// Copyright 2007, Google Inc. // All rights reserved. // // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions are // met: // // * Redistributions of source code must retain the above copyright // notice, this list of conditions and the following disclaimer. // * Redistributions in binary form must reproduce the above // copyright notice, this list of conditions and the following disclaimer // in the documentation and/or other materials provided with the // distribution. // * Neither the name of Google Inc. nor the names of its // contributors may be used to endorse or promote products derived from // this software without specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. // // Author: wan@google.com (Zhanyong Wan) // Google Mock - a framework for writing C++ mock classes. // // This is the main header file a user should include. #ifndef GMOCK_INCLUDE_GMOCK_GMOCK_H_ #define GMOCK_INCLUDE_GMOCK_GMOCK_H_ // This file implements the following syntax: // // ON_CALL(mock_object.Method(...)) // .With(...) ? // .WillByDefault(...); // // where With() is optional and WillByDefault() must appear exactly // once. // // EXPECT_CALL(mock_object.Method(...)) // .With(...) ? // .Times(...) ? // .InSequence(...) * // .WillOnce(...) * // .WillRepeatedly(...) ? // .RetiresOnSaturation() ? ; // // where all clauses are optional and WillOnce() can be repeated. // Copyright 2007, Google Inc. // All rights reserved. // // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions are // met: // // * Redistributions of source code must retain the above copyright // notice, this list of conditions and the following disclaimer. // * Redistributions in binary form must reproduce the above // copyright notice, this list of conditions and the following disclaimer // in the documentation and/or other materials provided with the // distribution. // * Neither the name of Google Inc. nor the names of its // contributors may be used to endorse or promote products derived from // this software without specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. // // Author: wan@google.com (Zhanyong Wan) // Google Mock - a framework for writing C++ mock classes. // // This file implements some commonly used actions. #ifndef GMOCK_INCLUDE_GMOCK_GMOCK_ACTIONS_H_ #define GMOCK_INCLUDE_GMOCK_GMOCK_ACTIONS_H_ #include <algorithm> #include <string> #ifndef _WIN32_WCE # include <errno.h> #endif // Copyright 2007, Google Inc. // All rights reserved. // // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions are // met: // // * Redistributions of source code must retain the above copyright // notice, this list of conditions and the following disclaimer. // * Redistributions in binary form must reproduce the above // copyright notice, this list of conditions and the following disclaimer // in the documentation and/or other materials provided with the // distribution. // * Neither the name of Google Inc. nor the names of its // contributors may be used to endorse or promote products derived from // this software without specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. // // Author: wan@google.com (Zhanyong Wan) // Google Mock - a framework for writing C++ mock classes. // // This file defines some utilities useful for implementing Google // Mock. They are subject to change without notice, so please DO NOT // USE THEM IN USER CODE. #ifndef GMOCK_INCLUDE_GMOCK_INTERNAL_GMOCK_INTERNAL_UTILS_H_ #define GMOCK_INCLUDE_GMOCK_INTERNAL_GMOCK_INTERNAL_UTILS_H_ #include <stdio.h> #include <ostream> // NOLINT #include <string> // This file was GENERATED by a script. DO NOT EDIT BY HAND!!! // Copyright 2007, Google Inc. // All rights reserved. // // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions are // met: // // * Redistributions of source code must retain the above copyright // notice, this list of conditions and the following disclaimer. // * Redistributions in binary form must reproduce the above // copyright notice, this list of conditions and the following disclaimer // in the documentation and/or other materials provided with the // distribution. // * Neither the name of Google Inc. nor the names of its // contributors may be used to endorse or promote products derived from // this software without specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. // // Author: wan@google.com (Zhanyong Wan) // Google Mock - a framework for writing C++ mock classes. // // This file contains template meta-programming utility classes needed // for implementing Google Mock. #ifndef GMOCK_INCLUDE_GMOCK_INTERNAL_GMOCK_GENERATED_INTERNAL_UTILS_H_ #define GMOCK_INCLUDE_GMOCK_INTERNAL_GMOCK_GENERATED_INTERNAL_UTILS_H_ // Copyright 2008, Google Inc. // All rights reserved. // // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions are // met: // // * Redistributions of source code must retain the above copyright // notice, this list of conditions and the following disclaimer. // * Redistributions in binary form must reproduce the above // copyright notice, this list of conditions and the following disclaimer // in the documentation and/or other materials provided with the // distribution. // * Neither the name of Google Inc. nor the names of its // contributors may be used to endorse or promote products derived from // this software without specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. // // Author: vadimb@google.com (Vadim Berman) // // Low-level types and utilities for porting Google Mock to various // platforms. They are subject to change without notice. DO NOT USE // THEM IN USER CODE. #ifndef GMOCK_INCLUDE_GMOCK_INTERNAL_GMOCK_PORT_H_ #define GMOCK_INCLUDE_GMOCK_INTERNAL_GMOCK_PORT_H_ #include <assert.h> #include <stdlib.h> #include <iostream> // Most of the types needed for porting Google Mock are also required // for Google Test and are defined in gtest-port.h. #include "gtest/gtest.h" // To avoid conditional compilation everywhere, we make it // gmock-port.h's responsibility to #include the header implementing // tr1/tuple. gmock-port.h does this via gtest-port.h, which is // guaranteed to pull in the tuple header. // For MS Visual C++, check the compiler version. At least VS 2003 is // required to compile Google Mock. #if defined(_MSC_VER) && _MSC_VER < 1310 # error "At least Visual C++ 2003 (7.1) is required to compile Google Mock." #endif // Macro for referencing flags. This is public as we want the user to // use this syntax to reference Google Mock flags. #define GMOCK_FLAG(name) FLAGS_gmock_##name // Macros for declaring flags. #define GMOCK_DECLARE_bool_(name) extern bool GMOCK_FLAG(name) #define GMOCK_DECLARE_int32_(name) \ extern ::testing::internal::Int32 GMOCK_FLAG(name) #define GMOCK_DECLARE_string_(name) \ extern ::testing::internal::String GMOCK_FLAG(name) // Macros for defining flags. #define GMOCK_DEFINE_bool_(name, default_val, doc) \ bool GMOCK_FLAG(name) = (default_val) #define GMOCK_DEFINE_int32_(name, default_val, doc) \ ::testing::internal::Int32 GMOCK_FLAG(name) = (default_val) #define GMOCK_DEFINE_string_(name, default_val, doc) \ ::testing::internal::String GMOCK_FLAG(name) = (default_val) #endif // GMOCK_INCLUDE_GMOCK_INTERNAL_GMOCK_PORT_H_ namespace testing { template <typename T> class Matcher; namespace internal { // An IgnoredValue object can be implicitly constructed from ANY value. // This is used in implementing the IgnoreResult(a) action. class IgnoredValue { public: // This constructor template allows any value to be implicitly // converted to IgnoredValue. The object has no data member and // doesn't try to remember anything about the argument. We // deliberately omit the 'explicit' keyword in order to allow the // conversion to be implicit. template <typename T> IgnoredValue(const T&) {} }; // MatcherTuple<T>::type is a tuple type where each field is a Matcher // for the corresponding field in tuple type T. template <typename Tuple> struct MatcherTuple; template <> struct MatcherTuple< ::std::tr1::tuple<> > { typedef ::std::tr1::tuple< > type; }; template <typename A1> struct MatcherTuple< ::std::tr1::tuple<A1> > { typedef ::std::tr1::tuple<Matcher<A1> > type; }; template <typename A1, typename A2> struct MatcherTuple< ::std::tr1::tuple<A1, A2> > { typedef ::std::tr1::tuple<Matcher<A1>, Matcher<A2> > type; }; template <typename A1, typename A2, typename A3> struct MatcherTuple< ::std::tr1::tuple<A1, A2, A3> > { typedef ::std::tr1::tuple<Matcher<A1>, Matcher<A2>, Matcher<A3> > type; }; template <typename A1, typename A2, typename A3, typename A4> struct MatcherTuple< ::std::tr1::tuple<A1, A2, A3, A4> > { typedef ::std::tr1::tuple<Matcher<A1>, Matcher<A2>, Matcher<A3>, Matcher<A4> > type; }; template <typename A1, typename A2, typename A3, typename A4, typename A5> struct MatcherTuple< ::std::tr1::tuple<A1, A2, A3, A4, A5> > { typedef ::std::tr1::tuple<Matcher<A1>, Matcher<A2>, Matcher<A3>, Matcher<A4>, Matcher<A5> > type; }; template <typename A1, typename A2, typename A3, typename A4, typename A5, typename A6> struct MatcherTuple< ::std::tr1::tuple<A1, A2, A3, A4, A5, A6> > { typedef ::std::tr1::tuple<Matcher<A1>, Matcher<A2>, Matcher<A3>, Matcher<A4>, Matcher<A5>, Matcher<A6> > type; }; template <typename A1, typename A2, typename A3, typename A4, typename A5, typename A6, typename A7> struct MatcherTuple< ::std::tr1::tuple<A1, A2, A3, A4, A5, A6, A7> > { typedef ::std::tr1::tuple<Matcher<A1>, Matcher<A2>, Matcher<A3>, Matcher<A4>, Matcher<A5>, Matcher<A6>, Matcher<A7> > type; }; template <typename A1, typename A2, typename A3, typename A4, typename A5, typename A6, typename A7, typename A8> struct MatcherTuple< ::std::tr1::tuple<A1, A2, A3, A4, A5, A6, A7, A8> > { typedef ::std::tr1::tuple<Matcher<A1>, Matcher<A2>, Matcher<A3>, Matcher<A4>, Matcher<A5>, Matcher<A6>, Matcher<A7>, Matcher<A8> > type; }; template <typename A1, typename A2, typename A3, typename A4, typename A5, typename A6, typename A7, typename A8, typename A9> struct MatcherTuple< ::std::tr1::tuple<A1, A2, A3, A4, A5, A6, A7, A8, A9> > { typedef ::std::tr1::tuple<Matcher<A1>, Matcher<A2>, Matcher<A3>, Matcher<A4>, Matcher<A5>, Matcher<A6>, Matcher<A7>, Matcher<A8>, Matcher<A9> > type; }; template <typename A1, typename A2, typename A3, typename A4, typename A5, typename A6, typename A7, typename A8, typename A9, typename A10> struct MatcherTuple< ::std::tr1::tuple<A1, A2, A3, A4, A5, A6, A7, A8, A9, A10> > { typedef ::std::tr1::tuple<Matcher<A1>, Matcher<A2>, Matcher<A3>, Matcher<A4>, Matcher<A5>, Matcher<A6>, Matcher<A7>, Matcher<A8>, Matcher<A9>, Matcher<A10> > type; }; // Template struct Function<F>, where F must be a function type, contains // the following typedefs: // // Result: the function's return type. // ArgumentN: the type of the N-th argument, where N starts with 1. // ArgumentTuple: the tuple type consisting of all parameters of F. // ArgumentMatcherTuple: the tuple type consisting of Matchers for all // parameters of F. // MakeResultVoid: the function type obtained by substituting void // for the return type of F. // MakeResultIgnoredValue: // the function type obtained by substituting Something // for the return type of F. template <typename F> struct Function; template <typename R> struct Function<R()> { typedef R Result; typedef ::std::tr1::tuple<> ArgumentTuple; typedef typename MatcherTuple<ArgumentTuple>::type ArgumentMatcherTuple; typedef void MakeResultVoid(); typedef IgnoredValue MakeResultIgnoredValue(); }; template <typename R, typename A1> struct Function<R(A1)> : Function<R()> { typedef A1 Argument1; typedef ::std::tr1::tuple<A1> ArgumentTuple; typedef typename MatcherTuple<ArgumentTuple>::type ArgumentMatcherTuple; typedef void MakeResultVoid(A1); typedef IgnoredValue MakeResultIgnoredValue(A1); }; template <typename R, typename A1, typename A2> struct Function<R(A1, A2)> : Function<R(A1)> { typedef A2 Argument2; typedef ::std::tr1::tuple<A1, A2> ArgumentTuple; typedef typename MatcherTuple<ArgumentTuple>::type ArgumentMatcherTuple; typedef void MakeResultVoid(A1, A2); typedef IgnoredValue MakeResultIgnoredValue(A1, A2); }; template <typename R, typename A1, typename A2, typename A3> struct Function<R(A1, A2, A3)> : Function<R(A1, A2)> { typedef A3 Argument3; typedef ::std::tr1::tuple<A1, A2, A3> ArgumentTuple; typedef typename MatcherTuple<ArgumentTuple>::type ArgumentMatcherTuple; typedef void MakeResultVoid(A1, A2, A3); typedef IgnoredValue MakeResultIgnoredValue(A1, A2, A3); }; template <typename R, typename A1, typename A2, typename A3, typename A4> struct Function<R(A1, A2, A3, A4)> : Function<R(A1, A2, A3)> { typedef A4 Argument4; typedef ::std::tr1::tuple<A1, A2, A3, A4> ArgumentTuple; typedef typename MatcherTuple<ArgumentTuple>::type ArgumentMatcherTuple; typedef void MakeResultVoid(A1, A2, A3, A4); typedef IgnoredValue MakeResultIgnoredValue(A1, A2, A3, A4); }; template <typename R, typename A1, typename A2, typename A3, typename A4, typename A5> struct Function<R(A1, A2, A3, A4, A5)> : Function<R(A1, A2, A3, A4)> { typedef A5 Argument5; typedef ::std::tr1::tuple<A1, A2, A3, A4, A5> ArgumentTuple; typedef typename MatcherTuple<ArgumentTuple>::type ArgumentMatcherTuple; typedef void MakeResultVoid(A1, A2, A3, A4, A5); typedef IgnoredValue MakeResultIgnoredValue(A1, A2, A3, A4, A5); }; template <typename R, typename A1, typename A2, typename A3, typename A4, typename A5, typename A6> struct Function<R(A1, A2, A3, A4, A5, A6)> : Function<R(A1, A2, A3, A4, A5)> { typedef A6 Argument6; typedef ::std::tr1::tuple<A1, A2, A3, A4, A5, A6> ArgumentTuple; typedef typename MatcherTuple<ArgumentTuple>::type ArgumentMatcherTuple; typedef void MakeResultVoid(A1, A2, A3, A4, A5, A6); typedef IgnoredValue MakeResultIgnoredValue(A1, A2, A3, A4, A5, A6); }; template <typename R, typename A1, typename A2, typename A3, typename A4, typename A5, typename A6, typename A7> struct Function<R(A1, A2, A3, A4, A5, A6, A7)> : Function<R(A1, A2, A3, A4, A5, A6)> { typedef A7 Argument7; typedef ::std::tr1::tuple<A1, A2, A3, A4, A5, A6, A7> ArgumentTuple; typedef typename MatcherTuple<ArgumentTuple>::type ArgumentMatcherTuple; typedef void MakeResultVoid(A1, A2, A3, A4, A5, A6, A7); typedef IgnoredValue MakeResultIgnoredValue(A1, A2, A3, A4, A5, A6, A7); }; template <typename R, typename A1, typename A2, typename A3, typename A4, typename A5, typename A6, typename A7, typename A8> struct Function<R(A1, A2, A3, A4, A5, A6, A7, A8)> : Function<R(A1, A2, A3, A4, A5, A6, A7)> { typedef A8 Argument8; typedef ::std::tr1::tuple<A1, A2, A3, A4, A5, A6, A7, A8> ArgumentTuple; typedef typename MatcherTuple<ArgumentTuple>::type ArgumentMatcherTuple; typedef void MakeResultVoid(A1, A2, A3, A4, A5, A6, A7, A8); typedef IgnoredValue MakeResultIgnoredValue(A1, A2, A3, A4, A5, A6, A7, A8); }; template <typename R, typename A1, typename A2, typename A3, typename A4, typename A5, typename A6, typename A7, typename A8, typename A9> struct Function<R(A1, A2, A3, A4, A5, A6, A7, A8, A9)> : Function<R(A1, A2, A3, A4, A5, A6, A7, A8)> { typedef A9 Argument9; typedef ::std::tr1::tuple<A1, A2, A3, A4, A5, A6, A7, A8, A9> ArgumentTuple; typedef typename MatcherTuple<ArgumentTuple>::type ArgumentMatcherTuple; typedef void MakeResultVoid(A1, A2, A3, A4, A5, A6, A7, A8, A9); typedef IgnoredValue MakeResultIgnoredValue(A1, A2, A3, A4, A5, A6, A7, A8, A9); }; template <typename R, typename A1, typename A2, typename A3, typename A4, typename A5, typename A6, typename A7, typename A8, typename A9, typename A10> struct Function<R(A1, A2, A3, A4, A5, A6, A7, A8, A9, A10)> : Function<R(A1, A2, A3, A4, A5, A6, A7, A8, A9)> { typedef A10 Argument10; typedef ::std::tr1::tuple<A1, A2, A3, A4, A5, A6, A7, A8, A9, A10> ArgumentTuple; typedef typename MatcherTuple<ArgumentTuple>::type ArgumentMatcherTuple; typedef void MakeResultVoid(A1, A2, A3, A4, A5, A6, A7, A8, A9, A10); typedef IgnoredValue MakeResultIgnoredValue(A1, A2, A3, A4, A5, A6, A7, A8, A9, A10); }; } // namespace internal } // namespace testing #endif // GMOCK_INCLUDE_GMOCK_INTERNAL_GMOCK_GENERATED_INTERNAL_UTILS_H_ namespace testing { namespace internal { // Converts an identifier name to a space-separated list of lower-case // words. Each maximum substring of the form [A-Za-z][a-z]*|\d+ is // treated as one word. For example, both "FooBar123" and // "foo_bar_123" are converted to "foo bar 123". string ConvertIdentifierNameToWords(const char* id_name); // PointeeOf<Pointer>::type is the type of a value pointed to by a // Pointer, which can be either a smart pointer or a raw pointer. The // following default implementation is for the case where Pointer is a // smart pointer. template <typename Pointer> struct PointeeOf { // Smart pointer classes define type element_type as the type of // their pointees. typedef typename Pointer::element_type type; }; // This specialization is for the raw pointer case. template <typename T> struct PointeeOf<T*> { typedef T type; }; // NOLINT // GetRawPointer(p) returns the raw pointer underlying p when p is a // smart pointer, or returns p itself when p is already a raw pointer. // The following default implementation is for the smart pointer case. template <typename Pointer> inline typename Pointer::element_type* GetRawPointer(const Pointer& p) { return p.get(); } // This overloaded version is for the raw pointer case. template <typename Element> inline Element* GetRawPointer(Element* p) { return p; } // This comparator allows linked_ptr to be stored in sets. template <typename T> struct LinkedPtrLessThan { bool operator()(const ::testing::internal::linked_ptr<T>& lhs, const ::testing::internal::linked_ptr<T>& rhs) const { return lhs.get() < rhs.get(); } }; // Symbian compilation can be done with wchar_t being either a native // type or a typedef. Using Google Mock with OpenC without wchar_t // should require the definition of _STLP_NO_WCHAR_T. // // MSVC treats wchar_t as a native type usually, but treats it as the // same as unsigned short when the compiler option /Zc:wchar_t- is // specified. It defines _NATIVE_WCHAR_T_DEFINED symbol when wchar_t // is a native type. #if (GTEST_OS_SYMBIAN && defined(_STLP_NO_WCHAR_T)) || \ (defined(_MSC_VER) && !defined(_NATIVE_WCHAR_T_DEFINED)) // wchar_t is a typedef. #else # define GMOCK_WCHAR_T_IS_NATIVE_ 1 #endif // signed wchar_t and unsigned wchar_t are NOT in the C++ standard. // Using them is a bad practice and not portable. So DON'T use them. // // Still, Google Mock is designed to work even if the user uses signed // wchar_t or unsigned wchar_t (obviously, assuming the compiler // supports them). // // To gcc, // wchar_t == signed wchar_t != unsigned wchar_t == unsigned int #ifdef __GNUC__ // signed/unsigned wchar_t are valid types. # define GMOCK_HAS_SIGNED_WCHAR_T_ 1 #endif // In what follows, we use the term "kind" to indicate whether a type // is bool, an integer type (excluding bool), a floating-point type, // or none of them. This categorization is useful for determining // when a matcher argument type can be safely converted to another // type in the implementation of SafeMatcherCast. enum