// Ceres Solver - A fast non-linear least squares minimizer // Copyright 2010, 2011, 2012 Google Inc. All rights reserved. // http://code.google.com/p/ceres-solver/ // // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions are met: // // * Redistributions of source code must retain the above copyright notice, // this list of conditions and the following disclaimer. // * Redistributions in binary form must reproduce the above copyright notice, // this list of conditions and the following disclaimer in the documentation // and/or other materials provided with the distribution. // * Neither the name of Google Inc. nor the names of its contributors may be // used to endorse or promote products derived from this software without // specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE // POSSIBILITY OF SUCH DAMAGE. // // Author: keir@google.com (Keir Mierle) // // Computation of the Jacobian matrix for vector-valued functions of multiple // variables, using automatic differentiation based on the implementation of // dual numbers in jet.h. Before reading the rest of this file, it is adivsable // to read jet.h's header comment in detail. // // The helper wrapper AutoDiff::Differentiate() computes the jacobian of // functors with templated operator() taking this form: // // struct F { // template<typename T> // bool operator(const T *x, const T *y, ..., T *z) { // // Compute z[] based on x[], y[], ... // // return true if computation succeeded, false otherwise. // } // }; // // All inputs and outputs may be vector-valued. // // To understand how jets are used to compute the jacobian, a // picture may help. Consider a vector-valued function, F, returning 3 // dimensions and taking a vector-valued parameter of 4 dimensions: // // y x // [ * ] F [ * ] // [ * ] <--- [ * ] // [ * ] [ * ] // [ * ] // // Similar to the 2-parameter example for f described in jet.h, computing the // jacobian dy/dx is done by substutiting a suitable jet object for x and all // intermediate steps of the computation of F. Since x is has 4 dimensions, use // a Jet<double, 4>. // // Before substituting a jet object for x, the dual components are set // appropriately for each dimension of x: // // y x // [ * | * * * * ] f [ * | 1 0 0 0 ] x0 // [ * | * * * * ] <--- [ * | 0 1 0 0 ] x1 // [ * | * * * * ] [ * | 0 0 1 0 ] x2 // ---+--- [ * | 0 0 0 1 ] x3 // | ^ ^ ^ ^ // dy/dx | | | +----- infinitesimal for x3 // | | +------- infinitesimal for x2 // | +--------- infinitesimal for x1 // +----------- infinitesimal for x0 // // The reason to set the internal 4x4 submatrix to the identity is that we wish // to take the derivative of y separately with respect to each dimension of x. // Each column of the 4x4 identity is therefore for a single component of the // independent variable x. // // Then the jacobian of the mapping, dy/dx, is the 3x4 sub-matrix of the // extended y vector, indicated in the above diagram. // // Functors with multiple parameters // --------------------------------- // In practice, it is often convenient to use a function f of two or more // vector-valued parameters, for example, x[3] and z[6]. Unfortunately, the jet // framework is designed for a single-parameter vector-valued input. The wrapper // in this file addresses this issue adding support for functions with one or // more parameter vectors. // // To support multiple parameters, all the parameter vectors are concatenated // into one and treated as a single parameter vector, except that since the // functor expects different inputs, we need to construct the jets as if they // were part of a single