// Ceres Solver - A fast non-linear least squares minimizer // Copyright 2010, 2011, 2012 Google Inc. All rights reserved. // http://code.google.com/p/ceres-solver/ // // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions are met: // // * Redistributions of source code must retain the above copyright notice, // this list of conditions and the following disclaimer. // * Redistributions in binary form must reproduce the above copyright notice, // this list of conditions and the following disclaimer in the documentation // and/or other materials provided with the distribution. // * Neither the name of Google Inc. nor the names of its contributors may be // used to endorse or promote products derived from this software without // specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE // POSSIBILITY OF SUCH DAMAGE. // // Author: keir@google.com (Keir Mierle) // // A simple example of using the Ceres minimizer. // // Minimize 0.5 (10 - x)^2 using analytic jacobian matrix. #include <vector> #include "ceres/ceres.h" #include "gflags/gflags.h" #include "glog/logging.h" using ceres::SizedCostFunction; using ceres::Problem; using ceres::Solver; using ceres::Solve; class SimpleCostFunction : public SizedCostFunction<1 /* number of residuals */, 1 /* size of first parameter */> { public: virtual ~SimpleCostFunction() {} virtual bool Evaluate(double const* const* parameters, double* residuals, double** jacobians) const { double x = parameters[0][0]; // f(x) = 10 - x. residuals[0] = 10 - x; // f'(x) = -1. Since there's only 1 parameter and that parameter // has 1 dimension, there is only 1 element to fill in the // jacobians. if (jacobians != NULL && jacobians[0] != NULL) { jacobians[0][0] = -1; } return true; } }; int main(int argc, char** argv) { google::ParseCommandLineFlags(&argc, &argv, true); google::InitGoogleLogging(argv[0]); // The variable with its initial value that we will be solving for. double x = 5.0; // Build the problem. Problem problem; // Set up the only cost function (also known as residual). problem.AddResidualBlock(new SimpleCostFunction, NULL, &x); // Run the solver! Solver::Options options; options.max_num_iterations = 10; options.linear_solver_type = ceres::DENSE_QR; options.minimizer_progress_to_stdout = true; Solver::Summary summary; Solve(options, &problem, &summary); std::cout << summary.BriefReport() << "\n"; std::cout << "x : 5.0 -> " << x << "\n"; return 0; }