TypeKind { kBool, kInteger, kFloatingPoint, kOther }; // KindOf<T>::value is the kind of type T. template <typename T> struct KindOf { enum { value = kOther }; // The default kind. }; // This macro declares that the kind of 'type' is 'kind'. #define GMOCK_DECLARE_KIND_(type, kind) \ template <> struct KindOf<type> { enum { value = kind }; } GMOCK_DECLARE_KIND_(bool, kBool); // All standard integer types. GMOCK_DECLARE_KIND_(char, kInteger); GMOCK_DECLARE_KIND_(signed char, kInteger); GMOCK_DECLARE_KIND_(unsigned char, kInteger); GMOCK_DECLARE_KIND_(short, kInteger); // NOLINT GMOCK_DECLARE_KIND_(unsigned short, kInteger); // NOLINT GMOCK_DECLARE_KIND_(int, kInteger); GMOCK_DECLARE_KIND_(unsigned int, kInteger); GMOCK_DECLARE_KIND_(long, kInteger); // NOLINT GMOCK_DECLARE_KIND_(unsigned long, kInteger); // NOLINT #if GMOCK_WCHAR_T_IS_NATIVE_ GMOCK_DECLARE_KIND_(wchar_t, kInteger); #endif // Non-standard integer types. GMOCK_DECLARE_KIND_(Int64, kInteger); GMOCK_DECLARE_KIND_(UInt64, kInteger); // All standard floating-point types. GMOCK_DECLARE_KIND_(float, kFloatingPoint); GMOCK_DECLARE_KIND_(double, kFloatingPoint); GMOCK_DECLARE_KIND_(long double, kFloatingPoint); #undef GMOCK_DECLARE_KIND_ // Evaluates to the kind of 'type'. #define GMOCK_KIND_OF_(type) \ static_cast< ::testing::internal::TypeKind>( \ ::testing::internal::KindOf<type>::value) // Evaluates to true iff integer type T is signed. #define GMOCK_IS_SIGNED_(T) (static_cast<T>(-1) < 0) // LosslessArithmeticConvertibleImpl<kFromKind, From, kToKind, To>::value // is true iff arithmetic type From can be losslessly converted to // arithmetic type To. // // It's the user's responsibility to ensure that both From and To are // raw (i.e. has no CV modifier, is not a pointer, and is not a // reference) built-in arithmetic types, kFromKind is the kind of // From, and kToKind is the kind of To; the value is // implementation-defined when the above pre-condition is violated. template <TypeKind kFromKind, typename From, TypeKind kToKind, typename To> struct LosslessArithmeticConvertibleImpl : public false_type {}; // Converting bool to bool is lossless. template <> struct LosslessArithmeticConvertibleImpl<kBool, bool, kBool, bool> : public true_type {}; // NOLINT // Converting bool to any integer type is lossless. template <typename To> struct LosslessArithmeticConvertibleImpl<kBool, bool, kInteger, To> : public true_type {}; // NOLINT // Converting bool to any floating-point type is lossless. template <typename To> struct LosslessArithmeticConvertibleImpl<kBool, bool, kFloatingPoint, To> : public true_type {}; // NOLINT // Converting an integer to bool is lossy. template <typename From> struct LosslessArithmeticConvertibleImpl<kInteger, From, kBool, bool> : public false_type {}; // NOLINT // Converting an integer to another non-bool integer is lossless iff // the target type's range encloses the source type's range. template <typename From, typename To> struct LosslessArithmeticConvertibleImpl<kInteger, From, kInteger, To> : public bool_constant< // When converting from a smaller size to a larger size, we are // fine as long as we are not converting from signed to unsigned. ((sizeof(From) < sizeof(To)) && (!GMOCK_IS_SIGNED_(From) || GMOCK_IS_SIGNED_(To))) || // When converting between the same size, the signedness must match. ((sizeof(From) == sizeof(To)) && (GMOCK_IS_SIGNED_(From) == GMOCK_IS_SIGNED_(To)))> {}; // NOLINT #undef GMOCK_IS_SIGNED_ // Converting an integer to a floating-point type may be lossy, since // the format of a floating-point number is implementation-defined. template <typename From, typename To> struct LosslessArithmeticConvertibleImpl<kInteger, From, kFloatingPoint, To> : public false_type {}; // NOLINT // Converting a floating-point to bool is lossy. template <typename From> struct LosslessArithmeticConvertibleImpl<kFloatingPoint, From, kBool, bool> : public false_type {}; // NOLINT // Converting a floating-point to an integer is lossy. template <typename From, typename To> struct LosslessArithmeticConvertibleImpl<kFloatingPoint, From, kInteger, To> : public false_type {}; // NOLINT // Converting a floating-point to another floating-point is lossless // iff the target type is at least as big as the source type. template <typename From, typename To> struct LosslessArithmeticConvertibleImpl< kFloatingPoint, From, kFloatingPoint, To> : public bool_constant<sizeof(From) <= sizeof(To)> {}; // NOLINT // LosslessArithmeticConvertible<From, To>::value is true iff arithmetic // type From can be losslessly converted to arithmetic type To. // // It's the user's responsibility to ensure that both From and To are // raw (i.e. has no CV modifier, is not a pointer, and is not a // reference) built-in arithmetic types; the value is // implementation-defined when the above pre-condition is violated. template <typename From, typename To> struct LosslessArithmeticConvertible : public LosslessArithmeticConvertibleImpl< GMOCK_KIND_OF_(From), From, GMOCK_KIND_OF_(To), To> {}; // NOLINT // This interface knows how to report a Google Mock failure (either // non-fatal or fatal). class FailureReporterInterface { public: // The type of a failure (either non-fatal or fatal). enum FailureType { NONFATAL, FATAL }; virtual ~FailureReporterInterface() {} // Reports a failure that occurred at the given source file location. virtual void ReportFailure(FailureType type, const char* file, int line, const string& message) = 0; }; // Returns the failure reporter used by Google Mock. FailureReporterInterface* GetFailureReporter(); // Asserts that condition is true; aborts the process with the given // message if condition is false. We cannot use LOG(FATAL) or CHECK() // as Google Mock might be used to mock the log sink itself. We // inline this function to prevent it from showing up in the stack // trace. inline void Assert(bool condition, const char* file, int line, const string& msg) { if (!condition) { GetFailureReporter()->ReportFailure(FailureReporterInterface::FATAL, file, line, msg); } } inline void Assert(bool condition, const char* file, int line) { Assert(condition, file, line, "Assertion failed."); } // Verifies that condition is true; generates a non-fatal failure if // condition is false. inline void Expect(bool condition, const char* file, int line, const string& msg) { if (!condition) { GetFailureReporter()->ReportFailure(FailureReporterInterface::NONFATAL, file, line, msg); } } inline void Expect(bool condition, const char* file, int line) { Expect(condition, file, line, "Expectation failed."); } // Severity level of a log. enum LogSeverity { INFO = 0, WARNING = 1 }; // Valid values for the --gmock_verbose flag. // All logs (informational and warnings) are printed. const char kInfoVerbosity[] = "info"; // Only warnings are printed. const char kWarningVerbosity[] = "warning"; // No logs are printed. const char kErrorVerbosity[] = "error"; // Returns true iff a log with the given severity is visible according // to the --gmock_verbose flag. bool LogIsVisible(LogSeverity severity); // Prints the given message to stdout iff 'severity' >= the level // specified by the --gmock_verbose flag. If stack_frames_to_skip >= // 0, also prints the stack trace excluding the top // stack_frames_to_skip frames. In opt mode, any positive // stack_frames_to_skip is treated as 0, since we don't know which // function calls will be inlined by the compiler and need to be // conservative. void Log(LogSeverity severity, const string& message, int stack_frames_to_skip); // TODO(wan@google.com): group all type utilities together. // Type traits. // is_reference<T>::value is non-zero iff T is a reference type. template <typename T> struct is_reference : public false_type {}; template <typename T> struct is_reference<T&> : public true_type {}; // type_equals<T1, T2>::value is non-zero iff T1 and T2 are the same type. template <typename T1, typename T2> struct type_equals : public false_type {}; template <typename T> struct type_equals<T, T> : public true_type {}; // remove_reference<T>::type removes the reference from type T, if any. template <typename T> struct remove_reference { typedef T type; }; // NOLINT template <typename T> struct remove_reference<T&> { typedef T type; }; // NOLINT // Invalid<T>() returns an invalid value of type T. This is useful // when a value of type T is needed for compilation, but the statement // will not really be executed (or we don't care if the statement // crashes). template <typename T> inline T Invalid() { return *static_cast<typename remove_reference<T>::type*>(NULL); } template <> inline void Invalid<void>() {} // Given a raw type (i.e. having no top-level reference or const // modifier) RawContainer that's either an STL-style container or a // native array, class StlContainerView<RawContainer> has the // following members: // // - type is a type that provides an STL-style container view to // (i.e. implements the STL container concept for) RawContainer; // - const_reference is a type that provides a reference to a const // RawContainer; // - ConstReference(raw_container) returns a const reference to an STL-style // container view to raw_container, which is a RawContainer. // - Copy(raw_container) returns an STL-style container view of a // copy of raw_container, which is a RawContainer. // // This generic version is used when RawContainer itself is already an // STL-style container. template <class RawContainer> class StlContainerView { public: typedef RawContainer type; typedef const type& const_reference; static const_reference ConstReference(const RawContainer& container) { // Ensures that RawContainer is not a const type. testing::StaticAssertTypeEq<RawContainer, GTEST_REMOVE_CONST_(RawContainer)>(); return container; } static type Copy(const RawContainer& container) { return container; } }; // This specialization is used when RawContainer is a native array type. template <typename Element, size_t N> class StlContainerView<Element[N]> { public: typedef GTEST_REMOVE_CONST_(Element) RawElement; typedef internal::NativeArray<RawElement> type; // NativeArray<T> can represent a native array either by value or by // reference (selected by a constructor argument), so 'const type' // can be used to reference a const native array. We cannot // 'typedef const type& const_reference' here, as that would mean // ConstReference() has to return a reference to a local variable. typedef const type const_reference; static const_reference ConstReference(const Element (&array)[N]) { // Ensures that Element is not a const type. testing::StaticAssertTypeEq<Element, RawElement>(); #if GTEST_OS_SYMBIAN // The Nokia Symbian compiler confuses itself in template instantiation // for this call without the cast to Element*: // function call '[testing::internal::NativeArray<char *>].NativeArray( // {lval} const char *[4], long, testing::internal::RelationToSource)' // does not match // 'testing::internal::NativeArray<char *>::NativeArray( // char *const *, unsigned int, testing::internal::RelationToSource)' // (instantiating: 'testing::internal::ContainsMatcherImpl // <const char * (&)[4]>::Matches(const char * (&)[4]) const') // (instantiating: 'testing::internal::StlContainerView<char *[4]>:: // ConstReference(const char * (&)[4])') // (and though the N parameter type is mismatched in the above explicit // conversion of it doesn't help - only the conversion of the array). return type(const_cast<Element*>(&array[0]), N, kReference); #else return type(array, N, kReference); #endif // GTEST_OS_SYMBIAN } static type Copy(const Element (&array)[N]) { #if GTEST_OS_SYMBIAN return type(const_cast<Element*>(&array[0]), N, kCopy); #else return type(array, N, kCopy); #endif // GTEST_OS_SYMBIAN } }; // This specialization is used when RawContainer is a native array // represented as a (pointer, size) tuple. template <typename ElementPointer, typename Size> class StlContainerView< ::std::tr1::tuple<ElementPointer, Size> > { public: typedef GTEST_REMOVE_CONST_( typename internal::PointeeOf<ElementPointer>::type) RawElement; typedef internal::NativeArray<RawElement> type; typedef const type const_reference; static const_reference ConstReference( const ::std::tr1::tuple<ElementPointer, Size>& array) { using ::std::tr1::get; return type(get<0>(array), get<1>(array), kReference); } static type Copy(const ::std::tr1::tuple<ElementPointer, Size>& array) { using ::std::tr1::get; return type(get<0>(array), get<1>(array), kCopy); } }; // The following specialization prevents the user from instantiating // StlContainer with a reference type. template <typename T> class StlContainerView<T&>; } // namespace internal } // namespace testing #endif // GMOCK_INCLUDE_GMOCK_INTERNAL_GMOCK_INTERNAL_UTILS_H_ namespace testing { // To implement an action Foo, define: // 1. a class FooAction that implements the ActionInterface interface, and // 2. a factory function that creates an Action object from a // const FooAction*. // // The two-level delegation design follows that of Matcher, providing // consistency for extension developers. It also eases ownership // management as Action objects can now be copied like plain values. namespace internal { template <typename F1, typename F2> class ActionAdaptor; // BuiltInDefaultValue<T>::Get() returns the "built-in" default // value for type T, which is NULL when T is a pointer type, 0 when T // is a numeric type, false when T is bool, or "" when T is string or // std::string. For any other type T, this value is undefined and the // function will abort the process. template <typename T> class BuiltInDefaultValue { public: // This function returns true iff type T has a built-in default value. static bool Exists() { return false; } static T Get() { Assert(false, __FILE__, __LINE__, "Default action undefined for the function return type."); return internal::Invalid<T>(); // The above statement will never be reached, but is required in // order for this function to compile. } }; // This partial specialization says that we use the same built-in // default value for T and const T. template <typename T> class BuiltInDefaultValue<const T> { public: static bool Exists() { return BuiltInDefaultValue<T>::Exists(); } static T Get() { return BuiltInDefaultValue<T>::Get(); } }; // This partial specialization defines the default values for pointer // types. template <typename T> class BuiltInDefaultValue<T*> { public: static bool Exists() { return true; } static T* Get() { return NULL; } }; // The following specializations define the default values for // specific types we care about. #define GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(type, value) \ template <> \ class BuiltInDefaultValue<type> { \ public: \ static bool Exists() { return true; } \ static type Get() { return value; } \ } GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(void, ); // NOLINT #if GTEST_HAS_GLOBAL_STRING GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(::string, ""); #endif // GTEST_HAS_GLOBAL_STRING GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(::std::string, ""); GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(bool, false); GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(unsigned char, '\0'); GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(signed char, '\0'); GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(char, '\0'); // There's no need for a default action for signed wchar_t, as that // type is the same as wchar_t for gcc, and invalid for MSVC. // // There's also no need for a default action for unsigned wchar_t, as // that type is the same as unsigned int for gcc, and invalid for // MSVC. #if GMOCK_WCHAR_T_IS_NATIVE_ GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(wchar_t, 0U); // NOLINT #endif GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(unsigned short, 0U); // NOLINT GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(signed short, 0); // NOLINT GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(unsigned int, 0U); GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(signed int, 0); GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(unsigned long, 0UL); // NOLINT GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(signed long, 0L); // NOLINT GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(UInt64, 0); GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(Int64, 0); GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(float, 0); GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(double, 0); #undef GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_ } // namespace internal // When an unexpected function call is encountered, Google Mock will // let it return a default value if the user has specified one for its // return type, or if the return type has a built-in default value; // otherwise Google Mock won't know what value to return and will have // to abort the process. // // The DefaultValue<T> class allows a user to specify the // default value for a type T that is both copyable and publicly // destructible (i.e. anything that can be used as a function return // type). The usage is: // // // Sets the default value for type T to be foo. // DefaultValue<T>::Set(foo); template <typename T> class DefaultValue { public: // Sets the default value for type T; requires T to be // copy-constructable and have a public destructor. static void Set(T x) { delete value_; value_ = new T(x); } // Unsets the default value for type T. static void Clear() { delete value_; value_ = NULL; } // Returns true iff the user has set the default value for type T. static bool IsSet() { return value_ != NULL; } // Returns true if T has a default return value set by the user or there // exists a built-in default value. static bool Exists() { return IsSet() || internal::BuiltInDefaultValue<T>::Exists(); } // Returns the default value for type T if the user has set one; // otherwise returns the built-in default value if there is one; // otherwise aborts the process. static T Get() { return value_ == NULL ? internal::BuiltInDefaultValue<T>::Get() : *value_; } private: static const T* value_; }; // This partial specialization allows a user to set default values for // reference types. template <typename T> class DefaultValue<T&> { public: // Sets the default value for type T&. static void Set(T& x) { // NOLINT address_ = &x; } // Unsets the default value for type T&. static void Clear() { address_ = NULL; } // Returns true iff the user has set the default value for type T&. static bool IsSet() { return address_ != NULL; } // Returns true if T has a default return value set by the user or there // exists a built-in default value. static bool Exists() { return IsSet() || internal::BuiltInDefaultValue<T&>::Exists(); } // Returns the default value for type T& if the user has set one; // otherwise returns the built-in default value if there is one; // otherwise aborts the process. static T& Get() { return address_ == NULL ? internal::BuiltInDefaultValue<T&>::Get() : *address_; } private: static T* address_; }; // This