
processSync(mapper);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs));
ASSERT_EQ(AMOTION_EVENT_ACTION_HOVER_MOVE, motionArgs.action);
ASSERT_NO_FATAL_FAILURE(assertPointerCoords(motionArgs.pointerCoords[0],
toDisplayX(150), toDisplayY(250), 0, 0, 0, 0, 0, 0, 0, 0));
// down when BTN_TOUCH is pressed, pressure defaults to 1
processKey(mapper, BTN_TOUCH, 1);
processSync(mapper);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs));
ASSERT_EQ(AMOTION_EVENT_ACTION_HOVER_EXIT, motionArgs.action);
ASSERT_NO_FATAL_FAILURE(assertPointerCoords(motionArgs.pointerCoords[0],
toDisplayX(150), toDisplayY(250), 0, 0, 0, 0, 0, 0, 0, 0));
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs));
ASSERT_EQ(AMOTION_EVENT_ACTION_DOWN, motionArgs.action);
ASSERT_NO_FATAL_FAILURE(assertPointerCoords(motionArgs.pointerCoords[0],
toDisplayX(150), toDisplayY(250), 1, 0, 0, 0, 0, 0, 0, 0));
// up when BTN_TOUCH is released, hover restored
processKey(mapper, BTN_TOUCH, 0);
processSync(mapper);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs));
ASSERT_EQ(AMOTION_EVENT_ACTION_UP, motionArgs.action);
ASSERT_NO_FATAL_FAILURE(assertPointerCoords(motionArgs.pointerCoords[0],
toDisplayX(150), toDisplayY(250), 1, 0, 0, 0, 0, 0, 0, 0));
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs));
ASSERT_EQ(AMOTION_EVENT_ACTION_HOVER_ENTER, motionArgs.action);
ASSERT_NO_FATAL_FAILURE(assertPointerCoords(motionArgs.pointerCoords[0],
toDisplayX(150), toDisplayY(250), 0, 0, 0, 0, 0, 0, 0, 0));
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs));
ASSERT_EQ(AMOTION_EVENT_ACTION_HOVER_MOVE, motionArgs.action);
ASSERT_NO_FATAL_FAILURE(assertPointerCoords(motionArgs.pointerCoords[0],
toDisplayX(150), toDisplayY(250), 0, 0, 0, 0, 0, 0, 0, 0));
// exit hover when pointer goes away
processId(mapper, -1);
processSync(mapper);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs));
ASSERT_EQ(AMOTION_EVENT_ACTION_HOVER_EXIT, motionArgs.action);
ASSERT_NO_FATAL_FAILURE(assertPointerCoords(motionArgs.pointerCoords[0],
toDisplayX(150), toDisplayY(250), 0, 0, 0, 0, 0, 0, 0, 0));
}
TEST_F(MultiTouchInputMapperTest, Process_WhenAbsMTPressureIsPresent_HoversIfItsValueIsZero) {
MultiTouchInputMapper* mapper = new MultiTouchInputMapper(mDevice);
addConfigurationProperty("touch.deviceType", "touchScreen");
prepareDisplay(DISPLAY_ORIENTATION_0);
prepareAxes(POSITION | ID | SLOT | PRESSURE);
addMapperAndConfigure(mapper);
NotifyMotionArgs motionArgs;
// initially hovering because pressure is 0
processId(mapper, 1);
processPosition(mapper, 100, 200);
processPressure(mapper, 0);
processSync(mapper);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs));
ASSERT_EQ(AMOTION_EVENT_ACTION_HOVER_ENTER, motionArgs.action);
ASSERT_NO_FATAL_FAILURE(assertPointerCoords(motionArgs.pointerCoords[0],
toDisplayX(100), toDisplayY(200), 0, 0, 0, 0, 0, 0, 0, 0));
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs));
ASSERT_EQ(AMOTION_EVENT_ACTION_HOVER_MOVE, motionArgs.action);
ASSERT_NO_FATAL_FAILURE(assertPointerCoords(motionArgs.pointerCoords[0],
toDisplayX(100), toDisplayY(200), 0, 0, 0, 0, 0, 0, 0, 0));
// move a little
processPosition(mapper, 150, 250);
processSync(mapper);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs));
ASSERT_EQ(AMOTION_EVENT_ACTION_HOVER_MOVE, motionArgs.action);
ASSERT_NO_FATAL_FAILURE(assertPointerCoords(motionArgs.pointerCoords[0],
toDisplayX(150), toDisplayY(250), 0, 0, 0, 0, 0, 0, 0, 0));
// down when pressure becomes non-zero
processPressure(mapper, RAW_PRESSURE_MAX);
processSync(mapper);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs));
ASSERT_EQ(AMOTION_EVENT_ACTION_HOVER_EXIT, motionArgs.action);
ASSERT_NO_FATAL_FAILURE(assertPointerCoords(motionArgs.pointerCoords[0],
toDisplayX(150), toDisplayY(250), 0, 0, 0, 0, 0, 0, 0, 0));
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs));
ASSERT_EQ(AMOTION_EVENT_ACTION_DOWN, motionArgs.action);
ASSERT_NO_FATAL_FAILURE(assertPointerCoords(motionArgs.pointerCoords[0],
toDisplayX(150), toDisplayY(250), 1, 0, 0, 0, 0, 0, 0, 0));
// up when pressure becomes 0, hover restored
processPressure(mapper, 0);
processSync(mapper);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs));
ASSERT_EQ(AMOTION_EVENT_ACTION_UP, motionArgs.action);
ASSERT_NO_FATAL_FAILURE(assertPointerCoords(motionArgs.pointerCoords[0],
toDisplayX(150), toDisplayY(250), 1, 0, 0, 0, 0, 0, 0, 0));
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs));
ASSERT_EQ(AMOTION_EVENT_ACTION_HOVER_ENTER, motionArgs.action);
ASSERT_NO_FATAL_FAILURE(assertPointerCoords(motionArgs.pointerCoords[0],
toDisplayX(150), toDisplayY(250), 0, 0, 0, 0, 0, 0, 0, 0));
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs));
ASSERT_EQ(AMOTION_EVENT_ACTION_HOVER_MOVE, motionArgs.action);
ASSERT_NO_FATAL_FAILURE(assertPointerCoords(motionArgs.pointerCoords[0],
toDisplayX(150), toDisplayY(250), 0, 0, 0, 0, 0, 0, 0, 0));
// exit hover when pointer goes away
processId(mapper, -1);
processSync(mapper);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs));
ASSERT_EQ(AMOTION_EVENT_ACTION_HOVER_EXIT, motionArgs.action);
ASSERT_NO_FATAL_FAILURE(assertPointerCoords(motionArgs.pointerCoords[0],
toDisplayX(150), toDisplayY(250), 0, 0, 0, 0, 0, 0, 0, 0));
}
} // namespace android