// Ceres Solver - A fast non-linear least squares minimizer // Copyright 2010, 2011, 2012 Google Inc. All rights reserved. // http://code.google.com/p/ceres-solver/ // // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions are met: // // * Redistributions of source code must retain the above copyright notice, // this list of conditions and the following disclaimer. // * Redistributions in binary form must reproduce the above copyright notice, // this list of conditions and the following disclaimer in the documentation // and/or other materials provided with the distribution. // * Neither the name of Google Inc. nor the names of its contributors may be // used to endorse or promote products derived from this software without // specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE // POSSIBILITY OF SUCH DAMAGE. // // Author: rennie@google.com (Jeffrey Rennie) // Author: sanjay@google.com (Sanjay Ghemawat) -- renamed to FixedArray #ifndef CERES_PUBLIC_INTERNAL_FIXED_ARRAY_H_ #define CERES_PUBLIC_INTERNAL_FIXED_ARRAY_H_ #include <cstddef> #include <glog/logging.h> #include "Eigen/Core" #include "ceres/internal/macros.h" #include "ceres/internal/manual_constructor.h" namespace ceres { namespace internal { // A FixedArray<T> represents a non-resizable array of T where the // length of the array does not need to be a compile time constant. // // FixedArray allocates small arrays inline, and large arrays on // the heap. It is a good replacement for non-standard and deprecated // uses of alloca() and variable length arrays (a GCC extension). // // FixedArray keeps performance fast for small arrays, because it // avoids heap operations. It also helps reduce the chances of // accidentally overflowing your stack if large input is passed to // your function. // // Also, FixedArray is useful for writing portable code. Not all // compilers support arrays of dynamic size. // Most users should not specify an inline_elements argument and let // FixedArray<> automatically determine the number of elements // to store inline based on sizeof(T). // // If inline_elements is specified, the FixedArray<> implementation // will store arrays of length <= inline_elements inline. // // Finally note that unlike vector<T> FixedArray<T> will not zero-initialize // simple types like int, double, bool, etc. // // Non-POD types will be default-initialized just like regular vectors or // arrays. #if defined(_WIN64) typedef __int64 ssize_t; #elif defined(_WIN32) typedef __int32 ssize_t; #endif template <typename T, ssize_t inline_elements = -1> class FixedArray { public: // For playing nicely with stl: typedef T value_type; typedef T* iterator; typedef T const* const_iterator; typedef T& reference; typedef T const& const_reference; typedef T* pointer; typedef std::ptrdiff_t difference_type; typedef size_t size_type; // REQUIRES: n >= 0 // Creates an array object that can store "n" elements. // // FixedArray<T> will not zero-initialiaze POD (simple) types like int, // double, bool, etc. // Non-POD types will be default-initialized just like regular vectors or // arrays. explicit FixedArray(size_type n); // Releases any resources. ~FixedArray(); // Returns the length of the array. inline size_type size() const { return size_; } // Returns the memory size of the array in bytes. inline size_t memsize() const { return size_ * sizeof(T); } // Returns a pointer to the underlying element array. inline const T* get() const { return &array_[0].element; } inline T* get() { return &array_[0].element; } // REQUIRES: 0 <= i < size() // Returns a reference to the "i"th element. inline T& operator[](size_type i) { DCHECK_GE(i, 0); DCHECK_LT(i, size_); return array_[i].element; } // REQUIRES: 0 <= i < size() // Returns a reference to the "i"th element. inline const T& operator[](size_type i) const { DCHECK_GE(i, 0); DCHECK_LT(i, size_); return array_[i].element; } inline iterator begin() { return &array_[0].element; } inline iterator end() { return &array_[size_].element; } inline const_iterator begin() const { return &array_[0].element; } inline const_iterator end() const { return &array_[size_].element; } private: // Container to hold elements of type T. This is necessary to handle // the case where T is a a (C-style) array. The size of InnerContainer // and T must be the same, otherwise callers' assumptions about use // of this code will be broken. struct InnerContainer { T element; }; // How many elements should we store inline? // a. If not specified, use a default of 256 bytes (256 bytes // seems small enough to not cause stack overflow or unnecessary // stack pollution, while still allowing stack allocation for // reasonably long character arrays. // b. Never use 0 length arrays (not ISO C++) static const size_type S1 = ((inline_elements < 0) ? (256/sizeof(T)) : inline_elements); static const size_type S2 = (S1 <= 0) ? 1 : S1; static const size_type kInlineElements = S2; size_type const size_; InnerContainer* const array_; // Allocate some space, not an array of elements of type T, so that we can // skip calling the T constructors and destructors for space we never use. ManualConstructor<InnerContainer> inline_space_[kInlineElements]; }; // Implementation details follow template <class T, ssize_t S> inline FixedArray<T, S>::FixedArray(typename FixedArray<T, S>::size_type n) : size_(n), array_((n <= kInlineElements ? reinterpret_cast<InnerContainer*>(inline_space_) : new InnerContainer[n])) { DCHECK_GE(n, size_t(0)); // Construct only the elements actually used. if (array_ == reinterpret_cast<InnerContainer*>(inline_space_)) { for (size_t i = 0; i != size_; ++i) { inline_space_[i].Init(); } } } template <class T, ssize_t S> inline FixedArray<T, S>::~FixedArray() { if (array_ != reinterpret_cast<InnerContainer*>(inline_space_)) { delete[] array_; } else { for (size_t i = 0; i != size_; ++i) { inline_space_[i].Destroy(); } } } } // namespace internal } // namespace ceres #endif // CERES_PUBLIC_INTERNAL_FIXED_ARRAY_H_