specialization allows DefaultValue<void>::Get() to // compile. template <> class DefaultValue<void> { public: static bool Exists() { return true; } static void Get() {} }; // Points to the user-set default value for type T. template <typename T> const T* DefaultValue<T>::value_ = NULL; // Points to the user-set default value for type T&. template <typename T> T* DefaultValue<T&>::address_ = NULL; // Implement this interface to define an action for function type F. template <typename F> class ActionInterface { public: typedef typename internal::Function<F>::Result Result; typedef typename internal::Function<F>::ArgumentTuple ArgumentTuple; ActionInterface() {} virtual ~ActionInterface() {} // Performs the action. This method is not const, as in general an // action can have side effects and be stateful. For example, a // get-the-next-element-from-the-collection action will need to // remember the current element. virtual Result Perform(const ArgumentTuple& args) = 0; private: GTEST_DISALLOW_COPY_AND_ASSIGN_(ActionInterface); }; // An Action<F> is a copyable and IMMUTABLE (except by assignment) // object that represents an action to be taken when a mock function // of type F is called. The implementation of Action<T> is just a // linked_ptr to const ActionInterface<T>, so copying is fairly cheap. // Don't inherit from Action! // // You can view an object implementing ActionInterface<F> as a // concrete action (including its current state), and an Action<F> // object as a handle to it. template <typename F> class Action { public: typedef typename internal::Function<F>::Result Result; typedef typename internal::Function<F>::ArgumentTuple ArgumentTuple; // Constructs a null Action. Needed for storing Action objects in // STL containers. Action() : impl_(NULL) {} // Constructs an Action from its implementation. A NULL impl is // used to represent the "do-default" action. explicit Action(ActionInterface<F>* impl) : impl_(impl) {} // Copy constructor. Action(const Action& action) : impl_(action.impl_) {} // This constructor allows us to turn an Action<Func> object into an // Action<F>, as long as F's arguments can be implicitly converted // to Func's and Func's return type can be implicitly converted to // F's. template <typename Func> explicit Action(const Action<Func>& action); // Returns true iff this is the DoDefault() action. bool IsDoDefault() const { return impl_.get() == NULL; } // Performs the action. Note that this method is const even though // the corresponding method in ActionInterface is not. The reason // is that a const Action<F> means that it cannot be re-bound to // another concrete action, not that the concrete action it binds to // cannot change state. (Think of the difference between a const // pointer and a pointer to const.) Result Perform(const ArgumentTuple& args) const { internal::Assert( !IsDoDefault(), __FILE__, __LINE__, "You are using DoDefault() inside a composite action like " "DoAll() or WithArgs(). This is not supported for technical " "reasons. Please instead spell out the default action, or " "assign the default action to an Action variable and use " "the variable in various places."); return impl_->Perform(args); } private: template <typename F1, typename F2> friend class internal::ActionAdaptor; internal::linked_ptr<ActionInterface<F> > impl_; }; // The PolymorphicAction class template makes it easy to implement a // polymorphic action (i.e. an action that can be used in mock // functions of than one type, e.g. Return()). // // To define a polymorphic action, a user first provides a COPYABLE // implementation class that has a Perform() method template: // // class FooAction { // public: // template <typename Result, typename ArgumentTuple> // Result Perform(const ArgumentTuple& args) const { // // Processes the arguments and returns a result, using // // tr1::get<N>(args) to get the N-th (0-based) argument in the tuple. // } // ... // }; // // Then the user creates the polymorphic action using // MakePolymorphicAction(object) where object has type FooAction. See // the definition of Return(void) and SetArgumentPointee<N>(value) for // complete examples. template <typename Impl> class PolymorphicAction { public: explicit PolymorphicAction(const Impl& impl) : impl_(impl) {} template <typename F> operator Action<F>() const { return Action<F>(new MonomorphicImpl<F>(impl_)); } private: template <typename F> class MonomorphicImpl : public ActionInterface<F> { public: typedef typename internal::Function<F>::Result Result; typedef typename internal::Function<F>::ArgumentTuple ArgumentTuple; explicit MonomorphicImpl(const Impl& impl) : impl_(impl) {} virtual Result Perform(const ArgumentTuple& args) { return impl_.template Perform<Result>(args); } private: Impl impl_; GTEST_DISALLOW_ASSIGN_(MonomorphicImpl); }; Impl impl_; GTEST_DISALLOW_ASSIGN_(PolymorphicAction); }; // Creates an Action from its implementation and returns it. The // created Action object owns the implementation. template <typename F> Action<F> MakeAction(ActionInterface<F>* impl) { return Action<F>(impl); } // Creates a polymorphic action from its implementation. This is // easier to use than the PolymorphicAction<Impl> constructor as it // doesn't require you to explicitly write the template argument, e.g. // // MakePolymorphicAction(foo); // vs // PolymorphicAction<TypeOfFoo>(foo); template <typename Impl> inline PolymorphicAction<Impl> MakePolymorphicAction(const Impl& impl) { return PolymorphicAction<Impl>(impl); } namespace internal { // Allows an Action<F2> object to pose as an Action<F1>, as long as F2 // and F1 are compatible. template <typename F1, typename F2> class ActionAdaptor : public ActionInterface<F1> { public: typedef typename internal::Function<F1>::Result Result; typedef typename internal::Function<F1>::ArgumentTuple ArgumentTuple; explicit ActionAdaptor(const Action<F2>& from) : impl_(from.impl_) {} virtual Result Perform(const ArgumentTuple& args) { return impl_->Perform(args); } private: const internal::linked_ptr<ActionInterface<F2> > impl_; GTEST_DISALLOW_ASSIGN_(ActionAdaptor); }; // Implements the polymorphic Return(x) action, which can be used in // any function that returns the type of x, regardless of the argument // types. // // Note: The value passed into Return must be converted into // Function<F>::Result when this action is cast to Action<F> rather than // when that action is performed. This is important in scenarios like // // MOCK_METHOD1(Method, T(U)); // ... // { // Foo foo; // X x(&foo); // EXPECT_CALL(mock, Method(_)).WillOnce(Return(x)); // } // // In the example above the variable x holds reference to foo which leaves // scope and gets destroyed. If copying X just copies a reference to foo, // that copy will be left with a hanging reference. If conversion to T // makes a copy of foo, the above code is safe. To support that scenario, we // need to make sure that the type conversion happens inside the EXPECT_CALL // statement, and conversion of the result of Return to Action<T(U)> is a // good place for that. // template <typename R> class ReturnAction { public: // Constructs a ReturnAction object from the value to be returned. // 'value' is passed by value instead of by const reference in order // to allow Return("string literal") to compile. explicit ReturnAction(R value) : value_(value) {} // This template type conversion operator allows Return(x) to be // used in ANY function that returns x's type. template <typename F> operator Action<F>() const { // Assert statement belongs here because this is the best place to verify // conditions on F. It produces the clearest error messages // in most compilers. // Impl really belongs in this scope as a local class but can't // because MSVC produces duplicate symbols in different translation units // in this case. Until MS fixes that bug we put Impl into the class scope // and put the typedef both here (for use in assert statement) and // in the Impl class. But both definitions must be the same. typedef typename Function<F>::Result Result; GTEST_COMPILE_ASSERT_( !internal::is_reference<Result>::value, use_ReturnRef_instead_of_Return_to_return_a_reference); return Action<F>(new Impl<F>(value_)); } private: // Implements the Return(x) action for a particular function type F. template <typename F> class Impl : public ActionInterface<F> { public: typedef typename Function<F>::Result Result; typedef typename Function<F>::ArgumentTuple ArgumentTuple; // The implicit cast is necessary when Result has more than one // single-argument constructor (e.g. Result is std::vector<int>) and R // has a type conversion operator template. In that case, value_(value) // won't compile as the compiler doesn't known which constructor of // Result to call. ImplicitCast_ forces the compiler to convert R to // Result without considering explicit constructors, thus resolving the // ambiguity. value_ is then initialized using its copy constructor. explicit Impl(R value) : value_(::testing::internal::ImplicitCast_<Result>(value)) {} virtual Result Perform(const ArgumentTuple&) { return value_; } private: GTEST_COMPILE_ASSERT_(!internal::is_reference<Result>::value, Result_cannot_be_a_reference_type); Result value_; GTEST_DISALLOW_ASSIGN_(Impl); }; R value_; GTEST_DISALLOW_ASSIGN_(ReturnAction); }; // Implements the ReturnNull() action. class ReturnNullAction { public: // Allows ReturnNull() to be used in any pointer-returning function. template <typename Result, typename ArgumentTuple> static Result Perform(const ArgumentTuple&) { GTEST_COMPILE_ASSERT_(internal::is_pointer<Result>::value, ReturnNull_can_be_used_to_return_a_pointer_only); return NULL; } }; // Implements the Return() action. class ReturnVoidAction { public: // Allows Return() to be used in any void-returning function. template <typename Result, typename ArgumentTuple> static void Perform(const ArgumentTuple&) { CompileAssertTypesEqual<void, Result>(); } }; // Implements the polymorphic ReturnRef(x) action, which can be used // in any function that returns a reference to the type of x, // regardless of the argument types. template <typename T> class ReturnRefAction { public: // Constructs a ReturnRefAction object from the reference to be returned. explicit ReturnRefAction(T& ref) : ref_(ref) {} // NOLINT // This template type conversion operator allows ReturnRef(x) to be // used in ANY function that returns a reference to x's type. template <typename F> operator Action<F>() const { typedef typename Function<F>::Result Result; // Asserts that the function return type is a reference. This // catches the user error of using ReturnRef(x) when Return(x) // should be used, and generates some helpful error message. GTEST_COMPILE_ASSERT_(internal::is_reference<Result>::value, use_Return_instead_of_ReturnRef_to_return_a_value); return Action<F>(new Impl<F>(ref_)); } private: // Implements the ReturnRef(x) action for a particular function type F. template <typename F> class Impl : public ActionInterface<F> { public: typedef typename Function<F>::Result Result; typedef typename Function<F>::ArgumentTuple ArgumentTuple; explicit Impl(T& ref) : ref_(ref) {} // NOLINT virtual Result Perform(const ArgumentTuple&) { return ref_; } private: T& ref_; GTEST_DISALLOW_ASSIGN_(Impl); }; T& ref_; GTEST_DISALLOW_ASSIGN_(ReturnRefAction); }; // Implements the polymorphic ReturnRefOfCopy(x) action, which can be // used in any function that returns a reference to the type of x, // regardless of the argument types. template <typename T> class ReturnRefOfCopyAction { public: // Constructs a ReturnRefOfCopyAction object from the reference to // be returned. explicit ReturnRefOfCopyAction(const T& value) : value_(value) {} // NOLINT // This template type conversion operator allows ReturnRefOfCopy(x) to be // used in ANY function that returns a reference to x's type. template <typename F> operator Action<F>() const { typedef typename Function<F>::Result Result; // Asserts that the function return type is a reference. This // catches the user error of using ReturnRefOfCopy(x) when Return(x) // should be used, and generates some helpful error message. GTEST_COMPILE_ASSERT_( internal::is_reference<Result>::value, use_Return_instead_of_ReturnRefOfCopy_to_return_a_value); return Action<F>(new Impl<F>(value_)); } private: // Implements the ReturnRefOfCopy(x) action for a particular function type F. template <typename F> class Impl : public ActionInterface<F> { public: typedef typename Function<F>::Result Result; typedef typename Function<F>::ArgumentTuple ArgumentTuple; explicit Impl(const T& value) : value_(value) {} // NOLINT virtual Result Perform(const ArgumentTuple&) { return value_; } private: T value_; GTEST_DISALLOW_ASSIGN_(Impl); }; const T value_; GTEST_DISALLOW_ASSIGN_(ReturnRefOfCopyAction); }; // Implements the polymorphic DoDefault() action. class DoDefaultAction { public: // This template type conversion operator allows DoDefault() to be // used in any function. template <typename F> operator Action<F>() const { return Action<F>(NULL); } }; // Implements the Assign action to set a given pointer referent to a // particular value. template <typename T1, typename T2> class AssignAction { public: AssignAction(T1* ptr, T2 value) : ptr_(ptr), value_(value) {} template <typename Result, typename ArgumentTuple> void Perform(const ArgumentTuple& /* args */) const { *ptr_ = value_; } private: T1* const ptr_; const T2 value_; GTEST_DISALLOW_ASSIGN_(AssignAction); }; #if !GTEST_OS_WINDOWS_MOBILE // Implements the SetErrnoAndReturn action to simulate return from // various system calls and libc functions. template <typename T> class SetErrnoAndReturnAction { public: SetErrnoAndReturnAction(int errno_value, T result) : errno_(errno_value), result_(result) {} template <typename Result, typename ArgumentTuple> Result Perform(const ArgumentTuple& /* args */) const { errno = errno_; return result_; } private: const int errno_; const T result_; GTEST_DISALLOW_ASSIGN_(SetErrnoAndReturnAction); }; #endif // !GTEST_OS_WINDOWS_MOBILE // Implements the SetArgumentPointee<N>(x) action for any function // whose N-th argument (0-based) is a pointer to x's type. The // template parameter kIsProto is true iff type A is ProtocolMessage, // proto2::Message, or a sub-class of those. template <size_t N, typename A, bool kIsProto> class SetArgumentPointeeAction { public: // Constructs an action that sets the variable pointed to by the // N-th function argument to 'value'. explicit SetArgumentPointeeAction(const A& value) : value_(value) {} template <typename Result, typename ArgumentTuple> void Perform(const ArgumentTuple& args) const { CompileAssertTypesEqual<void, Result>(); *::std::tr1::get<N>(args) = value_; } private: const A value_; GTEST_DISALLOW_ASSIGN_(SetArgumentPointeeAction); }; template <size_t N, typename Proto> class SetArgumentPointeeAction<N, Proto, true> { public: // Constructs an action that sets the variable pointed to by the // N-th function argument to 'proto'. Both ProtocolMessage and // proto2::Message have the CopyFrom() method, so the same // implementation works for both. explicit SetArgumentPointeeAction(const Proto& proto) : proto_(new Proto) { proto_->CopyFrom(proto); } template <typename Result, typename ArgumentTuple> void Perform(const ArgumentTuple& args) const { CompileAssertTypesEqual<void, Result>(); ::std::tr1::get<N>(args)->CopyFrom(*proto_); } private: const internal::linked_ptr<Proto> proto_; GTEST_DISALLOW_ASSIGN_(SetArgumentPointeeAction); }; // Implements the InvokeWithoutArgs(f) action. The template argument // FunctionImpl is the implementation type of f, which can be either a // function pointer or a functor. InvokeWithoutArgs(f) can be used as an // Action<F> as long as f's type is compatible with F (i.e. f can be // assigned to a tr1::function<F>). template <typename FunctionImpl> class InvokeWithoutArgsAction { public: // The c'tor makes a copy of function_impl (either a function // pointer or a functor). explicit InvokeWithoutArgsAction(FunctionImpl function_impl) : function_impl_(function_impl) {} // Allows InvokeWithoutArgs(f) to be used as any action whose type is // compatible with f. template <typename Result, typename ArgumentTuple> Result Perform(const ArgumentTuple&) { return function_impl_(); } private: FunctionImpl function_impl_; GTEST_DISALLOW_ASSIGN_(InvokeWithoutArgsAction); }; // Implements the InvokeWithoutArgs(object_ptr, &Class::Method) action. template <class Class, typename MethodPtr> class InvokeMethodWithoutArgsAction { public: InvokeMethodWithoutArgsAction(Class* obj_ptr, MethodPtr method_ptr) : obj_ptr_(obj_ptr), method_ptr_(method_ptr) {} template <typename Result, typename ArgumentTuple> Result Perform(const ArgumentTuple&) const { return (obj_ptr_->*method_ptr_)(); } private: Class* const obj_ptr_; const MethodPtr method_ptr_; GTEST_DISALLOW_ASSIGN_(InvokeMethodWithoutArgsAction); }; // Implements the IgnoreResult(action) action. template <typename A> class IgnoreResultAction { public: explicit IgnoreResultAction(const A& action) : action_(action) {} template <typename F> operator Action<F>() const { // Assert statement belongs here because this is the best place to verify // conditions on F. It produces the clearest error messages // in most compilers. // Impl really belongs in this scope as a local class but can't // because MSVC produces duplicate symbols in different translation units // in this case. Until MS fixes that bug we put Impl into the class scope // and put the typedef both here (for use in assert statement) and // in the Impl class. But both definitions must be the same. typedef typename internal::Function<F>::Result Result; // Asserts at compile time that F returns void. CompileAssertTypesEqual<void, Result>(); return Action<F>(new Impl<F>(action_)); } private: template <typename F> class Impl : public ActionInterface<F> { public: typedef typename internal::Function<F>::Result Result; typedef typename internal::Function<F>::ArgumentTuple ArgumentTuple; explicit Impl(const A& action) : action_(action) {} virtual void Perform(const ArgumentTuple& args) { // Performs the action and ignores its result. action_.Perform(args); } private: // Type OriginalFunction is the same as F except that its return // type is IgnoredValue. typedef typename internal::Function<F>::MakeResultIgnoredValue OriginalFunction; const Action<OriginalFunction> action_; GTEST_DISALLOW_ASSIGN_(Impl); }; const A action_; GTEST_DISALLOW_ASSIGN_(IgnoreResultAction); }; // A ReferenceWrapper<T> object represents a reference to type T, // which can be either const or not. It can be explicitly converted // from, and implicitly converted to, a T&. Unlike a reference, // ReferenceWrapper<T> can be copied and can survive template type // inference. This is used to support by-reference arguments in the // InvokeArgument<N>(...) action. The idea was from "reference // wrappers" in tr1, which we don't have in our source tree yet. template <typename T> class ReferenceWrapper { public: // Constructs