// Ceres Solver - A fast non-linear least squares minimizer // Copyright 2012 Google Inc. All rights reserved. // http://code.google.com/p/ceres-solver/ // // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions are met: // // * Redistributions of source code must retain the above copyright notice, // this list of conditions and the following disclaimer. // * Redistributions in binary form must reproduce the above copyright notice, // this list of conditions and the following disclaimer in the documentation // and/or other materials provided with the distribution. // * Neither the name of Google Inc. nor the names of its contributors may be // used to endorse or promote products derived from this software without // specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE // POSSIBILITY OF SUCH DAMAGE. // // Author: keir@google.com (Keir Mierle) #ifndef CERES_INTERNAL_CGNR_LINEAR_OPERATOR_H_ #define CERES_INTERNAL_CGNR_LINEAR_OPERATOR_H_ #include <algorithm> #include "ceres/linear_operator.h" #include "ceres/internal/scoped_ptr.h" #include "ceres/internal/eigen.h" namespace ceres { namespace internal { class SparseMatrix; // A linear operator which takes a matrix A and a diagonal vector D and // performs products of the form // // (A^T A + D^T D)x // // This is used to implement iterative general sparse linear solving with // conjugate gradients, where A is the Jacobian and D is a regularizing // parameter. A brief proof that D^T D is the correct regularizer: // // Given a regularized least squares problem: // // min ||Ax - b||^2 + ||Dx||^2 // x // // First expand into matrix notation: // // (Ax - b)^T (Ax - b) + xD^TDx // // Then multiply out to get: // // = xA^TAx - 2b^T Ax + b^Tb + xD^TDx // // Take the derivative: // // 0 = 2A^TAx - 2A^T b + 2 D^TDx // 0 = A^TAx - A^T b + D^TDx // 0 = (A^TA + D^TD)x - A^T b // // Thus, the symmetric system we need to solve for CGNR is // // Sx = z // // with S = A^TA + D^TD // and z = A^T b // // Note: This class is not thread safe, since it uses some temporary storage. class CgnrLinearOperator : public LinearOperator { public: CgnrLinearOperator(const LinearOperator& A, const double *D) : A_(A), D_(D), z_(new double[A.num_rows()]) { } virtual ~CgnrLinearOperator() {} virtual void RightMultiply(const double* x, double* y) const { std::fill(z_.get(), z_.get() + A_.num_rows(), 0.0); // z = Ax A_.RightMultiply(x, z_.get()); // y = y + Atz A_.LeftMultiply(z_.get(), y); // y = y + DtDx if (D_ != NULL) { int n = A_.num_cols(); VectorRef(y, n).array() += ConstVectorRef(D_, n).array().square() * ConstVectorRef(x, n).array(); } } virtual void LeftMultiply(const double* x, double* y) const { RightMultiply(x, y); } virtual int num_rows() const { return A_.num_cols(); } virtual int num_cols() const { return A_.num_cols(); } private: const LinearOperator& A_; const double* D_; scoped_array<double> z_; }; } // namespace internal } // namespace ceres #endif // CERES_INTERNAL_CGNR_LINEAR_OPERATOR_H_