// Ceres Solver - A fast non-linear least squares minimizer // Copyright 2010, 2011, 2012 Google Inc. All rights reserved. // http://code.google.com/p/ceres-solver/ // // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions are met: // // * Redistributions of source code must retain the above copyright notice, // this list of conditions and the following disclaimer. // * Redistributions in binary form must reproduce the above copyright notice, // this list of conditions and the following disclaimer in the documentation // and/or other materials provided with the distribution. // * Neither the name of Google Inc. nor the names of its contributors may be // used to endorse or promote products derived from this software without // specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE // POSSIBILITY OF SUCH DAMAGE. // // Author: sameeragarwal@google.com (Sameer Agarwal) #include "ceres/compressed_row_sparse_matrix.h" #include <algorithm> #include <vector> #include "ceres/crs_matrix.h" #include "ceres/internal/port.h" #include "ceres/matrix_proto.h" namespace ceres { namespace internal { namespace { // Helper functor used by the constructor for reordering the contents // of a TripletSparseMatrix. This comparator assumes thay there are no // duplicates in the pair of arrays rows and cols, i.e., there is no // indices i and j (not equal to each other) s.t. // // rows[i] == rows[j] && cols[i] == cols[j] // // If this is the case, this functor will not be a StrictWeakOrdering. struct RowColLessThan { RowColLessThan(const int* rows, const int* cols) : rows(rows), cols(cols) { } bool operator()(const int x, const int y) const { if (rows[x] == rows[y]) { return (cols[x] < cols[y]); } return (rows[x] < rows[y]); } const int* rows; const int* cols; }; } // namespace // This constructor gives you a semi-initialized CompressedRowSparseMatrix. CompressedRowSparseMatrix::CompressedRowSparseMatrix(int num_rows, int num_cols, int max_num_nonzeros) { num_rows_ = num_rows; num_cols_ = num_cols; max_num_nonzeros_ = max_num_nonzeros; VLOG(1) << "# of rows: " << num_rows_ << " # of columns: " << num_cols_ << " max_num_nonzeros: " << max_num_nonzeros_ << ". Allocating " << (num_rows_ + 1) * sizeof(int) + // NOLINT max_num_nonzeros_ * sizeof(int) + // NOLINT max_num_nonzeros_ * sizeof(double); // NOLINT rows_.reset(new int[num_rows_ + 1]); cols_.reset(new int[max_num_nonzeros_]); values_.reset(new double[max_num_nonzeros_]); fill(rows_.get(), rows_.get() + num_rows_ + 1, 0); fill(cols_.get(), cols_.get() + max_num_nonzeros_, 0); fill(values_.get(), values_.get() + max_num_nonzeros_, 0); } CompressedRowSparseMatrix::CompressedRowSparseMatrix( const TripletSparseMatrix& m) { num_rows_ = m.num_rows(); num_cols_ = m.num_cols(); max_num_nonzeros_ = m.max_num_nonzeros(); // index is the list of indices into the TripletSparseMatrix m. vector<int> index(m.num_nonzeros(), 0); for (int i = 0; i < m.num_nonzeros(); ++i) { index[i] = i; } // Sort index such that the entries of m are ordered by row and ties // are broken by column. sort(index.begin(), index.end(), RowColLessThan(m.rows(), m.cols())); VLOG(1) << "# of rows: " << num_rows_ << " # of columns: " << num_cols_ << " max_num_nonzeros: " << max_num_nonzeros_ << ". Allocating " << (num_rows_ + 1) * sizeof(int) + // NOLINT max_num_nonzeros_ * sizeof(int) + // NOLINT max_num_nonzeros_ * sizeof(double); // NOLINT rows_.reset(new int[num_rows_ + 1]); cols_.reset(new int[max_num_nonzeros_]); values_.reset(new double[max_num_nonzeros_]); // rows_ = 0 fill(rows_.get(), rows_.get() + num_rows_ + 1, 0); // Copy the contents of the cols and values array in the order given // by index and count the number of entries in each row. for (int i = 0; i < m.num_nonzeros(); ++i) { const int idx = index[i]; ++rows_[m.rows()[idx] + 1]; cols_[i] = m.cols()[idx]; values_[i] = m.values()[idx]; } // Find the cumulative sum of the row counts. for (int i = 1; i < num_rows_ + 1; ++i) { rows_[i] += rows_[i-1]; } CHECK_EQ(num_nonzeros(), m.num_nonzeros()); } #ifndef CERES_NO_PROTOCOL_BUFFERS CompressedRowSparseMatrix::CompressedRowSparseMatrix( const SparseMatrixProto& outer_proto) { CHECK(outer_proto.has_compressed_row_matrix()); const CompressedRowSparseMatrixProto& proto = outer_proto.compressed_row_matrix(); num_rows_ = proto.num_rows(); num_cols_ = proto.num_cols(); rows_.reset(new int[proto.rows_size()]); cols_.reset(new int[proto.cols_size()]); values_.reset(new double[proto.values_size()]); for (int i = 0; i < proto.rows_size(); ++i) { rows_[i] = proto.rows(i); } CHECK_EQ(proto.rows_size(), num_rows_ + 1); CHECK_EQ(proto.cols_size(), proto.values_size()); CHECK_EQ(proto.cols_size(), rows_[num_rows_]); for (int i = 0; i < proto.cols_size(); ++i) { cols_[i] = proto.cols(i); values_[i] = proto.values(i); } max_num_nonzeros_ = proto.cols_size(); } #endif CompressedRowSparseMatrix::CompressedRowSparseMatrix(const double* diagonal, int num_rows) { CHECK_NOTNULL(diagonal); num_rows_ = num_rows; num_cols_ = num_rows; max_num_nonzeros_ = num_rows; rows_.reset(new int[num_rows_ + 1]); cols_.reset(new int[num_rows_]); values_.reset(new double[num_rows_]); rows_[0] = 0; for (int i = 0; i < num_rows_; ++i) { cols_[i] = i; values_[i] = diagonal[i]; rows_[i + 1] = i + 1; } CHECK_EQ(num_nonzeros(), num_rows); } CompressedRowSparseMatrix::~CompressedRowSparseMatrix() { } void CompressedRowSparseMatrix::SetZero() { fill(values_.get(), values_.get() + num_nonzeros(), 0.0); } void CompressedRowSparseMatrix::RightMultiply(const double* x, double* y) const { CHECK_NOTNULL(x); CHECK_NOTNULL(y); for (int r = 0; r < num_rows_; ++r) { for (int idx = rows_[r]; idx < rows_[r + 1]; ++idx) { y[r] += values_[idx] * x[cols_[idx]]; } } } void CompressedRowSparseMatrix::LeftMultiply(const double* x, double* y) const { CHECK_NOTNULL(x); CHECK_NOTNULL(y); for (int r = 0; r < num_rows_; ++r) { for (int idx = rows_[r]; idx < rows_[r + 1]; ++idx) { y[cols_[idx]] += values_[idx] * x[r]; } } } void CompressedRowSparseMatrix::SquaredColumnNorm(double* x) const { CHECK_NOTNULL(x); fill(x, x + num_cols_, 0.0); for (int idx = 0; idx < rows_[num_rows_]; ++idx) { x[cols_[idx]] += values_[idx] * values_[idx]; } } void CompressedRowSparseMatrix::ScaleColumns(const double* scale) { CHECK_NOTNULL(scale); for (int idx = 0; idx < rows_[num_rows_]; ++idx) { values_[idx] *= scale[cols_[idx]]; } } void CompressedRowSparseMatrix::ToDenseMatrix(Matrix* dense_matrix) const { CHECK_NOTNULL(dense_matrix); dense_matrix->resize(num_rows_, num_cols_); dense_matrix->setZero(); for (int r = 0; r < num_rows_; ++r) { for (int idx = rows_[r]; idx < rows_[r + 1]; ++idx) { (*dense_matrix)(r, cols_[idx]) = values_[idx]; } } } #ifndef CERES_NO_PROTOCOL_BUFFERS void CompressedRowSparseMatrix::ToProto(SparseMatrixProto* outer_proto) const { CHECK_NOTNULL(outer_proto); outer_proto->Clear(); CompressedRowSparseMatrixProto* proto = outer_proto->mutable_compressed_row_matrix(); proto->set_num_rows(num_rows_); proto->set_num_cols(num_cols_); for (int r = 0; r < num_rows_ + 1; ++r) { proto->add_rows(rows_[r]); } for (int idx = 0; idx < rows_[num_rows_]; ++idx) { proto->add_cols(cols_[idx]); proto->add_values(values_[idx]); } } #endif void CompressedRowSparseMatrix::DeleteRows(int delta_rows) { CHECK_GE(delta_rows, 0); CHECK_LE(delta_rows, num_rows_); int new_num_rows = num_rows_ - delta_rows; num_rows_ = new_num_rows; int* new_rows = new int[num_rows_ + 1]; copy(rows_.get(), rows_.get() + num_rows_ + 1, new_rows); rows_.reset(new_rows); } void CompressedRowSparseMatrix::AppendRows(const CompressedRowSparseMatrix& m) { CHECK_EQ(m.num_cols(), num_cols_); // Check if there is enough space. If not, then allocate new arrays // to hold the combined matrix and copy the contents of this matrix // into it. if (max_num_nonzeros_ < num_nonzeros() + m.num_nonzeros()) { int new_max_num_nonzeros = num_nonzeros() + m.num_nonzeros(); VLOG(1) << "Reallocating " << sizeof(int) * new_max_num_nonzeros; // NOLINT int* new_cols = new int[new_max_num_nonzeros]; copy(cols_.get(), cols_.get() + max_num_nonzeros_, new_cols); cols_.reset(new_cols); double* new_values = new double[new_max_num_nonzeros]; copy(values_.get(), values_.get() + max_num_nonzeros_, new_values); values_.reset(new_values); max_num_nonzeros_ = new_max_num_nonzeros; } // Copy the contents of m into this matrix. copy(m.cols(), m.cols() + m.num_nonzeros(), cols_.get() + num_nonzeros()); copy(m.values(), m.values() + m.num_nonzeros(), values_.get() + num_nonzeros()); // Create the new rows array to hold the enlarged matrix. int* new_rows = new int[num_rows_ + m.num_rows() + 1]; // The first num_rows_ entries are the same copy(rows_.get(), rows_.get() + num_rows_, new_rows); // new_rows = [rows_, m.row() + rows_[num_rows_]] fill(new_rows + num_rows_, new_rows + num_rows_ + m.num_rows() + 1, rows_[num_rows_]); for (int r = 0; r < m.num_rows() + 1; ++r) { new_rows[num_rows_ + r] += m.rows()[r]; } rows_.reset(new_rows); num_rows_ += m.num_rows(); } void CompressedRowSparseMatrix::ToTextFile(FILE* file) const { CHECK_NOTNULL(file); for (int r = 0; r < num_rows_; ++r) { for (int idx = rows_[r]; idx < rows_[r + 1]; ++idx) { fprintf(file, "% 10d % 10d %17f\n", r, cols_[idx], values_[idx]); } } } void CompressedRowSparseMatrix::ToCRSMatrix(CRSMatrix* matrix) const { matrix->num_rows = num_rows(); matrix->num_cols = num_cols(); matrix->rows.resize(matrix->num_rows + 1); matrix->cols.resize(num_nonzeros()); matrix->values.resize(num_nonzeros()); copy(rows_.get(), rows_.get() + matrix->num_rows + 1, matrix->rows.begin()); copy(cols_.get(), cols_.get() + num_nonzeros(), matrix->cols.begin()); copy(values_.get(), values_.get() + num_nonzeros(), matrix->values.begin()); } } // namespace internal } // namespace ceres