parameter vector. The extended jets are passed // separately for each parameter. // // For example, consider a functor F taking two vector parameters, p[2] and // q[3], and producing an output y[4]: // // struct F { // template<typename T> // bool operator(const T *p, const T *q, T *z) { // // ... // } // }; // // In this case, the necessary jet type is Jet<double, 5>. Here is a // visualization of the jet objects in this case: // // Dual components for p ----+ // | // -+- // y [ * | 1 0 | 0 0 0 ] --- p[0] // [ * | 0 1 | 0 0 0 ] --- p[1] // [ * | . . | + + + ] | // [ * | . . | + + + ] v // [ * | . . | + + + ] <--- F(p, q) // [ * | . . | + + + ] ^ // ^^^ ^^^^^ | // dy/dp dy/dq [ * | 0 0 | 1 0 0 ] --- q[0] // [ * | 0 0 | 0 1 0 ] --- q[1] // [ * | 0 0 | 0 0 1 ] --- q[2] // --+-- // | // Dual components for q --------------+ // // where the 4x2 submatrix (marked with ".") and 4x3 submatrix (marked with "+" // of y in the above diagram are the derivatives of y with respect to p and q // respectively. This is how autodiff works for functors taking multiple vector // valued arguments (up to 6). // // Jacobian NULL pointers // ---------------------- // In general, the functions below will accept NULL pointers for all or some of // the Jacobian parameters, meaning that those Jacobians will not be computed. #ifndef CERES_PUBLIC_INTERNAL_AUTODIFF_H_ #define CERES_PUBLIC_INTERNAL_AUTODIFF_H_ #include <stddef.h> #include <glog/logging.h> #include "ceres/jet.h" #include "ceres/internal/eigen.h" #include "ceres/internal/fixed_array.h" namespace ceres { namespace internal { // Extends src by a 1st order pertubation for every dimension and puts it in // dst. The size of src is N. Since this is also used for perturbations in // blocked arrays, offset is used to shift which part of the jet the // perturbation occurs. This is used to set up the extended x augmented by an // identity matrix. The JetT type should be a Jet type, and T should be a // numeric type (e.g. double). For example, // // 0 1 2 3 4 5 6 7 8 // dst[0] [ * | . . | 1 0 0 | . . . ] // dst[1] [ * | . . | 0 1 0 | . . . ] // dst[2] [ * | . . | 0 0 1 | . . . ] // // is what would get put in dst if N was 3, offset was 3, and the jet type JetT // was 8-dimensional. template <typename JetT, typename T> inline void Make1stOrderPerturbation(int offset, int N, const T *src, JetT *dst) { DCHECK(src); DCHECK(dst); for (int j = 0; j < N; ++j) { dst[j] = JetT(src[j], offset + j); } } // Takes the 0th order part of src, assumed to be a Jet type, and puts it in // dst. This is used to pick out the "vector" part of the extended y. template <typename JetT, typename T> inline void Take0thOrderPart(int M, const JetT *src, T dst) { DCHECK(src); for (int i = 0; i < M; ++i) { dst[i] = src[i].a; } } // Takes N 1st order parts, starting at index N0, and puts them in the M x N // matrix 'dst'. This is used to pick out the "matrix" parts of the extended y. template <typename JetT, typename T, int N0, int N> inline void Take1stOrderPart(const int M, const JetT *src, T *dst) { DCHECK(src); DCHECK(dst); for (int i = 0; i < M; ++i) { Eigen::Map<Eigen::Matrix<T, N, 1> >(dst + N * i, N) = src[i].v.template segment<N>(N0); } } // This block of quasi-repeated code calls the user-supplied functor, which may // take a variable number of arguments. This is accomplished by specializing the // struct based on the size of the trailing parameters; parameters with 0 size // are assumed missing. // // Supporting variadic functions is the primary source of complexity in the // autodiff implementation. template<typename Functor, typename