a ReferenceWrapper<T> object from a T&. explicit ReferenceWrapper(T& l_value) : pointer_(&l_value) {} // NOLINT // Allows a ReferenceWrapper<T> object to be implicitly converted to // a T&. operator T&() const { return *pointer_; } private: T* pointer_; }; // Allows the expression ByRef(x) to be printed as a reference to x. template <typename T> void PrintTo(const ReferenceWrapper<T>& ref, ::std::ostream* os) { T& value = ref; UniversalPrinter<T&>::Print(value, os); } // Does two actions sequentially. Used for implementing the DoAll(a1, // a2, ...) action. template <typename Action1, typename Action2> class DoBothAction { public: DoBothAction(Action1 action1, Action2 action2) : action1_(action1), action2_(action2) {} // This template type conversion operator allows DoAll(a1, ..., a_n) // to be used in ANY function of compatible type. template <typename F> operator Action<F>() const { return Action<F>(new Impl<F>(action1_, action2_)); } private: // Implements the DoAll(...) action for a particular function type F. template <typename F> class Impl : public ActionInterface<F> { public: typedef typename Function<F>::Result Result; typedef typename Function<F>::ArgumentTuple ArgumentTuple; typedef typename Function<F>::MakeResultVoid VoidResult; Impl(const Action<VoidResult>& action1, const Action<F>& action2) : action1_(action1), action2_(action2) {} virtual Result Perform(const ArgumentTuple& args) { action1_.Perform(args); return action2_.Perform(args); } private: const Action<VoidResult> action1_; const Action<F> action2_; GTEST_DISALLOW_ASSIGN_(Impl); }; Action1 action1_; Action2 action2_; GTEST_DISALLOW_ASSIGN_(DoBothAction); }; } // namespace internal // An Unused object can be implicitly constructed from ANY value. // This is handy when defining actions that ignore some or all of the // mock function arguments. For example, given // // MOCK_METHOD3(Foo, double(const string& label, double x, double y)); // MOCK_METHOD3(Bar, double(int index, double x, double y)); // // instead of // // double DistanceToOriginWithLabel(const string& label, double x, double y) { // return sqrt(x*x + y*y); // } // double DistanceToOriginWithIndex(int index, double x, double y) { // return sqrt(x*x + y*y); // } // ... // EXEPCT_CALL(mock, Foo("abc", _, _)) // .WillOnce(Invoke(DistanceToOriginWithLabel)); // EXEPCT_CALL(mock, Bar(5, _, _)) // .WillOnce(Invoke(DistanceToOriginWithIndex)); // // you could write // // // We can declare any uninteresting argument as Unused. // double DistanceToOrigin(Unused, double x, double y) { // return sqrt(x*x + y*y); // } // ... // EXEPCT_CALL(mock, Foo("abc", _, _)).WillOnce(Invoke(DistanceToOrigin)); // EXEPCT_CALL(mock, Bar(5, _, _)).WillOnce(Invoke(DistanceToOrigin)); typedef internal::IgnoredValue Unused; // This constructor allows us to turn an Action<From> object into an // Action<To>, as long as To's arguments can be implicitly converted // to From's and From's return type cann be implicitly converted to // To's. template <typename To> template <typename From> Action<To>::Action(const Action<From>& from) : impl_(new internal::ActionAdaptor<To, From>(from)) {} // Creates an action that returns 'value'. 'value' is passed by value // instead of const reference - otherwise Return("string literal") // will trigger a compiler error about using array as initializer. template <typename R> internal::ReturnAction<R> Return(R value) { return internal::ReturnAction<R>(value); } // Creates an action that returns NULL. inline PolymorphicAction<internal::ReturnNullAction> ReturnNull() { return MakePolymorphicAction(internal::ReturnNullAction()); } // Creates an action that returns from a void function. inline PolymorphicAction<internal::ReturnVoidAction> Return() { return MakePolymorphicAction(internal::ReturnVoidAction()); } // Creates an action that returns the reference to a variable. template <typename R> inline internal::ReturnRefAction<R> ReturnRef(R& x) { // NOLINT return internal::ReturnRefAction<R>(x); } // Creates an action that returns the reference to a copy of the // argument. The copy is created when the action is constructed and // lives as long as the action. template <typename R> inline internal::ReturnRefOfCopyAction<R> ReturnRefOfCopy(const R& x) { return internal::ReturnRefOfCopyAction<R>(x); } // Creates an action that does the default action for the give mock function. inline internal::DoDefaultAction DoDefault() { return internal::DoDefaultAction(); } // Creates an action that sets the variable pointed by the N-th // (0-based) function argument to 'value'. template <size_t N, typename T> PolymorphicAction< internal::SetArgumentPointeeAction< N, T, internal::IsAProtocolMessage<T>::value> > SetArgPointee(const T& x) { return MakePolymorphicAction(internal::SetArgumentPointeeAction< N, T, internal::IsAProtocolMessage<T>::value>(x)); } #if !((GTEST_GCC_VER_ && GTEST_GCC_VER_ < 40000) || GTEST_OS_SYMBIAN) // This overload allows SetArgPointee() to accept a string literal. // GCC prior to the version 4.0 and Symbian C++ compiler cannot distinguish // this overload from the templated version and emit a compile error. template <size_t N> PolymorphicAction< internal::SetArgumentPointeeAction<N, const char*, false> > SetArgPointee(const char* p) { return MakePolymorphicAction(internal::SetArgumentPointeeAction< N, const char*, false>(p)); } template <size_t N> PolymorphicAction< internal::SetArgumentPointeeAction<N, const wchar_t*, false> > SetArgPointee(const wchar_t* p) { return MakePolymorphicAction(internal::SetArgumentPointeeAction< N, const wchar_t*, false>(p)); } #endif // The following version is DEPRECATED. template <size_t N, typename T> PolymorphicAction< internal::SetArgumentPointeeAction< N, T, internal::IsAProtocolMessage<T>::value> > SetArgumentPointee(const T& x) { return MakePolymorphicAction(internal::SetArgumentPointeeAction< N, T, internal::IsAProtocolMessage<T>::value>(x)); } // Creates an action that sets a pointer referent to a given value. template <typename T1, typename T2> PolymorphicAction<internal::AssignAction<T1, T2> > Assign(T1* ptr, T2 val) { return MakePolymorphicAction(internal::AssignAction<T1, T2>(ptr, val)); } #if !GTEST_OS_WINDOWS_MOBILE // Creates an action that sets errno and returns the appropriate error. template <typename T> PolymorphicAction<internal::SetErrnoAndReturnAction<T> > SetErrnoAndReturn(int errval, T result) { return MakePolymorphicAction( internal::SetErrnoAndReturnAction<T>(errval, result)); } #endif // !GTEST_OS_WINDOWS_MOBILE // Various overloads for InvokeWithoutArgs(). // Creates an action that invokes 'function_impl' with no argument. template <typename FunctionImpl> PolymorphicAction<internal::InvokeWithoutArgsAction<FunctionImpl> > InvokeWithoutArgs(FunctionImpl function_impl) { return MakePolymorphicAction( internal::InvokeWithoutArgsAction<FunctionImpl>(function_impl)); } // Creates an action that invokes the given method on the given object // with no argument. template <class Class, typename MethodPtr> PolymorphicAction<internal::InvokeMethodWithoutArgsAction<Class, MethodPtr> > InvokeWithoutArgs(Class* obj_ptr, MethodPtr method_ptr) { return MakePolymorphicAction( internal::InvokeMethodWithoutArgsAction<Class, MethodPtr>( obj_ptr, method_ptr)); } // Creates an action that performs an_action and throws away its // result. In other words, it changes the return type of an_action to // void. an_action MUST NOT return void, or the code won't compile. template <typename A> inline internal::IgnoreResultAction<A> IgnoreResult(const A& an_action) { return internal::IgnoreResultAction<A>(an_action); } // Creates a reference wrapper for the given L-value. If necessary, // you can explicitly specify the type of the reference. For example, // suppose 'derived' is an object of type Derived, ByRef(derived) // would wrap a Derived&. If you want to wrap a const Base& instead, // where Base is a base class of Derived, just write: // // ByRef<const Base>(derived) template <typename T> inline internal::ReferenceWrapper<T> ByRef(T& l_value) { // NOLINT return internal::ReferenceWrapper<T>(l_value); } } // namespace testing #endif // GMOCK_INCLUDE_GMOCK_GMOCK_ACTIONS_H_ // Copyright 2007, Google Inc. // All rights reserved. // // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions are // met: // // * Redistributions of source code must retain the above copyright // notice, this list of conditions and the following disclaimer. // * Redistributions in binary form must reproduce the above // copyright notice, this list of conditions and the following disclaimer // in the documentation and/or other materials provided with the // distribution. // * Neither the name of Google Inc. nor the names of its // contributors may be used to endorse or promote products derived from // this software without specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. // // Author: wan@google.com (Zhanyong Wan) // Google Mock - a framework for writing C++ mock classes. // // This file implements some commonly used cardinalities. More // cardinalities can be defined by the user implementing the // CardinalityInterface interface if necessary. #ifndef GMOCK_INCLUDE_GMOCK_GMOCK_CARDINALITIES_H_ #define GMOCK_INCLUDE_GMOCK_GMOCK_CARDINALITIES_H_ #include <limits.h> #include <ostream> // NOLINT namespace testing { // To implement a cardinality Foo, define: // 1. a class FooCardinality that implements the // CardinalityInterface interface, and // 2. a factory function that creates a Cardinality object from a // const FooCardinality*. // // The two-level delegation design follows that of Matcher, providing // consistency for extension developers. It also eases ownership // management as Cardinality objects can now be copied like plain values. // The implementation of a cardinality. class CardinalityInterface { public: virtual ~CardinalityInterface() {} // Conservative estimate on the lower/upper bound of the number of // calls allowed. virtual int ConservativeLowerBound() const { return 0; } virtual int ConservativeUpperBound() const { return INT_MAX; } // Returns true iff call_count calls will satisfy this cardinality. virtual bool IsSatisfiedByCallCount(int call_count) const = 0; // Returns true iff call_count calls will saturate this cardinality. virtual bool IsSaturatedByCallCount(int call_count) const = 0; // Describes self to an ostream. virtual void DescribeTo(::std::ostream* os) const = 0; }; // A Cardinality is a copyable and IMMUTABLE (except by assignment) // object that specifies how many times a mock function is expected to // be called. The implementation of Cardinality is just a linked_ptr // to const CardinalityInterface, so copying is fairly cheap. // Don't inherit from Cardinality! class Cardinality { public: // Constructs a null cardinality. Needed for storing Cardinality // objects in STL containers. Cardinality() {} // Constructs a Cardinality from its implementation. explicit Cardinality(const CardinalityInterface* impl) : impl_(impl) {} // Conservative estimate on the lower/upper bound of the number of // calls allowed. int ConservativeLowerBound() const { return impl_->ConservativeLowerBound(); } int ConservativeUpperBound() const { return impl_->ConservativeUpperBound(); } // Returns true iff call_count calls will satisfy this cardinality. bool IsSatisfiedByCallCount(int call_count) const { return impl_->IsSatisfiedByCallCount(call_count); } // Returns true iff call_count calls will saturate this cardinality. bool IsSaturatedByCallCount(int call_count) const { return impl_->IsSaturatedByCallCount(call_count); } // Returns true iff call_count calls will over-saturate this // cardinality, i.e. exceed the maximum number of allowed calls. bool IsOverSaturatedByCallCount(int call_count) const { return impl_->IsSaturatedByCallCount(call_count) && !impl_->IsSatisfiedByCallCount(call_count); } // Describes self to an ostream void DescribeTo(::std::ostream* os) const { impl_->DescribeTo(os); } // Describes the given actual call count to an ostream. static void DescribeActualCallCountTo(int actual_call_count, ::std::ostream* os); private: internal::linked_ptr<const CardinalityInterface> impl_; }; // Creates a cardinality that allows at least n calls. Cardinality AtLeast(int n); // Creates a cardinality that allows at most n calls. Cardinality AtMost(int n); // Creates a cardinality that allows any number of calls. Cardinality AnyNumber(); // Creates a cardinality that allows between min and max calls. Cardinality Between(int min, int max); // Creates a cardinality that allows exactly n calls. Cardinality Exactly(int n); // Creates a cardinality from its implementation. inline Cardinality MakeCardinality(const CardinalityInterface* c) { return Cardinality(c); } } // namespace testing #endif // GMOCK_INCLUDE_GMOCK_GMOCK_CARDINALITIES_H_ // This file was GENERATED by a script. DO NOT EDIT BY HAND!!! // Copyright 2007, Google Inc. // All rights reserved. // // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions are // met: // // * Redistributions of source code must retain the above copyright // notice, this list of conditions and the following disclaimer. // * Redistributions in binary form must reproduce the above // copyright notice, this list of conditions and the following disclaimer // in the documentation and/or other materials provided with the // distribution. // * Neither the name of Google Inc. nor the names of its // contributors may be used to endorse or promote products derived from // this software without specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. // // Author: wan@google.com (Zhanyong Wan) // Google Mock - a framework for writing C++ mock classes. // // This file implements some commonly used variadic actions. #ifndef GMOCK_INCLUDE_GMOCK_GMOCK_GENERATED_ACTIONS_H_ #define GMOCK_INCLUDE_GMOCK_GMOCK_GENERATED_ACTIONS_H_ namespace testing { namespace internal { // InvokeHelper<F> knows how to unpack an N-tuple and invoke an N-ary // function or method with the unpacked values, where F is a function // type that takes N arguments. template <typename Result, typename ArgumentTuple> class InvokeHelper; template <typename R> class InvokeHelper<R, ::std::tr1::tuple<> > { public: template <typename Function> static R Invoke(Function function, const ::std::tr1::tuple<>&) { return function(); } template <class Class, typename MethodPtr> static R InvokeMethod(Class* obj_ptr, MethodPtr method_ptr, const ::std::tr1::tuple<>&) { return (obj_ptr->*method_ptr)(); } }; template <typename R, typename A1> class InvokeHelper<R, ::std::tr1::tuple<A1> > { public: template <typename Function> static R Invoke(Function function, const ::std::tr1::tuple<A1>& args) { using ::std::tr1::get; return function(get<0>(args)); } template <class Class, typename MethodPtr> static R InvokeMethod(Class* obj_ptr, MethodPtr method_ptr, const ::std::tr1::tuple<A1>& args) { using ::std::tr1::get; return (obj_ptr->*method_ptr)(get<0>(args)); } }; template <typename R, typename A1, typename A2> class InvokeHelper<R, ::std::tr1::tuple<A1, A2> > { public: template <typename Function> static R Invoke(Function function, const ::std::tr1::tuple<A1, A2>& args) { using ::std::tr1::get; return function(get<0>(args), get<1>(args)); } template <class Class, typename MethodPtr> static R InvokeMethod(Class* obj_ptr, MethodPtr method_ptr, const ::std::tr1::tuple<A1, A2>& args) { using ::std::tr1::get; return (obj_ptr->*method_ptr)(get<0>(args), get<1>(args)); } }; template <typename R, typename A1, typename A2, typename A3> class InvokeHelper<R, ::std::tr1::tuple<A1, A2, A3> > { public: template <typename Function> static R Invoke(Function function, const ::std::tr1::tuple<A1, A2, A3>& args) { using ::std::tr1::get; return function(get<0>(args), get<1>(args), get<2>(args)); } template <class Class, typename MethodPtr> static R InvokeMethod(Class* obj_ptr, MethodPtr method_ptr, const ::std::tr1::tuple<A1, A2, A3>& args) { using ::std::tr1::get; return (obj_ptr->*method_ptr)(get<0>(args), get<1>(args), get<2>(args)); } }; template <typename R, typename A1, typename A2, typename A3, typename A4> class InvokeHelper<R, ::std::tr1::tuple<A1, A2, A3, A4> > { public: template <typename Function> static R Invoke(Function function, const ::std::tr1::tuple<A1, A2, A3, A4>& args) { using ::std::tr1::get; return function(get<0>(args), get<1>(args), get<2>(args), get<3>(args)); } template <class Class, typename MethodPtr> static R InvokeMethod(Class* obj_ptr, MethodPtr method_ptr, const ::std::tr1::tuple<A1, A2, A3, A4>& args) { using ::std::tr1::get; return (obj_ptr->*method_ptr)(get<0>(args), get<1>(args), get<2>(args), get<3>(args)); } }; template <typename R, typename A1, typename A2, typename A3, typename A4, typename A5> class InvokeHelper<R, ::std::tr1::tuple<A1, A2, A3, A4, A5> > { public: template <typename Function> static R Invoke(Function function, const ::std::tr1::tuple<A1, A2, A3, A4, A5>& args) { using ::std::tr1::get; return function(get<0>(args), get<1>(args), get<2>(args), get<3>(args), get<4>(args)); } template <class Class, typename MethodPtr> static R InvokeMethod(Class* obj_ptr, MethodPtr method_ptr, const ::std::tr1::tuple<A1, A2, A3, A4, A5>& args) { using ::std::tr1::get; return (obj_ptr->*method_ptr)(get<0>(args), get<1>(args), get<2>(args), get<3>(args), get<4>(args)); } }; template <typename R, typename A1, typename A2, typename A3, typename A4, typename A5, typename A6> class InvokeHelper<R, ::std::tr1::tuple<A1, A2, A3, A4, A5, A6> > { public: template <typename Function> static R Invoke(Function function, const ::std::tr1::tuple<A1, A2, A3, A4, A5, A6>& args) { using ::std::tr1::get; return function(get<0>(args), get<1>(args), get<2>(args), get<3>(args), get<4>(args), get<5>(args)); } template <class Class, typename MethodPtr> static R InvokeMethod(Class* obj_ptr, MethodPtr method_ptr, const ::std::tr1::tuple<A1, A2, A3, A4, A5, A6>& args) { using ::std::tr1::get; return (obj_ptr->*method_ptr)(get<0>(args), get<1>(args), get<2>(args), get<3>(args), get<4>(args), get<5>(args)); } }; template <typename R, typename A1, typename A2, typename A3, typename A4, typename A5, typename A6, typename A7> class InvokeHelper<R, ::std::tr1::tuple<A1, A2, A3, A4, A5, A6, A7> > { public: template <typename Function> static R Invoke(Function function, const ::std::tr1::tuple<A1, A2, A3, A4, A5, A6, A7>& args) { using ::std::tr1::get; return function(get<0>(args), get<1>(args), get<2>(args), get<3>(args), get<4>(args), get<5>(args), get<6>(args)); } template <class Class, typename MethodPtr> static R InvokeMethod(Class* obj_ptr, MethodPtr method_ptr, const ::std::tr1::tuple<A1, A2, A3, A4, A5, A6, A7>& args) { using ::std::tr1::get; return (obj_ptr->*method_ptr)(get<0>(args), get<1>(args), get<2>(args), get<3>(args), get<4>(args), get<5>(args), get<6>(args)); } }; template <typename R, typename A1, typename A2, typename A3, typename A4, typename A5, typename A6, typename A7, typename A8> class InvokeHelper<R, ::std::tr1::tuple<A1, A2, A3, A4, A5, A6, A7, A8> > { public: