// Ceres Solver - A fast non-linear least squares minimizer // Copyright 2010, 2011, 2012 Google Inc. All rights reserved. // http://code.google.com/p/ceres-solver/ // // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions are met: // // * Redistributions of source code must retain the above copyright notice, // this list of conditions and the following disclaimer. // * Redistributions in binary form must reproduce the above copyright notice, // this list of conditions and the following disclaimer in the documentation // and/or other materials provided with the distribution. // * Neither the name of Google Inc. nor the names of its contributors may be // used to endorse or promote products derived from this software without // specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE // POSSIBILITY OF SUCH DAMAGE. // // Author: Sameer Agarwal (sameeragarwal@google.com) // David Gallup (dgallup@google.com) #include "ceres/canonical_views_clustering.h" #include "ceres/collections_port.h" #include "ceres/graph.h" #include "gtest/gtest.h" namespace ceres { namespace internal { const int kVertexIds[] = {0, 1, 2, 3}; class CanonicalViewsTest : public ::testing::Test { protected: virtual void SetUp() { // The graph structure is as follows. // // Vertex weights: 0 2 2 0 // V0-----V1-----V2-----V3 // Edge weights: 0.8 0.9 0.3 const double kVertexWeights[] = {0.0, 2.0, 2.0, -1.0}; for (int i = 0; i < 4; ++i) { graph_.AddVertex(i, kVertexWeights[i]); } // Create self edges. // CanonicalViews requires that every view "sees" itself. for (int i = 0; i < 4; ++i) { graph_.AddEdge(i, i, 1.0); } // Create three edges. const double kEdgeWeights[] = {0.8, 0.9, 0.3}; for (int i = 0; i < 3; ++i) { // The graph interface is directed, so remember to create both // edges. graph_.AddEdge(kVertexIds[i], kVertexIds[i + 1], kEdgeWeights[i]); } } void ComputeClustering() { ComputeCanonicalViewsClustering(graph_, options_, ¢ers_, &membership_); } Graph<int> graph_; CanonicalViewsClusteringOptions options_; vector<int> centers_; HashMap<int, int> membership_; }; TEST_F(CanonicalViewsTest, ComputeCanonicalViewsTest) { options_.min_views = 0; options_.size_penalty_weight = 0.5; options_.similarity_penalty_weight = 0.0; options_.view_score_weight = 0.0; ComputeClustering(); // 2 canonical views. EXPECT_EQ(centers_.size(), 2); EXPECT_EQ(centers_[0], kVertexIds[1]); EXPECT_EQ(centers_[1], kVertexIds[3]); // Check cluster membership. EXPECT_EQ(FindOrDie(membership_, kVertexIds[0]), 0); EXPECT_EQ(FindOrDie(membership_, kVertexIds[1]), 0); EXPECT_EQ(FindOrDie(membership_, kVertexIds[2]), 0); EXPECT_EQ(FindOrDie(membership_, kVertexIds[3]), 1); } // Increases size penalty so the second canonical view won't be // chosen. TEST_F(CanonicalViewsTest, SizePenaltyTest) { options_.min_views = 0; options_.size_penalty_weight = 2.0; options_.similarity_penalty_weight = 0.0; options_.view_score_weight = 0.0; ComputeClustering(); // 1 canonical view. EXPECT_EQ(centers_.size(), 1); EXPECT_EQ(centers_[0], kVertexIds[1]); } // Increases view score weight so vertex 2 will be chosen. TEST_F(CanonicalViewsTest, ViewScoreTest) { options_.min_views = 0; options_.size_penalty_weight = 0.5; options_.similarity_penalty_weight = 0.0; options_.view_score_weight = 1.0; ComputeClustering(); // 2 canonical views. EXPECT_EQ(centers_.size(), 2); EXPECT_EQ(centers_[0], kVertexIds[1]); EXPECT_EQ(centers_[1], kVertexIds[2]); } // Increases similarity penalty so vertex 2 won't be chosen despite // it's view score. TEST_F(CanonicalViewsTest, SimilarityPenaltyTest) { options_.min_views = 0; options_.size_penalty_weight = 0.5; options_.similarity_penalty_weight = 3.0; options_.view_score_weight = 1.0; ComputeClustering(); // 2 canonical views. EXPECT_EQ(centers_.size(), 1); EXPECT_EQ(centers_[0], kVertexIds[1]); } } // namespace internal } // namespace ceres