T, int N0, int N1, int N2, int N3, int N4, int N5, int N6, int N7, int N8, int N9> struct VariadicEvaluate { static bool Call(const Functor& functor, T const *const *input, T* output) { return functor(input[0], input[1], input[2], input[3], input[4], input[5], input[6], input[7], input[8], input[9], output); } }; template<typename Functor, typename T, int N0, int N1, int N2, int N3, int N4, int N5, int N6, int N7, int N8> struct VariadicEvaluate<Functor, T, N0, N1, N2, N3, N4, N5, N6, N7, N8, 0> { static bool Call(const Functor& functor, T const *const *input, T* output) { return functor(input[0], input[1], input[2], input[3], input[4], input[5], input[6], input[7], input[8], output); } }; template<typename Functor, typename T, int N0, int N1, int N2, int N3, int N4, int N5, int N6, int N7> struct VariadicEvaluate<Functor, T, N0, N1, N2, N3, N4, N5, N6, N7, 0, 0> { static bool Call(const Functor& functor, T const *const *input, T* output) { return functor(input[0], input[1], input[2], input[3], input[4], input[5], input[6], input[7], output); } }; template<typename Functor, typename T, int N0, int N1, int N2, int N3, int N4, int N5, int N6> struct VariadicEvaluate<Functor, T, N0, N1, N2, N3, N4, N5, N6, 0, 0, 0> { static bool Call(const Functor& functor, T const *const *input, T* output) { return functor(input[0], input[1], input[2], input[3], input[4], input[5], input[6], output); } }; template<typename Functor, typename T, int N0, int N1, int N2, int N3, int N4, int N5> struct VariadicEvaluate<Functor, T, N0, N1, N2, N3, N4, N5, 0, 0, 0, 0> { static bool Call(const Functor& functor, T const *const *input, T* output) { return functor(input[0], input[1], input[2], input[3], input[4], input[5], output); } }; template<typename Functor, typename T, int N0, int N1, int N2, int N3, int N4> struct VariadicEvaluate<Functor, T, N0, N1, N2, N3, N4, 0, 0, 0, 0, 0> { static bool Call(const Functor& functor, T const *const *input, T* output) { return functor(input[0], input[1], input[2], input[3], input[4], output); } }; template<typename Functor, typename T, int N0, int N1, int N2, int N3> struct VariadicEvaluate<Functor, T, N0, N1, N2, N3, 0, 0, 0, 0, 0, 0> { static bool Call(const Functor& functor, T const *const *input, T* output) { return functor(input[0], input[1], input[2], input[3], output); } }; template<typename Functor, typename T, int N0, int N1, int N2> struct VariadicEvaluate<Functor, T, N0, N1, N2, 0, 0, 0, 0, 0, 0, 0> { static bool Call(const Functor& functor, T const *const *input, T* output) { return functor(input[0], input[1], input[2], output); } }; template<typename Functor, typename T, int N0, int N1> struct VariadicEvaluate<Functor, T, N0, N1, 0, 0, 0, 0, 0, 0, 0, 0> { static bool Call(const Functor& functor, T const *const *input, T* output) { return functor(input[0], input[1], output); } }; template<typename Functor, typename T, int N0> struct VariadicEvaluate<Functor, T, N0, 0, 0, 0, 0, 0, 0, 0, 0, 0> { static bool Call(const Functor& functor, T const *const *input, T* output) { return functor(input[0], output); } }; // This is in a struct because default template parameters on a function are not // supported in C++03 (though it is available in C++0x). N0 through N5 are the // dimension of the input arguments to the user supplied functor. template <typename Functor, typename T, int N0 = 0, int N1 = 0, int N2 = 0, int N3 = 0, int N4 = 0, int N5 = 0, int N6 = 0, int N7 = 0, int N8 = 0, int N9 = 0> struct AutoDiff { static bool Differentiate(const Functor& functor, T const *const *parameters, int num_outputs, T *function_value, T **jacobians) { // This block breaks the 80 column rule to keep it somewhat readable. DCHECK_GT(num_outputs, 0); CHECK((!N1 && !N2 && !N3 && !N4 && !N5 && !N6 && !N7 && !N8 && !N9) || ((N1 > 0) && !N2 && !N3 && !N4 && !N5 && !N6 && !N7 && !N8 && !N9) || ((N1 > 0) && (N2 > 0) && !N3 && !N4 && !N5 && !N6 && !N7 && !N8 && !N9) || ((N1 > 0) && (N2 > 0) && (N3 > 0) && !N4 && !N5 && !N6 && !N7 && !N8 && !N9) || ((N1 > 0) && (N2 > 0) && (N3 > 0) && (N4 > 0) && !N5 && !N6 && !N7 && !N8 && !N9) || ((N1 > 0) && (N2 > 0) && (N3 > 0) && (N4 > 0) && (N5 > 0) && !N6 && !N7 && !N8 && !N9) || ((N1 > 0) && (N2 > 0) && (N3 > 0) && (N4 > 0) && (N5 > 0) && (N6 > 0) && !N7 && !N8 && !N9) || ((N1 > 0) && (N2 > 0) && (N3 > 0) && (N4 > 0) && (N5 > 0) && (N6 > 0) && (N7 > 0) && !N8 && !N9) || ((N1 > 0) && (N2 > 0) && (N3 > 0) && (N4 > 0) && (N5 > 0) && (N6 > 0) && (N7 > 0) && (N8 > 0) && !N9) || ((N1 > 0) && (N2 > 0) && (N3 > 0) && (N4 > 0) && (N5 > 0) && (N6 > 0) && (N7 > 0) && (N8 > 0) && (N9 > 0))) << "Zero block cannot precede a non-zero block. Block sizes are " << "(ignore trailing 0s): " << N0 << ", " << N1 << ", " << N2 << ", " << N3 << ", " << N4 << ", " << N5 << ", " << N6 << ", " << N7 << ", " << N8 << ", " << N9; typedef Jet<T, N0 + N1 + N2 + N3 + N4 + N5 + N6 + N7 + N8 + N9> JetT; FixedArray<JetT, (256 * 7) / sizeof(JetT)> x( N0 + N1 + N2 + N3 + N4 + N5 + N6 + N7 + N8 + N9 + num_outputs); // These are the positions of the respective jets in the fixed array x. const int jet0 = 0; const int jet1 = N0; const int jet2 = N0 + N1; const int jet3 = N0 + N1 + N2; const int jet4 = N0 + N1 + N2 + N3; const int jet5 = N0 + N1 + N2 + N3 + N4; const int jet6 = N0 + N1 + N2 + N3 + N4 + N5; const int jet7 = N0 + N1 + N2 + N3 + N4 + N5 + N6; const int jet8 = N0 + N1 + N2 + N3 + N4 + N5 + N6 + N7; const int jet9 = N0 + N1 + N2 + N3 + N4 + N5 + N6 + N7 + N8; const JetT *unpacked_parameters[10] = { x.get() + jet0, x.get() + jet1, x.get() + jet2, x.get() + jet3, x.get() + jet4, x.get() + jet5, x.get() + jet6, x.get() + jet7, x.get() + jet8, x.get() + jet9, }; JetT *output = x.get() + jet6; #define CERES_MAKE_1ST_ORDER_PERTURBATION(i) \ if (N ## i) { \ internal::Make1stOrderPerturbation(jet ## i, \ N ## i, \ parameters[i], \ x.get() + jet ## i); \ } CERES_MAKE_1ST_ORDER_PERTURBATION(0); CERES_MAKE_1ST_ORDER_PERTURBATION(1); CERES_MAKE_1ST_ORDER_PERTURBATION(2); CERES_MAKE_1ST_ORDER_PERTURBATION(3); CERES_MAKE_1ST_ORDER_PERTURBATION(4); CERES_MAKE_1ST_ORDER_PERTURBATION(5); CERES_MAKE_1ST_ORDER_PERTURBATION(6); CERES_MAKE_1ST_ORDER_PERTURBATION(7); CERES_MAKE_1ST_ORDER_PERTURBATION(8); CERES_MAKE_1ST_ORDER_PERTURBATION(9); #undef CERES_MAKE_1ST_ORDER_PERTURBATION if (!VariadicEvaluate<Functor, JetT, N0, N1, N2, N3, N4, N5, N6, N7, N8, N9>::Call( functor, unpacked_parameters, output)) { return false; } internal::Take0thOrderPart(num_outputs, output, function_value); #define CERES_TAKE_1ST_ORDER_PERTURBATION(i) \ if (N ## i) { \ if (jacobians[i]) { \ internal::Take1stOrderPart<JetT, T, \ jet ## i, \ N ## i>(num_outputs, \ output, \ jacobians[i]); \ } \ } CERES_TAKE_1ST_ORDER_PERTURBATION(0); CERES_TAKE_1ST_ORDER_PERTURBATION(1); CERES_TAKE_1ST_ORDER_PERTURBATION(2); CERES_TAKE_1ST_ORDER_PERTURBATION(3); CERES_TAKE_1ST_ORDER_PERTURBATION(4); CERES_TAKE_1ST_ORDER_PERTURBATION(5); CERES_TAKE_1ST_ORDER_PERTURBATION(6); CERES_TAKE_1ST_ORDER_PERTURBATION(7); CERES_TAKE_1ST_ORDER_PERTURBATION(8); CERES_TAKE_1ST_ORDER_PERTURBATION(9); #undef CERES_TAKE_1ST_ORDER_PERTURBATION return true; } }; } // namespace internal } // namespace ceres #endif // CERES_PUBLIC_INTERNAL_AUTODIFF_H_