template <typename Function> static R Invoke(Function function, const ::std::tr1::tuple<A1, A2, A3, A4, A5, A6, A7, A8>& args) { using ::std::tr1::get; return function(get<0>(args), get<1>(args), get<2>(args), get<3>(args), get<4>(args), get<5>(args), get<6>(args), get<7>(args)); } template <class Class, typename MethodPtr> static R InvokeMethod(Class* obj_ptr, MethodPtr method_ptr, const ::std::tr1::tuple<A1, A2, A3, A4, A5, A6, A7, A8>& args) { using ::std::tr1::get; return (obj_ptr->*method_ptr)(get<0>(args), get<1>(args), get<2>(args), get<3>(args), get<4>(args), get<5>(args), get<6>(args), get<7>(args)); } }; template <typename R, typename A1, typename A2, typename A3, typename A4, typename A5, typename A6, typename A7, typename A8, typename A9> class InvokeHelper<R, ::std::tr1::tuple<A1, A2, A3, A4, A5, A6, A7, A8, A9> > { public: template <typename Function> static R Invoke(Function function, const ::std::tr1::tuple<A1, A2, A3, A4, A5, A6, A7, A8, A9>& args) { using ::std::tr1::get; return function(get<0>(args), get<1>(args), get<2>(args), get<3>(args), get<4>(args), get<5>(args), get<6>(args), get<7>(args), get<8>(args)); } template <class Class, typename MethodPtr> static R InvokeMethod(Class* obj_ptr, MethodPtr method_ptr, const ::std::tr1::tuple<A1, A2, A3, A4, A5, A6, A7, A8, A9>& args) { using ::std::tr1::get; return (obj_ptr->*method_ptr)(get<0>(args), get<1>(args), get<2>(args), get<3>(args), get<4>(args), get<5>(args), get<6>(args), get<7>(args), get<8>(args)); } }; template <typename R, typename A1, typename A2, typename A3, typename A4, typename A5, typename A6, typename A7, typename A8, typename A9, typename A10> class InvokeHelper<R, ::std::tr1::tuple<A1, A2, A3, A4, A5, A6, A7, A8, A9, A10> > { public: template <typename Function> static R Invoke(Function function, const ::std::tr1::tuple<A1, A2, A3, A4, A5, A6, A7, A8, A9, A10>& args) { using ::std::tr1::get; return function(get<0>(args), get<1>(args), get<2>(args), get<3>(args), get<4>(args), get<5>(args), get<6>(args), get<7>(args), get<8>(args), get<9>(args)); } template <class Class, typename MethodPtr> static R InvokeMethod(Class* obj_ptr, MethodPtr method_ptr, const ::std::tr1::tuple<A1, A2, A3, A4, A5, A6, A7, A8, A9, A10>& args) { using ::std::tr1::get; return (obj_ptr->*method_ptr)(get<0>(args), get<1>(args), get<2>(args), get<3>(args), get<4>(args), get<5>(args), get<6>(args), get<7>(args), get<8>(args), get<9>(args)); } }; // CallableHelper has static methods for invoking "callables", // i.e. function pointers and functors. It uses overloading to // provide a uniform interface for invoking different kinds of // callables. In particular, you can use: // // CallableHelper<R>::Call(callable, a1, a2, ..., an) // // to invoke an n-ary callable, where R is its return type. If an // argument, say a2, needs to be passed by reference, you should write // ByRef(a2) instead of a2 in the above expression. template <typename R> class CallableHelper { public: // Calls a nullary callable. template <typename Function> static R Call(Function function) { return function(); } // Calls a unary callable. // We deliberately pass a1 by value instead of const reference here // in case it is a C-string literal. If we had declared the // parameter as 'const A1& a1' and write Call(function, "Hi"), the // compiler would've thought A1 is 'char[3]', which causes trouble // when you need to copy a value of type A1. By declaring the // parameter as 'A1 a1', the compiler will correctly infer that A1 // is 'const char*' when it sees Call(function, "Hi"). // // Since this function is defined inline, the compiler can get rid // of the copying of the arguments. Therefore the performance won't // be hurt. template <typename Function, typename A1> static R Call(Function function, A1 a1) { return function(a1); } // Calls a binary callable. template <typename Function, typename A1, typename A2> static R Call(Function function, A1 a1, A2 a2) { return function(a1, a2); } // Calls a ternary callable. template <typename Function, typename A1, typename A2, typename A3> static R Call(Function function, A1 a1, A2 a2, A3 a3) { return function(a1, a2, a3); } // Calls a 4-ary callable. template <typename Function, typename A1, typename A2, typename A3, typename A4> static R Call(Function function, A1 a1, A2 a2, A3 a3, A4 a4) { return function(a1, a2, a3, a4); } // Calls a 5-ary callable. template <typename Function, typename A1, typename A2, typename A3, typename A4, typename A5> static R Call(Function function, A1 a1, A2 a2, A3 a3, A4 a4, A5 a5) { return function(a1, a2, a3, a4, a5); } // Calls a 6-ary callable. template <typename Function, typename A1, typename A2, typename A3, typename A4, typename A5, typename A6> static R Call(Function function, A1 a1, A2 a2, A3 a3, A4 a4, A5 a5, A6 a6) { return function(a1, a2, a3, a4, a5, a6); } // Calls a 7-ary callable. template <typename Function, typename A1, typename A2, typename A3, typename A4, typename A5, typename A6, typename A7> static R Call(Function function, A1 a1, A2 a2, A3 a3, A4 a4, A5 a5, A6 a6, A7 a7) { return function(a1, a2, a3, a4, a5, a6, a7); } // Calls a 8-ary callable. template <typename Function, typename A1, typename A2, typename A3, typename A4, typename A5, typename A6, typename A7, typename A8> static R Call(Function function, A1 a1, A2 a2, A3 a3, A4 a4, A5 a5, A6 a6, A7 a7, A8 a8) { return function(a1, a2, a3, a4, a5, a6, a7, a8); } // Calls a 9-ary callable. template <typename Function, typename A1, typename A2, typename A3, typename A4, typename A5, typename A6, typename A7, typename A8, typename A9> static R Call(Function function, A1 a1, A2 a2, A3 a3, A4 a4, A5 a5, A6 a6, A7 a7, A8 a8, A9 a9) { return function(a1, a2, a3, a4, a5, a6, a7, a8, a9); } // Calls a 10-ary callable. template <typename Function, typename A1, typename A2, typename A3, typename A4, typename A5, typename A6, typename A7, typename A8, typename A9, typename A10> static R Call(Function function, A1 a1, A2 a2, A3 a3, A4 a4, A5 a5, A6 a6, A7 a7, A8 a8, A9 a9, A10 a10) { return function(a1, a2, a3, a4, a5, a6, a7, a8, a9, a10); } }; // class CallableHelper // An INTERNAL macro for extracting the type of a tuple field. It's // subject to change without notice - DO NOT USE IN USER CODE! #define GMOCK_FIELD_(Tuple, N) \ typename ::std::tr1::tuple_element<N, Tuple>::type // SelectArgs<Result, ArgumentTuple, k1, k2, ..., k_n>::type is the // type of an n-ary function whose i-th (1-based) argument type is the // k{i}-th (0-based) field of ArgumentTuple, which must be a tuple // type, and whose return type is Result. For example, // SelectArgs<int, ::std::tr1::tuple<bool, char, double, long>, 0, 3>::type // is int(bool, long). // // SelectArgs<Result, ArgumentTuple, k1, k2, ..., k_n>::Select(args) // returns the selected fields (k1, k2, ..., k_n) of args as a tuple. // For example, // SelectArgs<int, ::std::tr1::tuple<bool, char, double>, 2, 0>::Select( // ::std::tr1::make_tuple(true, 'a', 2.5)) // returns ::std::tr1::tuple (2.5, true). // // The numbers in list k1, k2, ..., k_n must be >= 0, where n can be // in the range [0, 10]. Duplicates are allowed and they don't have // to be in an ascending or descending order. template <typename Result, typename ArgumentTuple, int k1, int k2, int k3, int k4, int k5, int k6, int k7, int k8, int k9, int k10> class SelectArgs { public: typedef Result type(GMOCK_FIELD_(ArgumentTuple, k1), GMOCK_FIELD_(ArgumentTuple, k2), GMOCK_FIELD_(ArgumentTuple, k3), GMOCK_FIELD_(ArgumentTuple, k4), GMOCK_FIELD_(ArgumentTuple, k5), GMOCK_FIELD_(ArgumentTuple, k6), GMOCK_FIELD_(ArgumentTuple, k7), GMOCK_FIELD_(ArgumentTuple, k8), GMOCK_FIELD_(ArgumentTuple, k9), GMOCK_FIELD_(ArgumentTuple, k10)); typedef typename Function<type>::ArgumentTuple SelectedArgs; static SelectedArgs Select(const ArgumentTuple& args) { using ::std::tr1::get; return SelectedArgs(get<k1>(args), get<k2>(args), get<k3>(args), get<k4>(args), get<k5>(args), get<k6>(args), get<k7>(args), get<k8>(args), get<k9>(args), get<k10>(args)); } }; template <typename Result, typename ArgumentTuple> class SelectArgs<Result, ArgumentTuple, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1> { public: typedef Result type(); typedef typename Function<type>::ArgumentTuple SelectedArgs; static SelectedArgs Select(const ArgumentTuple& /* args */) { using ::std::tr1::get; return SelectedArgs(); } }; template <typename Result, typename ArgumentTuple, int k1> class SelectArgs<Result, ArgumentTuple, k1, -1, -1, -1, -1, -1, -1, -1, -1, -1> { public: typedef Result type(GMOCK_FIELD_(ArgumentTuple, k1)); typedef typename Function<type>::ArgumentTuple SelectedArgs; static SelectedArgs Select(const ArgumentTuple& args) { using ::std::tr1::get; return SelectedArgs(get<k1>(args)); } }; template <typename Result, typename ArgumentTuple, int k1, int k2> class SelectArgs<Result, ArgumentTuple, k1, k2, -1, -1, -1, -1, -1, -1, -1, -1> { public: typedef Result type(GMOCK_FIELD_(ArgumentTuple, k1), GMOCK_FIELD_(ArgumentTuple, k2)); typedef typename Function<type>::ArgumentTuple SelectedArgs; static SelectedArgs Select(const ArgumentTuple& args) { using ::std::tr1::get; return SelectedArgs(get<k1>(args), get<k2>(args)); } }; template <typename Result, typename ArgumentTuple, int k1, int k2, int k3> class SelectArgs<Result, ArgumentTuple, k1, k2, k3, -1, -1, -1, -1, -1, -1, -1> { public: typedef Result type(GMOCK_FIELD_(ArgumentTuple, k1), GMOCK_FIELD_(ArgumentTuple, k2), GMOCK_FIELD_(ArgumentTuple, k3)); typedef typename Function<type>::ArgumentTuple SelectedArgs; static SelectedArgs Select(const ArgumentTuple& args) { using ::std::tr1::get; return SelectedArgs(get<k1>(args), get<k2>(args), get<k3>(args)); } }; template <typename Result, typename ArgumentTuple, int k1, int k2, int k3, int k4> class SelectArgs<Result, ArgumentTuple, k1, k2, k3, k4, -1, -1, -1, -1, -1, -1> { public: typedef Result type(GMOCK_FIELD_(ArgumentTuple, k1), GMOCK_FIELD_(ArgumentTuple, k2), GMOCK_FIELD_(ArgumentTuple, k3), GMOCK_FIELD_(ArgumentTuple, k4)); typedef typename Function<type>::ArgumentTuple SelectedArgs; static SelectedArgs Select(const ArgumentTuple& args) { using ::std::tr1::get; return SelectedArgs(get<k1>(args), get<k2>(args), get<k3>(args), get<k4>(args)); } }; template <typename Result, typename ArgumentTuple, int k1, int k2, int k3, int k4, int k5> class SelectArgs<Result, ArgumentTuple, k1, k2, k3, k4, k5, -1, -1, -1, -1, -1> { public: typedef Result type(GMOCK_FIELD_(ArgumentTuple, k1), GMOCK_FIELD_(ArgumentTuple, k2), GMOCK_FIELD_(ArgumentTuple, k3), GMOCK_FIELD_(ArgumentTuple, k4), GMOCK_FIELD_(ArgumentTuple, k5)); typedef typename Function<type>::ArgumentTuple SelectedArgs; static SelectedArgs Select(const ArgumentTuple& args) { using ::std::tr1::get; return SelectedArgs(get<k1>(args), get<k2>(args), get<k3>(args), get<k4>(args), get<k5>(args)); } }; template <typename Result, typename ArgumentTuple, int k1, int k2, int k3, int k4, int k5, int k6> class SelectArgs<Result, ArgumentTuple, k1, k2, k3, k4, k5, k6, -1, -1, -1, -1> { public: typedef Result type(GMOCK_FIELD_(ArgumentTuple, k1), GMOCK_FIELD_(ArgumentTuple, k2), GMOCK_FIELD_(ArgumentTuple, k3), GMOCK_FIELD_(ArgumentTuple, k4), GMOCK_FIELD_(ArgumentTuple, k5), GMOCK_FIELD_(ArgumentTuple, k6)); typedef typename Function<type>::ArgumentTuple SelectedArgs; static SelectedArgs Select(const ArgumentTuple& args) { using ::std::tr1::get; return SelectedArgs(get<k1>(args), get<k2>(args), get<k3>(args), get<k4>(args), get<k5>(args), get<k6>(args)); } }; template <typename Result, typename ArgumentTuple, int k1, int k2, int k3, int k4, int k5, int k6, int k7> class SelectArgs<Result, ArgumentTuple, k1, k2, k3, k4, k5, k6, k7, -1, -1, -1> { public: typedef Result type(GMOCK_FIELD_(ArgumentTuple, k1), GMOCK_FIELD_(ArgumentTuple, k2), GMOCK_FIELD_(ArgumentTuple, k3), GMOCK_FIELD_(ArgumentTuple, k4), GMOCK_FIELD_(ArgumentTuple, k5), GMOCK_FIELD_(ArgumentTuple, k6), GMOCK_FIELD_(ArgumentTuple, k7)); typedef typename Function<type>::ArgumentTuple SelectedArgs; static SelectedArgs Select(const ArgumentTuple& args) { using ::std::tr1::get; return SelectedArgs(get<k1>(args), get<k2>(args), get<k3>(args), get<k4>(args), get<k5>(args), get<k6>(args), get<k7>(args)); } }; template <typename Result, typename ArgumentTuple, int k1, int k2, int k3, int k4, int k5, int k6, int k7, int k8> class SelectArgs<Result, ArgumentTuple, k1, k2, k3, k4, k5, k6, k7, k8, -1, -1> { public: typedef Result type(GMOCK_FIELD_(ArgumentTuple, k1), GMOCK_FIELD_(ArgumentTuple, k2), GMOCK_FIELD_(ArgumentTuple, k3), GMOCK_FIELD_(ArgumentTuple, k4), GMOCK_FIELD_(ArgumentTuple, k5), GMOCK_FIELD_(ArgumentTuple, k6), GMOCK_FIELD_(ArgumentTuple, k7), GMOCK_FIELD_(ArgumentTuple, k8)); typedef typename Function<type>::ArgumentTuple SelectedArgs; static SelectedArgs Select(const ArgumentTuple& args) { using ::std::tr1::get; return SelectedArgs(get<k1>(args), get<k2>(args), get<k3>(args), get<k4>(args), get<k5>(args), get<k6>(args), get<k7>(args), get<k8>(args)); } }; template <typename Result, typename ArgumentTuple, int k1, int k2, int k3, int k4, int k5, int k6, int k7, int k8, int k9> class SelectArgs<Result, ArgumentTuple, k1, k2, k3, k4, k5, k6, k7, k8, k9, -1> { public: typedef Result type(GMOCK_FIELD_(ArgumentTuple, k1), GMOCK_FIELD_(ArgumentTuple, k2), GMOCK_FIELD_(ArgumentTuple, k3), GMOCK_FIELD_(ArgumentTuple, k4), GMOCK_FIELD_(ArgumentTuple, k5), GMOCK_FIELD_(ArgumentTuple, k6), GMOCK_FIELD_(ArgumentTuple, k7), GMOCK_FIELD_(ArgumentTuple, k8), GMOCK_FIELD_(ArgumentTuple, k9)); typedef typename Function<type>::ArgumentTuple SelectedArgs; static SelectedArgs Select(const ArgumentTuple& args) { using ::std::tr1::get; return SelectedArgs(get<k1>(args), get<k2>(args), get<k3>(args), get<k4>(args), get<k5>(args), get<k6>(args), get<k7>(args), get<k8>(args), get<k9>(args)); } }; #undef GMOCK_FIELD_ // Implements the WithArgs action. template <typename InnerAction, int k1 = -1, int k2 = -1, int k3 = -1, int k4 = -1, int k5 = -1, int k6 = -1, int k7 = -1, int k8 = -1, int k9 = -1, int k10 = -1> class WithArgsAction { public: explicit WithArgsAction(const InnerAction& action) : action_(action) {} template <typename F> operator Action<F>() const { return MakeAction(new Impl<F>(action_)); } private: template <typename F> class Impl : public ActionInterface<F> { public: typedef typename Function<F>::Result Result; typedef typename Function<F>::ArgumentTuple ArgumentTuple; explicit Impl(const InnerAction& action) : action_(action) {} virtual Result Perform(const ArgumentTuple& args) { return action_.Perform(SelectArgs<Result, ArgumentTuple, k1, k2, k3, k4, k5, k6, k7, k8, k9, k10>::Select(args)); } private: typedef typename SelectArgs<Result, ArgumentTuple, k1, k2, k3, k4, k5, k6, k7, k8, k9, k10>::type InnerFunctionType; Action<InnerFunctionType> action_; }; const InnerAction action_; GTEST_DISALLOW_ASSIGN_(WithArgsAction); }; // A macro from the ACTION* family (defined later in this file) // defines an action that can be used in a mock function. Typically, // these actions only care about a subset of the arguments of the mock // function. For example, if such an action only uses the second // argument, it can be used in any mock function that takes >= 2 // arguments where the type of the second argument is compatible. // // Therefore, the action implementation must be prepared to take more // arguments than it needs. The ExcessiveArg type is used to // represent those excessive arguments. In order to keep the compiler // error messages tractable, we define it in the testing namespace // instead of testing::internal. However, this is an INTERNAL TYPE // and subject to change without notice, so a user MUST NOT USE THIS // TYPE DIRECTLY. struct ExcessiveArg {}; // A helper class needed for implementing the ACTION* macros. template <typename Result, class Impl> class ActionHelper { public: static Result Perform(Impl* impl, const ::std::tr1::tuple<>& args) { using ::std::tr1::get; return impl->template gmock_PerformImpl<>(args, ExcessiveArg(), ExcessiveArg(), ExcessiveArg(), ExcessiveArg(), ExcessiveArg(), ExcessiveArg(), ExcessiveArg(), ExcessiveArg(), ExcessiveArg(), ExcessiveArg()); } template <typename A0> static Result Perform(Impl* impl, const ::std::tr1::tuple<A0>& args) { using ::std::tr1::get; return impl->template gmock_PerformImpl<A0>(args, get<0>(args), ExcessiveArg(), ExcessiveArg(), ExcessiveArg(), ExcessiveArg(), ExcessiveArg(), ExcessiveArg(), ExcessiveArg(), ExcessiveArg(), ExcessiveArg()); } template <typename A0, typename A1> static Result Perform(Impl* impl, const ::std::tr1::tuple<A0, A1>& args) { using ::std::tr1::get; return impl->template gmock_PerformImpl<A0, A1>(args, get<0>(args), get<1>(args), ExcessiveArg(), ExcessiveArg(), ExcessiveArg(), ExcessiveArg(), ExcessiveArg(), ExcessiveArg(), ExcessiveArg(), ExcessiveArg()); } template <typename A0, typename A1, typename A2> static Result Perform(Impl* impl, const ::std::tr1::tuple<A0, A1, A2>& args) { using ::std::tr1::get; return impl->template gmock_PerformImpl<A0, A1, A2>(args, get<0>(args), get<1>(args), get<2>(args), ExcessiveArg(), ExcessiveArg(), ExcessiveArg(), ExcessiveArg(), ExcessiveArg(), ExcessiveArg(), ExcessiveArg()); } template <typename A0, typename A1, typename A2, typename A3> static Result Perform(Impl* impl, const ::std::tr1::tuple<A0, A1, A2, A3>& args) { using ::std::tr1::get; return impl->template gmock_PerformImpl<A0, A1, A2, A3>(args, get<0>(args), get<1>(args), get<2>(args), get<3>(args), ExcessiveArg(), ExcessiveArg(), ExcessiveArg(), ExcessiveArg(), ExcessiveArg(), ExcessiveArg()); } template <typename A0, typename A1, typename A2, typename A3, typename A4> static Result Perform(Impl* impl, const ::std::tr1::tuple<A0, A1, A2, A3, A4>& args) { using ::std::tr1::get; return impl->template gmock_PerformImpl<A0, A1, A2, A3, A4>(args, get<0>(args), get<1>(args), get<2>(args), get<3>(args), get<4>(args), ExcessiveArg(), ExcessiveArg(), ExcessiveArg(), ExcessiveArg(), ExcessiveArg()); } template <typename A0, typename A1, typename A2, typename A3, typename A4, typename A5> static Result Perform(Impl* impl, const ::std::tr1::tuple<A0, A1, A2, A3, A4, A5>& args) { using ::std::tr1::get; return impl->template gmock_PerformImpl<A0, A1, A2, A3, A4, A5>(args, get<0>(args), get<1>(args), get<2>(args), get<3>(args), get<4>(args), get<5>(args), ExcessiveArg(), ExcessiveArg(), ExcessiveArg(), ExcessiveArg()); } template <typename A0, typename A1, typename A2, typename A3, typename A4, typename A5, typename A6> static Result Perform(Impl* impl, const ::std::tr1::tuple<A0, A1, A2, A3, A4, A5, A6>& args) { using ::std::tr1::get; return impl->template gmock_PerformImpl<A0, A1, A2, A3, A4, A5, A6>(args, get<0>(args), get<1>(args), get<2>(args), get<3>(args), get<4>(args), get<5>(args), get<6>(args), ExcessiveArg(), ExcessiveArg(), ExcessiveArg()); } template <typename A0, typename A1, typename A2, typename A3, typename A4, typename A5, typename A6, typename A7> static Result Perform(Impl* impl, const ::std::tr1::tuple<A0, A1, A2, A3, A4, A5, A6, A7>& args) { using ::std::tr1::get; return impl->template gmock_PerformImpl<A0, A1, A2, A3, A4, A5, A6, A7>(args, get<0>(args), get<1>(args), get<2>(args), get<3>(args), get<4>(args), get<5>(args), get<6>(args), get<7>(args), ExcessiveArg(), ExcessiveArg()); } template <typename A0, typename A1, typename A2, typename A3, typename A4, typename A5, typename A6, typename A7, typename A8> static Result Perform(Impl* impl, const ::std::tr1::tuple<A0, A1, A2, A3, A4, A5, A6, A7, A8>& args) { using ::std::tr1::get; return impl->template gmock_PerformImpl<A0, A1, A2, A3, A4, A5, A6, A7, A8>(args, get<0>(args), get<1>(args), get<2>(args), get<3>(args), get<4>(args), get<5>(args), get<6>(args), get<7>(args), get<8>(args), ExcessiveArg()); } template <typename A0, typename A1, typename A2, typename A3, typename A4, typename A5, typename A6, typename A7, typename A8, typename A9> static Result Perform(Impl* impl, const ::std::tr1::tuple<A0, A1, A2, A3, A4, A5, A6, A7, A8, A9>& args) { using ::std::tr1::get; return impl->template gmock_PerformImpl<A0, A1, A2, A3, A4, A5, A6, A7, A8, A9>(args, get<0>(args), get<1>(args), get<2>(args), get<3>(args), get<4>(args), get<5>(args), get<6>(args), get<7>(args), get<8>(args), get<9>(args)); } }; } // namespace internal // Various overloads for Invoke(). // WithArgs<N1, N2, ..., Nk>(an_action) creates an action that passes // the selected arguments of the mock function to an_action and // performs it. It serves as an adaptor between actions with // different argument lists. C++ doesn't support default arguments for // function templates, so we have to overload it. template <int k1, typename InnerAction> inline internal::WithArgsAction<InnerAction, k1> WithArgs(const InnerAction& action) { return internal::WithArgsAction<InnerAction, k1>(action); } template <int k1, int k2, typename InnerAction> inline internal::WithArgsAction<InnerAction, k1, k2> WithArgs(const InnerAction& action) { return internal::WithArgsAction<InnerAction, k1, k2>(action); } template <int k1, int k2, int k3, typename InnerAction> inline internal::WithArgsAction<InnerAction, k1, k2, k3> WithArgs(const InnerAction& action) { return internal::WithArgsAction<InnerAction, k1, k2, k3>(action); } template <int k1, int k2, int k3, int k4, typename InnerAction> inline internal::WithArgsAction<InnerAction, k1, k2, k3, k4> WithArgs(const InnerAction& action) { return internal::WithArgsAction<InnerAction, k1, k2, k3, k4>(action); } template <int k1, int k2, int k3, int k4, int k5, typename InnerAction> inline internal::WithArgsAction<InnerAction, k1, k2, k3, k4, k5> WithArgs(const InnerAction& action) { return internal::WithArgsAction<InnerAction, k1, k2, k3, k4, k5>(action); } template <int k1, int k2, int k3, int k4, int k5, int k6, typename InnerAction> inline internal::WithArgsAction<InnerAction, k1, k2, k3, k4, k5, k6> WithArgs(const InnerAction& action) { return internal::WithArgsAction<InnerAction, k1, k2, k3, k4, k5, k6>(action); } template <int k1, int k2, int k3, int k4, int k5, int k6, int k7, typename InnerAction> inline internal::WithArgsAction<InnerAction, k1, k2, k3, k4, k5, k6, k7> WithArgs(const InnerAction& action) { return internal::WithArgsAction<InnerAction, k1, k2, k3, k4, k5, k6, k7>(action); } template <int k1, int k2, int k3, int k4, int k5, int k6, int k7, int k8, typename InnerAction> inline internal::WithArgsAction<InnerAction, k1, k2, k3, k4, k5, k6, k7, k8> WithArgs(const InnerAction& action) { return internal::WithArgsAction<InnerAction, k1, k2, k3, k4, k5, k6, k7, k8>(action); } template <int k1, int k2, int k3, int k4, int k5, int k6, int k7, int k8, int k9, typename InnerAction> inline internal::WithArgsAction<InnerAction, k1, k2, k3, k4, k5, k6, k7, k8, k9> WithArgs(const InnerAction& action) { return internal::WithArgsAction<InnerAction, k1, k2, k3, k4, k5, k6, k7, k8, k9>(action); } template <int k1, int k2, int k3, int k4, int k5, int k6, int k7, int k8, int k9, int k10, typename InnerAction> inline internal::WithArgsAction<InnerAction, k1, k2, k3, k4, k5, k6, k7, k8, k9, k10> WithArgs(const InnerAction& action) { return internal::WithArgsAction<InnerAction, k1, k2, k3, k4, k5, k6, k7, k8, k9, k10>(action); } // Creates an action that does actions a1, a2, ..., sequentially in // each invocation. template <typename Action1, typename Action2> inline internal::DoBothAction<Action1, Action2> DoAll(Action1 a1, Action2 a2) { return internal::DoBothAction<Action1, Action2>(a1, a2); } template <typename Action1, typename Action2, typename Action3> inline internal::DoBothAction<Action1, internal::DoBothAction<Action2, Action3> > DoAll(Action1 a1, Action2 a2, Action3 a3) { return DoAll(a1, DoAll(a2, a3)); } template <typename Action1, typename Action2, typename Action3, typename Action4> inline internal::DoBothAction<Action1, internal::DoBothAction<Action2, internal::DoBothAction<Action3, Action4> > > DoAll(Action1 a1, Action2 a2, Action3 a3, Action4 a4) { return DoAll(a1, DoAll(a2, a3, a4)); } template <typename Action1, typename Action2, typename Action3, typename Action4, typename Action5> inline internal::DoBothAction<Action1, internal::DoBothAction<Action2, internal::DoBothAction<Action3, internal::DoBothAction<Action4, Action5> > > > DoAll(Action1 a1, Action2 a2, Action3 a3, Action4 a4, Action5 a5) { return DoAll(a1, DoAll(a2, a3, a4, a5)); } template <typename Action1, typename Action2, typename Action3, typename Action4, typename Action5, typename Action6> inline internal::DoBothAction<Action1, internal::DoBothAction<Action2, internal::DoBothAction<Action3, internal::DoBothAction<Action4, internal::DoBothAction<Action5, Action6> > > > > DoAll(Action1 a1, Action2 a2, Action3 a3, Action4 a4, Action5 a5, Action6 a6) { return DoAll(a1, DoAll(a2, a3, a4, a5, a6)); } template <typename Action1, typename Action2, typename Action3, typename Action4, typename Action5, typename Action6, typename Action7> inline internal::DoBothAction<Action1, internal::DoBothAction<Action2, internal::DoBothAction<Action3, internal::DoBothAction<Action4, internal::DoBothAction<Action5, internal::DoBothAction<Action6, Action7> > > > > > DoAll(Action1 a1, Action2 a2, Action3 a3, Action4 a4, Action5 a5, Action6 a6, Action7 a7) { return DoAll(a1, DoAll(a2, a3, a4, a5, a6, a7)); } template <typename Action1, typename Action2, typename Action3, typename Action4, typename Action5, typename Action6, typename Action7, typename Action8> inline internal::DoBothAction<Action1, internal::DoBothAction<Action2, internal::DoBothAction<Action3, internal::DoBothAction<Action4, internal::DoBothAction<Action5, internal::DoBothAction<Action6, internal::DoBothAction<Action7, Action8> > > > > > > DoAll(Action1 a1, Action2 a2, Action3 a3, Action4 a4, Action5 a5, Action6 a6, Action7 a7, Action8 a8) { return DoAll(a1, DoAll(a2, a3, a4, a5, a6, a7, a8)); } template <typename Action1, typename Action2, typename Action3, typename Action4, typename Action5, typename Action6, typename Action7, typename Action8, typename Action9> inline internal::DoBothAction<Action1, internal::DoBothAction<Action2, internal::DoBothAction<Action3, internal::DoBothAction<Action4, internal::DoBothAction<Action5, internal::DoBothAction<Action6, internal::DoBothAction<Action7, internal::DoBothAction<Action8, Action9> > > > > > > > DoAll(Action1 a1, Action2 a2, Action3 a3, Action4 a4, Action5 a5, Action6 a6, Action7 a7, Action8 a8, Action9 a9) { return DoAll(a1, DoAll(a2, a3, a4, a5, a6, a7, a8, a9)); } template <typename Action1, typename Action2, typename Action3, typename Action4, typename Action5, typename Action6, typename Action7, typename Action8, typename Action9, typename Action10> inline internal::DoBothAction<Action1, internal::DoBothAction<Action2, internal::DoBothAction<Action3, internal::DoBothAction<Action4, internal::DoBothAction<Action5, internal::DoBothAction<Action6, internal::DoBothAction<Action7, internal::DoBothAction<Action8, internal::DoBothAction<Action9, Action10> > > > > > > > > DoAll(Action1 a1, Action2 a2, Action3 a3, Action4 a4, Action5 a5, Action6 a6, Action7 a7, Action8 a8, Action9 a9, Action10 a10) { return DoAll(a1, DoAll(a2, a3, a4, a5, a6, a7, a8, a9, a10)); } } // namespace testing // The ACTION* family of macros can be used in a namespace scope to // define custom actions easily. The syntax: // // ACTION(name) { statements; } // // will define an action with the given name that executes the // statements. The value returned by the statements will be used as // the return value of the action. Inside the statements, you can // refer to the K-th (0-based) argument of the mock function by // 'argK', and refer to its type by 'argK_type'. For example: // // ACTION(IncrementArg1) { // arg1_type temp = arg1; // return ++(*temp); // } // // allows you to write // // ...WillOnce(IncrementArg1()); // // You can also refer to the entire argument tuple and its type by // 'args' and 'args_type', and refer to the mock function type and its // return type by 'function_type' and 'return_type'. // // Note that you don't need to specify the types of the mock function // arguments. However rest assured that your code is still type-safe: // you'll get a compiler error if *arg1 doesn't support the ++ // operator, or if the type of ++(*arg1) isn't compatible with the // mock function's return type, for example. // // Sometimes you'll want to parameterize the action. For that you can use // another macro: // // ACTION_P(name, param_name) { statements; } // // For example: // // ACTION_P(Add, n) { return arg0 + n; } // // will allow you to write: // // ...WillOnce(Add(5)); // // Note that you don't need to provide the type of the parameter // either. If you need to reference the type of a parameter named // 'foo', you can write 'foo_type'. For example, in the body of // ACTION_P(Add, n) above, you can write 'n_type' to refer to the type // of 'n'. // // We also provide ACTION_P2, ACTION_P3, ..., up to ACTION_P10 to support // multi-parameter actions. // // For the purpose of typing, you can view // // ACTION_Pk(Foo, p1, ..., pk) { ... } // // as shorthand for // // template <typename p1_type, ..., typename pk_type> // FooActionPk<p1_type, ..., pk_type> Foo(p1_type p1, ..., pk_type pk) { ... } // // In particular, you can provide the template type arguments // explicitly when invoking Foo(), as in Foo<long, bool>(5, false); // although usually you can rely on the compiler to infer the types // for you automatically. You can assign the result of expression // Foo(p1, ..., pk) to a variable of type FooActionPk<p1_type, ..., // pk_type>. This can be useful when composing actions. // // You can also overload actions with different numbers of parameters: // // ACTION_P(Plus, a) { ... } // ACTION_P2(Plus, a, b) { ... } // // While it's tempting to always use the ACTION* macros when defining // a new action, you should also consider implementing ActionInterface // or using MakePolymorphicAction() instead, especially if you need to // use the action a lot. While these approaches require more work, // they give you more control on the types of the mock function // arguments and the action parameters, which in general leads to // better compiler error messages that pay off in the long run. They // also allow overloading actions based on parameter types (as opposed // to just based on the number of parameters). // // CAVEAT: // // ACTION*() can only be used in a namespace scope. The reason is // that C++ doesn't yet allow function-local types to be used to // instantiate templates. The up-coming C++0x standard will fix this. // Once that's done, we'll consider supporting using ACTION*() inside // a function. // // MORE INFORMATION: // // To learn more about using these macros, please search for 'ACTION' // on http://code.google.com/p/googlemock/wiki/CookBook. // An internal macro needed for implementing ACTION*(). #define GMOCK_ACTION_ARG_TYPES_AND_NAMES_UNUSED_\ const args_type& args GTEST_ATTRIBUTE_UNUSED_,\ arg0_type arg0 GTEST_ATTRIBUTE_UNUSED_,\ arg1_type arg1 GTEST_ATTRIBUTE_UNUSED_,\ arg2_type arg2 GTEST_ATTRIBUTE_UNUSED_,\ arg3_type arg3 GTEST_ATTRIBUTE_UNUSED_,\ arg4_type arg4 GTEST_ATTRIBUTE_UNUSED_,\ arg5_type arg5 GTEST_ATTRIBUTE_UNUSED_,\ arg6_type arg6 GTEST_ATTRIBUTE_UNUSED_,\ arg7_type arg7 GTEST_ATTRIBUTE_UNUSED_,\ arg8_type arg8 GTEST_ATTRIBUTE_UNUSED_,\ arg9_type arg9 GTEST_ATTRIBUTE_UNUSED_ // Sometimes you want to give an action explicit template parameters // that cannot be inferred from its value parameters. ACTION() and // ACTION_P*() don't support that. ACTION_TEMPLATE() remedies that // and can be viewed as an extension to ACTION() and ACTION_P*(). // // The syntax: // // ACTION_TEMPLATE(ActionName, // HAS_m_TEMPLATE_PARAMS(kind1, name1, ..., kind_m, name_m), // AND_n_VALUE_PARAMS(p1, ..., p_n)) { statements; } // // defines an action template that takes m explicit template // parameters and n value parameters. name_i is the name of the i-th // template parameter, and kind_i specifies whether it's a typename, // an integral constant, or a template. p_i is the name of the i-th // value parameter. // // Example: // // // DuplicateArg<k, T>(output) converts the k-th argument of the mock // // function to type T and copies it to *output. // ACTION_TEMPLATE(DuplicateArg, // HAS_2_TEMPLATE_PARAMS(int, k, typename, T), // AND_1_VALUE_PARAMS(output)) { // *output = T(std::tr1::get<k>(args)); // } // ... // int n; // EXPECT_CALL(mock, Foo(_, _)) // .WillOnce(DuplicateArg<1, unsigned char>(&n)); // // To create an instance of an action template, write: // // ActionName<t1, ..., t_m>(v1, ..., v_n) // // where the ts are the template arguments and the vs are the value // arguments. The value argument types are inferred by the compiler. // If you want to explicitly specify the value argument types, you can // provide additional template arguments: // // ActionName<t1, ..., t_m, u1, ..., u_k>(v1, ..., v_n) // // where u_i is the desired type of v_i. // // ACTION_TEMPLATE and ACTION/ACTION_P* can be overloaded on the // number of value parameters, but not on the number of template // parameters. Without the restriction, the meaning of the following // is unclear: // // OverloadedAction<int, bool>(x); // // Are we using a single-template-parameter action where 'bool' refers // to the type of x, or are we using a two-template-parameter action // where the compiler is asked to infer the type of x? // // Implementation notes: // // GMOCK_INTERNAL_*_HAS_m_TEMPLATE_PARAMS and // GMOCK_INTERNAL_*_AND_n_VALUE_PARAMS are internal macros for // implementing ACTION_TEMPLATE. The main trick we use is to create // new macro invocations when expanding a macro. For example, we have // // #define ACTION_TEMPLATE(name, template_params, value_params) // ... GMOCK_INTERNAL_DECL_##template_params ... // // which causes ACTION_TEMPLATE(..., HAS_1_TEMPLATE_PARAMS(typename, T), ...) // to expand to // // ... GMOCK_INTERNAL_DECL_HAS_1_TEMPLATE_PARAMS(typename, T) ... // // Since GMOCK_INTERNAL_DECL_HAS_1_TEMPLATE_PARAMS is a macro, the // preprocessor will continue to expand it to // // ... typename T ... // // This technique conforms to the C++ standard and is portable. It // allows us to implement action templates using O(N) code, where N is // the maximum number of template/value parameters supported. Without // using it, we'd have to devote O(N^2) amount of code to implement all // combinations of m and n. // Declares the template parameters. #define GMOCK_INTERNAL_DECL_HAS_1_TEMPLATE_PARAMS(kind0, name0) kind0 name0 #define GMOCK_INTERNAL_DECL_HAS_2_TEMPLATE_PARAMS(kind0, name0, kind1, \ name1) kind0 name0, kind1 name1 #define GMOCK_INTERNAL_DECL_HAS_3_TEMPLATE_PARAMS(kind0, name0, kind1, name1, \ kind2, name2) kind0 name0, kind1 name1, kind2 name2 #define GMOCK_INTERNAL_DECL_HAS_4_TEMPLATE_PARAMS(kind0, name0, kind1, name1, \ kind2, name2, kind3, name3) kind0 name0, kind1 name1, kind2 name2, \ kind3 name3 #define GMOCK_INTERNAL_DECL_HAS_5_TEMPLATE_PARAMS(kind0, name0, kind1, name1, \ kind2, name2, kind3, name3, kind4, name4) kind0 name0, kind1 name1, \ kind2 name2, kind3 name3, kind4 name4 #define GMOCK_INTERNAL_DECL_HAS_6_TEMPLATE_PARAMS(kind0, name0, kind1, name1, \ kind2, name2, kind3, name3, kind4, name4, kind5, name5) kind0 name0, \ kind1 name1, kind2 name2, kind3 name3, kind4 name4, kind5 name5 #define GMOCK_INTERNAL_DECL_HAS_7_TEMPLATE_PARAMS(kind0, name0, kind1, name1, \ kind2, name2, kind3, name3, kind4, name4, kind5, name5, kind6, \ name6) kind0 name0, kind1 name1, kind2 name2, kind3 name3, kind4 name4, \ kind5 name5, kind6 name6 #define GMOCK_INTERNAL_DECL_HAS_8_TEMPLATE_PARAMS(kind0, name0, kind1, name1, \ kind2, name2, kind3, name3, kind4, name4, kind5, name5, kind6, name6, \ kind7, name7) kind0 name0, kind1 name1, kind2 name2, kind3 name3, \ kind4 name4, kind5 name5, kind6 name6, kind7 name7 #define GMOCK_INTERNAL_DECL_HAS_9_TEMPLATE_PARAMS(kind0, name0, kind1, name1, \ kind2, name2, kind3, name3, kind4, name4, kind5, name5, kind6, name6, \ kind7, name7, kind8, name8) kind0 name0, kind1 name1, kind2 name2, \ kind3 name3, kind4 name4, kind5 name5, kind6 name6, kind7 name7, \ kind8 name8 #define GMOCK_INTERNAL_DECL_HAS_10_TEMPLATE_PARAMS(kind0, name0, kind1, \ name1, kind2, name2, kind3, name3, kind4, name4, kind5, name5, kind6, \ name6, kind7, name7, kind8, name8, kind9, name9) kind0 name0, \ kind1 name1, kind2 name2, kind3 name3, kind4 name4, kind5 name5, \ kind6 name6, kind7 name7, kind8 name8, kind9 name9 // Lists the template parameters. #define GMOCK_INTERNAL_LIST_HAS_1_TEMPLATE_PARAMS(kind0, name0) name0 #define GMOCK_INTERNAL_LIST_HAS_2_TEMPLATE_PARAMS(kind0, name0, kind1, \ name1) name0, name1 #define GMOCK_INTERNAL_LIST_HAS_3_TEMPLATE_PARAMS(kind0, name0, kind1, name1, \ kind2, name2) name0, name1, name2 #define GMOCK_INTERNAL_LIST_HAS_4_TEMPLATE_PARAMS(kind0, name0, kind1, name1, \ kind2, name2, kind3, name3) name0, name1, name2, name3 #define GMOCK_INTERNAL_LIST_HAS_5_TEMPLATE_PARAMS(kind0, name0, kind1, name1, \ kind2, name2, kind3, name3, kind4, name4) name0, name1, name2, name3, \ name4 #define GMOCK_INTERNAL_LIST_HAS_6_TEMPLATE_PARAMS(kind0, name0, kind1, name1, \ kind2, name2, kind3, name3, kind4, name4, kind5, name5) name0, name1, \ name2, name3, name4, name5 #define GMOCK_INTERNAL_LIST_HAS_7_TEMPLATE_PARAMS(kind0, name0, kind1, name1, \ kind2, name2, kind3, name3, kind4, name4, kind5, name5, kind6, \ name6) name0, name1, name2, name3, name4, name5, name6 #define GMOCK_INTERNAL_LIST_HAS_8_TEMPLATE_PARAMS(kind0, name0, kind1, name1, \ kind2, name2, kind3, name3, kind4, name4, kind5, name5, kind6, name6, \ kind7, name7) name0, name1, name2, name3, name4, name5, name6, name7 #define GMOCK_INTERNAL_LIST_HAS_9_TEMPLATE_PARAMS(kind0, name0, kind1, name1, \ kind2, name2, kind3, name3, kind4, name4, kind5, name5, kind6, name6, \ kind7, name7, kind8, name8) name0, name1, name2, name3, name4, name5, \ name6, name7, name8 #define GMOCK_INTERNAL_LIST_HAS_10_TEMPLATE_PARAMS(kind0, name0, kind1, \ name1, kind2, name2, kind3, name3, kind4, name4, kind5, name5, kind6, \ name6, kind7, name7, kind8, name8, kind9, name9) name0, name1, name2, \ name3, name4, name5, name6, name7, name8, name9 // Declares the types of value parameters. #define GMOCK_INTERNAL_DECL_TYPE_AND_0_VALUE_PARAMS() #define GMOCK_INTERNAL_DECL_TYPE_AND_1_VALUE_PARAMS(p0) , typename p0##_type #define GMOCK_INTERNAL_DECL_TYPE_AND_2_VALUE_PARAMS(p0, p1) , \ typename p0##_type, typename p1##_type #define GMOCK_INTERNAL_DECL_TYPE_AND_3_VALUE_PARAMS(p0, p1, p2) , \ typename p0##_type, typename p1##_type, typename p2##_type #define GMOCK_INTERNAL_DECL_TYPE_AND_4_VALUE_PARAMS(p0, p1, p2, p3) , \ typename p0##_type, typename p1##_type, typename p2##_type, \ typename p3##_type #define GMOCK_INTERNAL_DECL_TYPE_AND_5_VALUE_PARAMS(p0, p1, p2, p3, p4) , \ typename p0##_type, typename p1##_type, typename p2##_type, \ typename p3##_type, typename p4##_type #define GMOCK_INTERNAL_DECL_TYPE_AND_6_VALUE_PARAMS(p0, p1, p2, p3, p4, p5) , \ typename p0##_type, typename p1##_type, typename p2##_type, \ typename p3##_type, typename p4##_type, typename p5##_type #define GMOCK_INTERNAL_DECL_TYPE_AND_7_VALUE_PARAMS(p0, p1, p2, p3, p4, p5, \ p6) , typename p0##_type, typename p1##_type, typename p2##_type, \ typename p3##_type, typename p4##_type, typename p5##_type, \ typename p6##_type #define GMOCK_INTERNAL_DECL_TYPE_AND_8_VALUE_PARAMS(p0, p1, p2, p3, p4, p5, \ p6, p7) , typename p0##_type, typename p1##_type, typename p2##_type, \ typename p3##_type, typename p4##_type, typename p5##_type, \ typename p6##_type, typename p7##_type #define GMOCK_INTERNAL_DECL_TYPE_AND_9_VALUE_PARAMS(p0, p1, p2, p3, p4, p5, \ p6, p7, p8) , typename p0##_type, typename p1##_type, typename p2##_type, \ typename p3##_type, typename p4##_type, typename p5##_type, \ typename p6##_type, typename p7##_type, typename p8##_type #define GMOCK_INTERNAL_DECL_TYPE_AND_10_VALUE_PARAMS(p0, p1, p2, p3, p4, p5, \ p6, p7, p8, p9) , typename p0##_type, typename p1##_type, \ typename p2##_type, typename p3##_type, typename p4##_type, \ typename p5##_type, typename p6##_type, typename p7##_type, \ typename p8##_type, typename p9##_type // Initializes the value parameters. #define GMOCK_INTERNAL_INIT_AND_0_VALUE_PARAMS()\ () #define GMOCK_INTERNAL_INIT_AND_1_VALUE_PARAMS(p0)\ (p0##_type gmock_p0) : p0(gmock_p0) #define GMOCK_INTERNAL_INIT_AND_2_VALUE_PARAMS(p0, p1)\ (p0##_type gmock_p0, p1##_type gmock_p1) : p0(gmock_p0), p1(gmock_p1) #define GMOCK_INTERNAL_INIT_AND_3_VALUE_PARAMS(p0, p1, p2)\ (p0##_type gmock_p0, p1##_type gmock_p1, \ p2##_type gmock_p2) : p0(gmock_p0), p1(gmock_p1), p2(gmock_p2) #define GMOCK_INTERNAL_INIT_AND_4_VALUE_PARAMS(p0, p1, p2, p3)\ (p0##_type gmock_p0, p1##_type gmock_p1, p2##_type gmock_p2, \ p3##_type gmock_p3) : p0(gmock_p0), p1(gmock_p1), p2(gmock_p2), \ p3(gmock_p3) #define GMOCK_INTERNAL_INIT_AND_5_VALUE_PARAMS(p0, p1, p2, p3, p4)\ (p0##_type gmock_p0, p1##_type gmock_p1, p2##_type gmock_p2, \ p3##_type gmock_p3, p4##_type gmock_p4) : p0(gmock_p0), p1(gmock_p1), \ p2(gmock_p2), p3(gmock_p3), p4(gmock_p4) #define GMOCK_INTERNAL_INIT_AND_6_VALUE_PARAMS(p0, p1, p2, p3, p4, p5)\ (p0##_type gmock_p0, p1##_type gmock_p1, p2##_type gmock_p2, \ p3##_type gmock_p3, p4##_type gmock_p4, \ p5##_type gmock_p5) : p0(gmock_p0), p1(gmock_p1), p2(gmock_p2), \ p3(gmock_p3), p4(gmock_p4), p5(gmock_p5) #define GMOCK_INTERNAL_INIT_AND_7_VALUE_PARAMS(p0, p1, p2, p3, p4, p5, p6)\ (p0##_type gmock_p0, p1##_type gmock_p1, p2##_type gmock_p2, \ p3##_type gmock_p3, p4##_type gmock_p4, p5##_type gmock_p5, \ p6##_type gmock_p6) : p0(gmock_p0), p1(gmock_p1), p2(gmock_p2), \ p3(gmock_p3), p4(gmock_p4), p5(gmock_p5), p6(gmock_p6) #define GMOCK_INTERNAL_INIT_AND_8_VALUE_PARAMS(p0, p1, p2, p3, p4, p5, p6, p7)\ (p0##_type gmock_p0, p1##_type gmock_p1, p2##_type gmock_p2, \ p3##_type gmock_p3, p4##_type gmock_p4, p5##_type gmock_p5, \ p6##_type gmock_p6, p7##_type gmock_p7) : p0(gmock_p0), p1(gmock_p1), \ p2(gmock_p2), p3(gmock_p3), p4(gmock_p4), p5(gmock_p5), p6(gmock_p6), \ p7(gmock_p7) #define GMOCK_INTERNAL_INIT_AND_9_VALUE_PARAMS(p0, p1, p2, p3, p4, p5, p6, \ p7, p8)\ (p0##_type gmock_p0, p1##_type gmock_p1, p2##_type gmock_p2, \ p3##_type gmock_p3, p4##_type gmock_p4, p5##_type gmock_p5, \ p6##_type gmock_p6, p7##_type gmock_p7, \ p8##_type gmock_p8) : p0(gmock_p0), p1(gmock_p1), p2(gmock_p2), \ p3(gmock_p3), p4(gmock_p4), p5(gmock_p5), p6(gmock_p6), p7(gmock_p7), \ p8(gmock_p8) #define GMOCK_INTERNAL_INIT_AND_10_VALUE_PARAMS(p0, p1, p2, p3, p4, p5, p6, \ p7, p8, p9)\ (p0##_type gmock_p0, p1##_type gmock_p1, p2##_type gmock_p2, \ p3##_type gmock_p3, p4##_type gmock_p4, p5##_type gmock_p5, \ p6##_type gmock_p6, p7##_type gmock_p7, p8##_type gmock_p8, \ p9##_type gmock_p9) : p0(gmock_p0), p1(gmock_p1), p2(gmock_p2), \ p3(gmock_p3), p4(gmock_p4), p5(gmock_p5), p6(gmock_p6), p7(gmock_p7), \ p8(gmock_p8), p9(gmock_p9) // Declares the fields for storing the value parameters. #define GMOCK_INTERNAL_DEFN_AND_0_VALUE_PARAMS() #define GMOCK_INTERNAL_DEFN_AND_1_VALUE_PARAMS(p0) p0##_type p0; #define GMOCK_INTERNAL_DEFN_AND_2_VALUE_PARAMS(p0, p1) p0##_type p0; \ p1##_type p1; #define GMOCK_INTERNAL_DEFN_AND_3_VALUE_PARAMS(p0, p1, p2) p0##_type p0; \ p1##_type p1; p2##_type p2; #define GMOCK_INTERNAL_DEFN_AND_4_VALUE_PARAMS(p0, p1, p2, p3) p0##_type p0; \ p1##_type p1; p2##_type p2; p3##_type p3; #define GMOCK_INTERNAL_DEFN_AND_5_VALUE_PARAMS(p0, p1, p2, p3, \ p4) p0##_type p0; p1##_type p1; p2##_type p2; p3##_type p3; p4##_type p4; #define GMOCK_INTERNAL_DEFN_AND_6_VALUE_PARAMS(p0, p1, p2, p3, p4, \ p5) p0##_type p0; p1##_type p1; p2##_type p2; p3##_type p3; p4##_type p4; \ p5##_type p5; #define GMOCK_INTERNAL_DEFN_AND_7_VALUE_PARAMS(p0, p1, p2, p3, p4, p5, \ p6) p0##_type p0; p1##_type p1; p2##_type p2; p3##_type p3; p4##_type p4; \ p5##_type p5; p6##_type p6; #define GMOCK_INTERNAL_DEFN_AND_8_VALUE_PARAMS(p0, p1, p2, p3, p4, p5, p6, \ p7) p0##_type p0; p1##_type p1; p2##_type p2; p3##_type p3; p4##_type p4; \ p5##_type p5; p6##_type p6; p7##_type p7; #define GMOCK_INTERNAL_DEFN_AND_9_VALUE_PARAMS(p0, p1, p2, p3, p4, p5, p6, \ p7, p8) p0##_type p0; p1##_type p1; p2##_type p2; p3##_type p3; \ p4##_type p4; p5##_type p5; p6##_type p6; p7##_type p7; p8##_type p8; #define GMOCK_INTERNAL_DEFN_AND_10_VALUE_PARAMS(p0, p1, p2, p3, p4, p5, p6, \ p7, p8, p9) p0##_type p0; p1##_type p1; p2##_type p2; p3##_type p3; \ p4##_type p4; p5##_type p5; p6##_type p6; p7##_type p7; p8##_type p8; \ p9##_type p9; // Lists the value parameters. #define GMOCK_INTERNAL_LIST_AND_0_VALUE_PARAMS() #define GMOCK_INTERNAL_LIST_AND_1_VALUE_PARAMS(p0) p0 #define GMOCK_INTERNAL_LIST_AND_2_VALUE_PARAMS(p0, p1) p0, p1 #define GMOCK_INTERNAL_LIST_AND_3_VALUE_PARAMS(p0, p1, p2) p0, p1, p2 #define GMOCK_INTERNAL_LIST_AND_4_VALUE_PARAMS(p0, p1, p2, p3) p0, p1, p2, p3 #define GMOCK_INTERNAL_LIST_AND_5_VALUE_PARAMS(p0, p1, p2, p3, p4) p0, p1, \ p2, p3, p4 #define GMOCK_INTERNAL_LIST_AND_6_VALUE_PARAMS(p0, p1, p2, p3, p4, p5) p0, \ p1, p2, p3, p4, p5 #define GMOCK_INTERNAL_LIST_AND_7_VALUE_PARAMS(p0, p1, p2, p3, p4, p5, \ p6) p0, p1, p2, p3, p4, p5, p6 #define GMOCK_INTERNAL_LIST_AND_8_VALUE_PARAMS(p0, p1, p2, p3, p4, p5, p6, \ p7) p0, p1, p2, p3, p4, p5, p6, p7 #define GMOCK_INTERNAL_LIST_AND_9_VALUE_PARAMS(p0, p1, p2, p3, p4, p5, p6, \ p7, p8) p0, p1, p2, p3, p4, p5, p6, p7, p8 #define GMOCK_INTERNAL_LIST_AND_10_VALUE_PARAMS(p0, p1, p2, p3, p4, p5, p6, \ p7, p8, p9) p0, p1, p2, p3, p4, p5, p6, p7, p8, p9 // Lists the value parameter types. #define GMOCK_INTERNAL_LIST_TYPE_AND_0_VALUE_PARAMS() #define GMOCK_INTERNAL_LIST_TYPE_AND_1_VALUE_PARAMS(p0) , p0##_type #define GMOCK_INTERNAL_LIST_TYPE_AND_2_VALUE_PARAMS(p0, p1) , p0##_type, \ p1##_type #define GMOCK_INTERNAL_LIST_TYPE_AND_3_VALUE_PARAMS(p0, p1, p2) , p0##_type, \ p1##_type, p2##_type #define GMOCK_INTERNAL_LIST_TYPE_AND_4_VALUE_PARAMS(p0, p1, p2, p3) , \ p0##_type, p1##_type, p2##_type, p3##_type #define GMOCK_INTERNAL_LIST_TYPE_AND_5_VALUE_PARAMS(p0, p1, p2, p3, p4) , \ p0##_type, p1##_type, p2##_type, p3##_type, p4##_type #define GMOCK_INTERNAL_LIST_TYPE_AND_6_VALUE_PARAMS(p0, p1, p2, p3, p4, p5) , \ p0##_type, p1##_type, p2##_type, p3##_type, p4##_type, p5##_type #define GMOCK_INTERNAL_LIST_TYPE_AND_7_VALUE_PARAMS(p0, p1, p2, p3, p4, p5, \ p6) , p0##_type, p1##_type, p2##_type, p3##_type, p4##_type, p5##_type, \ p6##_type #define GMOCK_INTERNAL_LIST_TYPE_AND_8_VALUE_PARAMS(p0, p1, p2, p3, p4, p5, \ p6, p7) , p0##_type, p1##_type, p2##_type, p3##_type, p4##_type, \ p5##_type, p6##_type, p7##_type #define GMOCK_INTERNAL_LIST_TYPE_AND_9_VALUE_PARAMS(p0, p1, p2, p3, p4, p5, \ p6, p7, p8) , p0##_type, p1##_type, p2##_type, p3##_type, p4##_type, \ p5##_type, p6##_type, p7##_type, p8##_type #define GMOCK_INTERNAL_LIST_TYPE_AND_10_VALUE_PARAMS(p0, p1, p2, p3, p4, p5, \ p6, p7, p8, p9) , p0##_type, p1##_type, p2##_type, p3##_type, p4##_type, \ p5##_type, p6##_type, p7##_type, p8##_type, p9##_type // Declares the value parameters. #define GMOCK_INTERNAL_DECL_AND_0_VALUE_PARAMS() #define GMOCK_INTERNAL_DECL_AND_1_VALUE_PARAMS(p0) p0##_type p0 #define GMOCK_INTERNAL_DECL_AND_2_VALUE_PARAMS(p0, p1) p0##_type p0, \ p1##_type p1 #define GMOCK_INTERNAL_DECL_AND_3_VALUE_PARAMS(p0, p1, p2) p0##_type p0, \ p1##_type p1, p2##_type p2 #define GMOCK_INTERNAL_DECL_AND_4_VALUE_PARAMS(p0, p1, p2, p3) p0##_type p0, \ p1##_type p1, p2##_type p2, p3##_type p3 #define GMOCK_INTERNAL_DECL_AND_5_VALUE_PARAMS(p0, p1, p2, p3, \ p4) p0##_type p0, p1##_type p1, p2##_type p2, p3##_type p3, p4##_type p4 #define GMOCK_INTERNAL_DECL_AND_6_VALUE_PARAMS(p0, p1, p2, p3, p4, \ p5) p0##_type p0, p1##_type p1, p2##_type p2, p3##_type p3, p4##_type p4, \ p5##_type p5 #define GMOCK_INTERNAL_DECL_AND_7_VALUE_PARAMS(p0, p1, p2, p3, p4, p5, \ p6) p0##_type p0, p1##_type p1, p2##_type p2, p3##_type p3, p4##_type p4, \ p5##_type p5, p6##_type p6 #define GMOCK_INTERNAL_DECL_AND_8_VALUE_PARAMS(p0, p1, p2, p3, p4, p5, p6, \ p7) p0##_type p0, p1##_type p1, p2##_type p2, p3##_type p3, p4##_type p4, \ p5##_type p5, p6##_type p6, p7##_type p7 #define GMOCK_INTERNAL_DECL_AND_9_VALUE_PARAMS(p0, p1, p2, p3, p4, p5, p6, \ p7, p8) p0##_type p0, p1##_type p1, p2##_type p2, p3##_type p3, \ p4##_type p4, p5##_type p5, p6##_type p6, p7##_type p7, p8##_type p8 #define GMOCK_INTERNAL_DECL_AND_10_VALUE_PARAMS(p0, p1, p2, p3, p4, p5, p6, \ p7, p8, p9) p0##_type p0, p1##_type p1, p2##_type p2, p3##_type p3, \ p4##_type p4, p5##_type p5, p6##_type p6, p7##_type p7, p8##_type p8, \ p9##_type p9 // The suffix of the class template implementing the action template. #define GMOCK_INTERNAL_COUNT_AND_0_VALUE_PARAMS() #define GMOCK_INTERNAL_COUNT_AND_1_VALUE_PARAMS(p0) P #define GMOCK_INTERNAL_COUNT_AND_2_VALUE_PARAMS(p0, p1) P2 #define GMOCK_INTERNAL_COUNT_AND_3_VALUE_PARAMS(p0, p1, p2) P3 #define GMOCK_INTERNAL_COUNT_AND_4_VALUE_PARAMS(p0, p1, p2, p3) P4 #define GMOCK_INTERNAL_COUNT_AND_5_VALUE_PARAMS(p0, p1, p2, p3, p4) P5 #define GMOCK_INTERNAL_COUNT_AND_6_VALUE_PARAMS(p0, p1, p2, p3, p4, p5) P6 #define GMOCK_INTERNAL_COUNT_AND_7_VALUE_PARAMS(p0, p1, p2, p3, p4, p5, p6) P7 #define GMOCK_INTERNAL_COUNT_AND_8_VALUE_PARAMS(p0, p1, p2, p3, p4, p5, p6, \ p7) P8 #define GMOCK_INTERNAL_COUNT_AND_9_VALUE_PARAMS(p0, p1, p2, p3, p4, p5, p6, \ p7, p8) P9 #define GMOCK_INTERNAL_COUNT_AND_10_VALUE_PARAMS(p0, p1, p2, p3, p4, p5, p6, \ p7, p8, p9) P10 // The name of the class template implementing the action template. #define GMOCK_ACTION_CLASS_(name, value_params)\ GTEST_CONCAT_TOKEN_(name##Action, GMOCK_INTERNAL_COUNT_##value_params) #define ACTION_TEMPLATE(name, template_params, value_params)\ template <GMOCK_INTERNAL_DECL_##template_params\ GMOCK_INTERNAL_DECL_TYPE_##value_params>\ class GMOCK_ACTION_CLASS_(name, value_params) {\ public:\ GMOCK_ACTION_CLASS_(name, value_params)\ GMOCK_INTERNAL_INIT_##value_params {}\ template <typename F>\ class gmock_Impl : public ::testing::ActionInterface<F> {\ public:\ typedef F function_type;\ typedef typename ::testing::internal::Function<F>::Result return_type;\ typedef typename ::testing::internal::Function<F>::ArgumentTuple\ args_type;\ explicit gmock_Impl GMOCK_INTERNAL_INIT_##value_params {}\ virtual return_type Perform(const args_type& args) {\ return ::testing::internal::ActionHelper<return_type, gmock_Impl>::\ Perform(this, args);\ }\ template <typename arg0_type, typename arg1_type, typename arg2_type, \ typename arg3_type, typename arg4_type, typename arg5_type, \ typename arg6_type, typename arg7_type, typename arg8_type, \ typename arg9_type>\ return_type gmock_PerformImpl(const args_type& args, arg0_type arg0, \ arg1_type arg1, arg2_type arg2, arg3_type arg3, arg4_type arg4, \ arg5_type arg5, arg6_type arg6, arg7_type arg7, arg8_type arg8, \ arg9_type arg9) const;\ GMOCK_INTERNAL_DEFN_##value_params\ private:\ GTEST_DISALLOW_ASSIGN_(gmock_Impl);\ };\ template <typename F> operator ::testing::Action<F>() const {\ return ::testing::Action<F>(\ new gmock_Impl<F>(GMOCK_INTERNAL_LIST_##value_params));\ }\ GMOCK_INTERNAL_DEFN_##value_params\ private:\ GTEST_DISALLOW_ASSIGN_(GMOCK_ACTION_CLASS_(name, value_params));\ };\ template <GMOCK_INTERNAL_DECL_##template_params\ GMOCK_INTERNAL_DECL_TYPE_##value_params>\ inline GMOCK_ACTION_CLASS_(name, value_params)<\ GMOCK_INTERNAL_LIST_##template_params\ GMOCK_INTERNAL_LIST_TYPE_##value_params> name(\ GMOCK_INTERNAL_DECL_##value_params) {\ return GMOCK_ACTION_CLASS_(name, value_params)<\ GMOCK_INTERNAL_LIST_##template_params\ GMOCK_INTERNAL_LIST_TYPE_##value_params>(\ GMOCK_INTERNAL_LIST_##value_params);\ }\ template <GMOCK_INTERNAL_DECL_##template_params\ GMOCK_INTERNAL_DECL_TYPE_##value_params>\ template <typename F>\ template <typename arg0_type, typename arg1_type, typename arg2_type,\ typename arg3_type, typename arg4_type, typename arg5_type,\ typename arg6_type, typename arg7_type, typename arg8_type,\ typename arg9_type>\ typename ::testing::internal::Function<F>::Result\ GMOCK_ACTION_CLASS_(name, value_params)<\ GMOCK_INTERNAL_LIST_##template_params\ GMOCK_INTERNAL_LIST_TYPE_##value_params>::gmock_Impl<F>::\ gmock_PerformImpl(\ GMOCK_ACTION_ARG_TYPES_AND_NAMES_UNUSED_) const #define ACTION(name)\ class name##Action {\ public:\ name##Action() {}\ template <typename F>\ class gmock_Impl : public ::testing::ActionInterface<F> {\ public:\ typedef F function_type;\ typedef typename ::testing::internal::Function<F>::Result return_type;\ typedef typename ::testing::internal::Function<F>::ArgumentTuple\ args_type;\ gmock_Impl() {}\ virtual return_type Perform(const args_type& args) {\ return ::testing::internal::ActionHelper<return_type, gmock_Impl>::\ Perform(this, args);\ }\ template <typename arg0_type, typename arg1_type, typename arg2_type, \ typename arg3_type, typename arg4_type, typename arg5_type, \ typename arg6_type, typename arg7_type, typename arg8_type, \ typename arg9_type>\ return_type gmock_PerformImpl(const args_type& args, arg0_type arg0, \ arg1_type arg1, arg2_type arg2, arg3_type arg3, arg4_type arg4, \ arg5_type arg5, arg6_type arg6, arg7_type arg7, arg8_type arg8, \ arg9_type arg9) const;\ private:\ GTEST_DISALLOW_ASSIGN_(gmock_Impl);\ };\ template <typename F> operator ::testing::Action<F>() const {\ return ::testing::Action<F>(new gmock_Impl<F>());\ }\ private:\ GTEST_DISALLOW_ASSIGN_(name##Action);\ };\ inline name##Action name() {\ return name##Action();\ }\ template <typename F>\ template <typename arg0_type, typename arg1_type, typename arg2_type, \ typename arg3_type, typename arg4_type, typename arg5_type, \ typename arg6_type, typename arg7_type, typename arg8_type, \ typename arg9_type>\ typename ::testing::internal::Function<F>::Result\ name##Action::gmock_Impl<F>::gmock_PerformImpl(\ GMOCK_ACTION_ARG_TYPES_AND_NAMES_UNUSED_) const #define ACTION_P(name, p0)\ template <typename p0##_type>\ class name##ActionP {\ public:\ name##ActionP(p0##_type gmock_p0) : p0(gmock_p0) {}\ template <typename F>\ class gmock_Impl : public ::testing::ActionInterface<F> {\ public:\ typedef F function_type;\ typedef typename ::testing::internal::Function<F>::Result return_type;\ typedef typename ::testing::internal::Function<F>::ArgumentTuple\ args_type;\ explicit gmock_Impl(p0##_type gmock_p0) : p0(gmock_p0) {}\ virtual return_type Perform(const args_type& args) {\ return ::testing::internal::ActionHelper<return_type, gmock_Impl>::\ Perform(this, args);\ }\ template <typename arg0_type, typename arg1_type, typename arg2_type, \ typename arg3_type, typename arg4_type, typename arg5_type, \ typename arg6_type, typename arg7_type, typename arg8_type, \ typename arg9_type>\ return_type gmock_PerformImpl(const args_type& args, arg0_type arg0, \ arg1_type arg1, arg2_type arg2, arg3_type arg3, arg4_type arg4, \ arg5_type arg5, arg6_type arg6, arg7_type arg7, arg8_type arg8, \ arg9_type arg9) const;\ p0##_type p0;\ private:\ GTEST_DISALLOW_ASSIGN_(gmock_Impl);\ };\ template <typename F> operator ::testing::Action<F>() const {\ return ::testing::Action<F>(new gmock_Impl<F>(p0));\ }\ p0##_type p0;\ private:\ GTEST_DISALLOW_ASSIGN_(name##ActionP);\ };\ template <typename p0##_type>\ inline name##ActionP<p0##_type> name(p0##_type p0) {\ return name##ActionP<p0##_type>(p0);\ }\ template <typename p0##_type>\ template <typename F>\ template <typename arg0_type, typename arg1_type, typename arg2_type, \ typename arg3_type, typename arg4_type, typename arg5_type, \ typename arg6_type, typename arg7_type, typename arg8_type, \ typename arg9_type>\ typename ::testing::internal::Function<F>::Result\ name##ActionP<p0##_type>::gmock_Impl<F>::gmock_PerformImpl(\ GMOCK_ACTION_ARG_TYPES_AND_NAMES_UNUSED_) const #define ACTION_P2(name, p0, p1)\ template <typename p0##_type, typename p1##_type>\ class name##ActionP2 {\ public:\ name##ActionP2(p0##_type gmock_p0, p1##_type gmock_p1) : p0(gmock_p0), \ p1(gmock_p1) {}\ template <typename F>\ class gmock_Impl : public ::testing::ActionInterface<F> {\ public:\ typedef F function_type;\ typedef typename ::testing::internal::Function<F>::Result return_type;\ typedef typename ::testing::internal::Function<F>::ArgumentTuple\ args_type;\ gmock_Impl(p0##_type gmock_p0, p1##_type gmock_p1) : p0(gmock_p0), \ p1(gmock_p1) {}\ virtual return_type Perform(const args_type& args) {\ return ::testing::internal::ActionHelper<return_type, gmock_Impl>::\ Perform(this, args);\ }\ template <typename arg0_type, typename arg1_type, typename arg2_type, \ typename arg3_type, typename arg4_type, typename arg5_type, \ typename arg6_type, typename arg7_type, typename arg8_type, \ typename arg9_type>\ return_type gmock_PerformImpl(const args_type& args, arg0_type arg0, \ arg1_type arg1, arg2_type arg2, arg3_type arg3, arg4_type arg4, \ arg5_type arg5, arg6_type arg6, arg7_type arg7, arg8_type arg8, \ arg9_type arg9) const;\ p0##_type p0;\ p1##_type p1;\ private:\ GTEST_DISALLOW_ASSIGN_(gmock_Impl);\ };\ template <typename F> operator ::testing::Action<F>() const {\ return ::testing::Action<F>(new gmock_Impl<F>(p0, p1));\ }\ p0##_type p0;\ p1##_type p1;\ private:\ GTEST_DISALLOW_ASSIGN_(name##ActionP2);\ };\ template <typename p0##_type, typename p1##_type>\ inline name##ActionP2<p0##_type, p1##_type> name(p0##_type p0, \ p1##_type p1) {\ return name##ActionP2<p0##_type, p1##_type>(p0, p1);\ }\ template <typename p0##_type, typename p1##_type>\ template <typename F>\ template <typename arg0_type, typename arg1_type, typename arg2_type, \ typename arg3_type, typename arg4_type, typename arg5_type, \ typename arg6_type, typename arg7_type, typename arg8_type, \ typename arg9_type>\ typename ::testing::internal::Function<F>::Result\ name##ActionP2<p0##_type, p1##_type>::gmock_Impl<F>::gmock_PerformImpl(\ GMOCK_ACTION_ARG_TYPES_AND_NAMES_UNUSED_) const #define ACTION_P3(name, p0, p1, p2)\ template <typename p0##_type, typename p1##_type, typename p2##_type>\ class name##ActionP3 {\ public:\ name##ActionP3(p0##_type gmock_p0, p1##_type gmock_p1, \ p2##_type gmock_p2) : p0(gmock_p0), p1(gmock_p1), p2(gmock_p2) {}\ template <typename F>\ class gmock_Impl : public ::testing::ActionInterface<F> {\ public:\ typedef F function_type;\ typedef typename ::testing::internal::Function<F>::Result return_type;\ typedef typename ::testing::internal::Function<F>::ArgumentTuple\ args_type;\ gmock_Impl(p0##_type gmock_p0, p1##_type gmock_p1, \ p2##_type gmock_p2) : p0(gmock_p0), p1(gmock_p1), p2(gmock_p2) {}\ virtual return_type Perform(const args_type& args) {\ return ::testing::internal::ActionHelper<return_type, gmock_Impl>::\ Perform(this, args);\ }\ template <typename arg0_type, typename arg1_type, typename arg2_type, \ typename arg3_type, typename arg4_type, typename arg5_type, \ typename arg6_type, typename arg7_type, typename arg8_type, \ typename arg9_type>\ return_type gmock_PerformImpl(const args_type& args, arg0_type arg0, \ arg1_type arg1, arg2_type arg2, arg3_type arg3, arg4_type arg4, \ arg5_type arg5, arg6_type arg6, arg7_type arg7, arg8_type arg8, \ arg9_type arg9) const;\ p0##_type p0;\ p1##_type p1;\ p2##_type p2;\ private:\ GTEST_DISALLOW_ASSIGN_(gmock_Impl);\ };\ template <typename F> operator ::testing::Action<F>() const {\ return ::testing::Action<F>(new gmock_Impl<F>(p0, p1, p2));\ }\ p0##_type p0;\ p1##_type p1;\ p2##_type p2;\ private:\ GTEST_DISALLOW_ASSIGN_(name##ActionP3);\ };\ template <typename p0##_type, typename p1##_type, typename p2##_type>\ inline name##ActionP3<p0##_type, p1##_type, p2##_type> name(p0##_type p0, \ p1##_type p1, p2##_type p2) {\ return name##ActionP3<p0##_type, p1##_type, p2##_type>(p0, p1, p2);\ }\ template <typename p0##_type, typename p1##_type, typename p2##_type>\ template <typename F>\ template <typename arg0_type, typename arg1_type, typename arg2_type, \ typename arg3_type, typename arg4_type, typename arg5_type, \ typename arg6_type, typename arg7_type, typename arg8_type, \ typename arg9_type>\ typename ::testing::internal::Function<F>::Result\ name##ActionP3<p0##_type, p1##_type, \ p2##_type>::gmock_Impl<F>::gmock_PerformImpl(\ GMOCK_ACTION_ARG_TYPES_AND_NAMES_UNUSED_) const #define ACTION_P4(name, p0, p1, p2, p3)\ template <typename p0##_type, typename p1##_type, typename p2##_type, \ typename p3##_type>\ class name##ActionP4 {\ public:\ name##ActionP4(p0##_type gmock_p0, p1##_type gmock_p1, \ p2##_type gmock_p2, p3##_type gmock_p3) : p0(gmock_p0), p1(gmock_p1), \ p2(gmock_p2), p3(gmock_p3) {}\ template <typename F>\ class gmock_Impl : public ::testing::ActionInterface<F> {\ public:\ typedef F function_type;\ typedef typename ::testing::internal::Function<F>::Result return_type;\ typedef typename ::testing::internal::Function<F>::ArgumentTuple\ args_type;\ gmock_Impl(p0##_type gmock_p0, p1##_type gmock_p1, p2##_type gmock_p2, \ p3##_type gmock_p3) : p0(gmock_p0), p1(gmock_p1), p2(gmock_p2), \ p3(gmock_p3) {}\ virtual return_type Perform(const args_type& args) {\ return ::testing::internal::ActionHelper<return_type, gmock_Impl>::\ Perform(this, args);\ }\ template <typename arg0_type, typename arg1_type, typename arg2_type, \ typename arg3_type, typename arg4_type, typename arg5_type, \ typename arg6_type, typename arg7_type, typename arg8_type, \ typename arg9_type>\ return_type gmock_PerformImpl(const args_type& args, arg0_type arg0, \ arg1_type arg1, arg2_type arg2, arg3_type arg3, arg4_type arg4, \ arg5_type arg5, arg6_type arg6, arg7_type arg7, arg8_type arg8, \ arg9_type arg9) const;\ p0##_type p0;\ p1##_type p1;\ p2##_type p2;\ p3##_type p3;\ private:\ GTEST_DISALLOW_ASSIGN_(gmock_Impl);\ };\ template <typename F> operator ::testing::Action<F>() const {\ return ::testing::Action<F>(new gmock_Impl<F>(p0, p1, p2, p3));\ }\ p0##_type p0;\ p1##_type p1;\ p2##_type p2;\ p3##_type p3;\ private:\ GTEST_DISALLOW_ASSIGN_(name##ActionP4);\ };\ template <typename p0##_type, typename p1##_type, typename p2##_type, \ typename p3##_type>\ inline name##ActionP4<p0##_type, p1##_type, p2##_type, \ p3##_type> name(p0##_type p0, p1##_type p1, p2##_type p2, \ p3##_type p3) {\ return name##ActionP4<p0##_type, p1##_type, p2##_type, p3##_type>(p0, p1, \ p2, p3);\ }\ template <typename p0##_type, typename p1##_type, typename p2##_type, \ typename p3##_type>\ template <typename F>\ template <typename arg0_type, typename arg1_type, typename arg2_type, \ typename arg3_type, typename arg4_type, typename arg5_type, \ typename arg6_type, typename arg7_type, typename arg8_type, \ typename arg9_type>\ typename ::testing::internal::Function<F>::Result\ name##ActionP4<p0##_type, p1##_type, p2##_type, \ p3##_type>::gmock_Impl<F>::gmock_PerformImpl(\ GMOCK_ACTION_ARG_TYPES_AND_NAMES_UNUSED_) const #define ACTION_P5(name, p0, p1, p2, p3, p4)\ template <typename p0##_type, typename p1##_type, typename p2##_type, \ typename p3##_type, typename p4##_type>\ class name##ActionP5 {\ public:\ name##ActionP5(p0##_type gmock_p0, p1##_type gmock_p1, \ p2##_type gmock_p2, p3##_type gmock_p3, \ p4##_type gmock_p4) : p0(gmock_p0), p1(gmock_p1), p2(gmock_p2), \ p3(gmock_p3), p4(gmock_p4) {}\ template <typename F>\ class gmock_Impl : public ::testing::ActionInterface<F> {\ public:\ typedef F function_type;\ typedef typename ::testing::internal::Function<F>::Result return_type;\ typedef typename ::testing::internal::Function<F>::ArgumentTuple\ args_type;\ gmock_Impl(p0##_type gmock_p0, p1##_type gmock_p1, p2##_type gmock_p2, \ p3##_type gmock_p3, p4##_type gmock_p4) : p0(gmock_p0), \ p1(gmock_p1), p2(gmock_p2), p3(gmock_p3), p4(gmock_p4) {}\ virtual return_type Perform(const args_type& args) {\ return ::testing::internal::ActionHelper<return_type, gmock_Impl>::\ Perform(this, args);\ }\ template <typename arg0_type, typename arg1_type, typename arg2_type, \ typename arg3_type, typename arg4_type, typename arg5_type, \ typename arg6_type, typename arg7_type, typename arg8_type, \ typename arg9_type>\ return_type gmock_PerformImpl(const args_type& args, arg0_type arg0, \ arg1_type arg1, arg2_type arg2, arg3_type arg3, arg4_type arg4, \ arg5_type arg5, arg6_type arg6, arg7_type arg7, arg8_type arg8, \ arg9_type arg9) const;\ p0##_type p0;\ p1##_type p1;\ p2##_type p2;\ p3##_type p3;\ p4##_type p4;\ private:\ GTEST_DISALLOW_ASSIGN_(gmock_Impl);\ };\ template <typename F> operator ::testing::Action<F>() const {\ return ::testing::Action<F>(new gmock_Impl<F>(p0, p1, p2, p3, p4));\ }\ p0##_type p0;\ p1##_type p1;\ p2##_type p2;\ p3##_type p3;\ p4##_type p4;\ private:\ GTEST_DISALLOW_ASSIGN_(name##ActionP5);\ };\ template <typename p0##_type, typename p1##_type, typename p2##_type, \ typename p3##_type, typename p4##_type>\ inline name##ActionP5<p0##_type, p1##_type, p2##_type, p3##_type, \ p4##_type> name(p0##_type p0, p1##_type p1, p2##_type p2, p3##_type p3, \ p4##_type p4) {\ return name##ActionP5<p0##_type, p1##_type, p2##_type, p3##_type, \ p4##_type>(p0, p1, p2, p3, p4);\ }\ template <typename p0##_type, typename p1##_type, typename p2##_type, \ typename p3##_type, typename p4##_type>\ template <typename F>\ template <typename arg0_type, typename arg1_type, typename arg2_type, \ typename arg3_type, typename arg4_type, typename arg5_type, \ typename arg6_type, typename arg7_type, typename arg8_type, \ typename arg9_type>\ typename ::testing::internal::Function<F>::Result\ name##ActionP5<p0##_type, p1##_type, p2##_type, p3##_type, \ p4##_type>::gmock_Impl<F>::gmock_PerformImpl(\ GMOCK_ACTION_ARG_TYPES_AND_NAMES_UNUSED_) const #define ACTION_P6(name, p0, p1, p2, p3, p4, p5)\ template <typename p0##_type, typename p1##_type, typename p2##_type, \ typename p3##_type, typename p4##_type, typename p5##_type>\ class name##ActionP6 {\ public:\ name##ActionP6(p0##_type gmock_p0, p1##_type gmock_p1, \ p2##_type gmock_p2, p3##_type gmock_p3, p4##_type gmock_p4, \ p5##_type gmock_p5) : p0(gmock_p0), p1(gmock_p1), p2(gmock_p2), \ p3(gmock_p3), p4(gmock_p4), p5(gmock_p5) {}\ template <typename F>\ class gmock_Impl : public ::testing::ActionInterface<F> {\ public:\ typedef F function_type;\ typedef typename ::testing::internal::Function<F>::Result return_type;\ typedef typename ::testing::internal::Function<F>::ArgumentTuple\ args_type;\ gmock_Impl(p0##_type gmock_p0, p1##_type gmock_p1, p2##_type gmock_p2, \ p3##_type gmock_p3, p4##_type gmock_p4, \ p5##_type gmock_p5) : p0(gmock_p0), p1(gmock_p1), p2(gmock_p2), \ p3(gmock_p3), p4(gmock_p4), p5(gmock_p5) {}\ virtual return_type Perform(const args_type& args) {\ return ::testing::internal::ActionHelper<return_type, gmock_Impl>::\ Perform(this, args);\ }\ template <typename arg0_type, typename arg1_type, typename arg2_type, \ typename arg3_type, typename arg4_type, typename arg5_type, \ typename arg6_type, typename arg7_type, typename arg8_type, \ typename arg9_type>\ return_type gmock_PerformImpl(const args_type& args, arg0_type arg0, \ arg1_type arg1, arg2_type arg2, arg3_type arg3, arg4_type arg4, \ arg5_type arg5, arg6_type arg6, arg7_type arg7, arg8_type arg8, \ arg9_type arg9) const;\ p0##_type p0;\ p1##_type p1;\ p2##_type p2;\ p3##_type p3;\ p4##_type p4;\ p5##_type p5;\ private:\ GTEST_DISALLOW_ASSIGN_(gmock_Impl);\ };\ template <typename F> operator ::testing::Action<F>() const {\ return ::testing::Action<F>(new gmock_Impl<F>(p0, p1, p2, p3, p4, p5));\ }\ p0##_type p0;\ p1##_type p1;\ p2##_type p2;\ p3##_type p3;\ p4##_type p4;\ p5##_type p5;\ private:\ GTEST_DISALLOW_ASSIGN_(name##ActionP6);\ };\ template <typename p0##_type, typename p1##_type, typename p2##_type, \ typename p3##_type, typename p4##_type, typename p5##_type>\ inline name##ActionP6<p0##_type, p1##_type, p2##_type, p3##_type, \ p4##_type, p5##_type> name(p0##_type p0, p1##_type p1, p2##_type p2, \ p3##_type p3, p4##_type p4, p5##_type p5) {\ return name##ActionP6<p0##_type, p1##_type, p2##_type, p3##_type, \ p4##_type, p5##_type>(p0, p1, p2, p3, p4, p5);\ }\ template <typename p0##_type, typename p1##_type, typename p2##_type, \ typename p3##_type, typename p4##_type, typename p5##_type>\ template <typename F>\ template <typename arg0_type, typename arg1_type, typename arg2_type, \ typename arg3_type, typename arg4_type, typename arg5_type, \ typename arg6_type, typename arg7_type, typename arg8_type, \ typename arg9_type>\ typename ::testing::internal::Function<F>::Result\ name##ActionP6<p0##_type, p1##_type, p2##_type, p3##_type, p4##_type, \ p5##_type>::gmock_Impl<F>::gmock_PerformImpl(\ GMOCK_ACTION_ARG_TYPES_AND_NAMES_UNUSED_) const #define ACTION_P7(name, p0, p1, p2, p3, p4, p5, p6)\ template <typename p0##_type, typename p1##_type, typename p2##_type, \ typename p3##_type, typename p4##_type, typename p5##_type, \ typename p6##_type>\ class name##ActionP7 {\ public:\ name##ActionP7(p0##_type gmock_p0, p1##_type gmock_p1, \ p2##_type gmock_p2, p3##_type gmock_p3, p4##_type gmock_p4, \ p5##_type gmock_p5, p6##_type gmock_p6) : p0(gmock_p0), p1(gmock_p1), \ p2(gmock_p2), p3(gmock_p3), p4(gmock_p4), p5(gmock_p5), \ p6(gmock_p6) {}\ template <typename F>\ class gmock_Impl : public ::testing::ActionInterface<F> {\ public:\ typedef F function_type;\ typedef typename ::testing::internal::Function<F>::Result return_type;\ typedef typename ::testing::internal::Function<F>::ArgumentTuple\ args_type;\ gmock_Impl(p0##_type gmock_p0, p1##_type gmock_p1, p2##_type gmock_p2, \ p3##_type gmock_p3, p4##_type gmock_p4, p5##_type gmock_p5, \ p6##_type gmock_p6) : p0(gmock_p0), p1(gmock_p1), p2(gmock_p2), \ p3(gmock_p3), p4(gmock_p4), p5(gmock_p5), p6(gmock_p6) {}\ virtual return_type Perform(const args_type& args) {\ return ::testing::internal::ActionHelper<return_type, gmock_Impl>::\ Perform(this, args);\ }\ template <typename arg0_type, typename arg1_type, typename arg2_type, \ typename arg3_type, typename arg4_type, typename arg5_type, \ typename arg6_type, typename arg7_type, typename arg8_type, \ typename arg9_type>\ return_type gmock_PerformImpl(const args_type& args, arg0_type arg0, \ arg1_type arg1, arg2_type arg2, arg3_type arg3, arg4_type arg4, \ arg5_type arg5, arg6_type arg6, arg7_type arg7, arg8_type arg8, \ arg9_type arg9) const;\ p0##_type p0;\ p1##_type p1;\ p2##_type p2;\ p3##_type p3;\ p4##_type p4;\ p5##_type p5;\ p6##_type p6;\ private:\ GTEST_DISALLOW_ASSIGN_(gmock_Impl);\ };\ template <typename F> operator ::testing::Action<F>() const {\ return ::testing::Action<F>(new gmock_Impl<F>(p0, p1, p2, p3, p4, p5, \ p6));\ }\ p0##_type p0;\ p1##_type p1;\ p2##_type p2;\ p3##_type p3;\ p4##_type p4;\ p5##_type p5;\ p6##_type p6;\ private:\ GTEST_DISALLOW_ASSIGN_(name##ActionP7);\ };\ template <typename p0##_type, typename p1##_type, typename p2##_type, \ typename p3##_type, typename p4##_type, typename p5##_type, \ typename p6##_type>\ inline name##ActionP7<p0##_type, p1##_type, p2##_type, p3##_type, \ p4##_type, p5##_type, p6##_type> name(p0##_type p0, p1##_type p1, \ p2##_type p2, p3##_type p3, p4##_type p4, p5##_type p5, \ p6##_type p6) {\ return name##ActionP7<p0##_type, p1##_type, p2##_type, p3##_type, \ p4##_type, p5##_type, p6##_type>(p0, p1, p2, p3, p4, p5, p6);\ }\ template <typename p0##_type, typename p1##_type, typename p2##_type, \ typename p3##_type, typename p4##_type, typename p5##_type, \ typename p6##_type>\ template <typename F>\ template <typename arg0_type, typename arg1_type, typename arg2_type, \ typename arg3_type, typename arg4_type, typename arg5_type, \ typename arg6_type, typename arg7_type, typename arg8_type, \ typename arg9_type>\ typename ::testing::internal::Function<F>::Result\ name##ActionP7<p0##_type, p1##_type, p2##_type, p3##_type, p4##_type, \ p5##_type, p6##_type>::gmock_Impl<F>::gmock_PerformImpl(\ GMOCK_ACTION_ARG_TYPES_AND_NAMES_UNUSED_) const #define ACTION_P8(name, p0, p1, p2, p3, p4, p5, p6, p7)\ template <typename p0##_type, typename p1##_type, typename p2##_type, \ typename p3##_type, typename p4##_type, typename p5##_type, \ typename p6##_type, typename p7##_type>\ class name##ActionP8 {\ public:\ name##ActionP8(p0##_type gmock_p0, p1##_type gmock_p1, \ p2##_type gmock_p2, p3##_type gmock_p3, p4##_type gmock_p4, \ p5##_type gmock_p5, p6##_type gmock_p6, \ p7##_type gmock_p7) : p0(gmock_p0), p1(gmock_p1), p2(gmock_p2), \ p3(gmock_p3), p4(gmock_p4), p5(gmock_p5), p6(gmock_p6), \ p7(gmock_p7) {}\ template <typename F>\ class gmock_Impl : public ::testing::ActionInterface<F> {\ public:\ typedef F function_type;\ typedef typename ::testing::internal::Function<F>::Result return_type;\ typedef typename ::testing::internal::Function<F>::ArgumentTuple\ args_type;\ gmock_Impl(p0##_type gmock_p0, p1##_type gmock_p1, p2##_type gmock_p2, \ p3##_type gmock_p3, p4##_type gmock_p4, p5##_type gmock_p5, \ p6##_type gmock_p6, p7##_type gmock_p7) : p0(gmock_p0), \ p1(gmock_p1), p2(gmock_p2), p3(gmock_p3), p4(gmock_p4), \ p5(gmock_p5), p6(gmock_p6), p7(gmock_p7) {}\ virtual return_type Perform(const args_type& args) {\ return ::testing::internal::ActionHelper<return_type, gmock_Impl>::\ Perform(this, args);\ }\ template <typename arg0_type, typename arg1_type, typename arg2_type, \ typename arg3_type, typename arg4_type, typename arg5_type, \ typename arg6_type, typename arg7_type, typename arg8_type, \ typename arg9_type>\ return_type gmock_PerformImpl(const args_type& args, arg0_type arg0, \ arg1_type arg1, arg2_type arg2, arg3_type arg3, arg4_type arg4, \ arg5_type arg5, arg6_type arg6, arg7_type arg7, arg8_type arg8, \ arg9_type arg9) const;\ p0##_type p0;\ p1##_type p1;\ p2##_type p2;\ p3##_type p3;\ p4##_type p4;\ p5##_type p5;\ p6##_type p6;\ p7##_type p7;\ private:\ GTEST_DISALLOW_ASSIGN_(gmock_Impl);\ };\ template <typename F> operator ::testing::Action<F>() const {\ return ::testing::Action<F>(new gmock_Impl<F>(p0, p1, p2, p3, p4, p5, \ p6, p7));\ }\ p0##_type p0;\ p1##_type p1;\ p2##_type p2;\ p3##_type p3;\ p4##_type p4;\ p5##_type p5;\ p6##_type p6;\ p7##_type p7;\ private:\ GTEST_DISALLOW_ASSIGN_(name##ActionP8);\ };\ template <typename p0##_type, typename p1##_type, typename p2##_type, \ typename p3##_type, typename p4##_type, typename p5##_type, \ typename p6##_type, typename p7##_type>\ inline name##ActionP8<p0##_type, p1##_type, p2##_type, p3##_type, \ p4##_type, p5##_type, p6##_type, p7##_type> name(p0##_type p0, \ p1##_type p1, p2##_type p2, p3##_type p3, p4##_type p4, p5##_type p5, \ p6##_type p6, p7##_type p7) {\ return name##ActionP8<p0##_type, p1##_type, p2##_type, p3##_type, \ p4##_type, p5##_type, p6##_type, p7##_type>(p0, p1, p2, p3, p4, p5, \ p6, p7);\ }\ template <typename p0##_type, typename p1##_type, typename p2##_type, \ typename p3##_type, typename p4##_type, typename p5##_type, \ typename p6##_type, typename p7##_type>\ template <typename F>\ template <typename arg0_type, typename arg1_type, typename arg2_type, \ typename arg3_type, typename arg4_type, typename arg5_type, \ typename arg6_type, typename arg7_type, typename arg8_type, \ typename arg9_type>\ typename ::testing::internal::Function<F>::Result\ name##ActionP8<p0##_type, p1##_type, p2##_type, p3##_type, p4##_type, \ p5##_type, p6##_type, \ p7##_type>::gmock_Impl<F>::gmock_PerformImpl(\ GMOCK_ACTION_ARG_TYPES_AND_NAMES_UNUSED_) const #define ACTION_P9(name, p0, p1, p2, p3, p4, p5, p6, p7, p8)\ template <typename p0##_type, typename p1##_type, typename p2##_type, \ typename p3##_type, typename p4##_type, typename p5##_type, \ typename p6##_type, typename p7##_type, typename p8##_type>\ class name##ActionP9 {\ public:\ name##ActionP9(p0##_type gmock_p0, p1##_type gmock_p1, \ p2##_type gmock_p2, p3##_type gmock_p3, p4##_type gmock_p4, \ p5##_type gmock_p5, p6##_type gmock_p6, p7##_type gmock_p7, \ p8##_type gmock_p8) : p0(gmock_p0), p1(gmock_p1), p2(gmock_p2), \ p3(gmock_p3), p4(gmock_p4), p5(gmock_p5), p6(gmock_p6), p7(gmock_p7), \ p8(gmock_p8) {}\ template <typename F>\ class gmock_Impl : public ::testing::ActionInterface<F> {\ public:\ typedef F function_type;\ typedef typename ::testing::internal::Function<F>::Result return_type;\ typedef typename ::testing::internal::Function<F>::ArgumentTuple\ args_type;\ gmock_Impl(p0##_type gmock_p0, p1##_type gmock_p1, p2##_type gmock_p2, \ p3##_type gmock_p3, p4##_type gmock_p4, p5##_type gmock_p5, \ p6##_type gmock_p6, p7##_type gmock_p7, \ p8##_type gmock_p8) : p0(gmock_p0), p1(gmock_p1), p2(gmock_p2), \ p3(gmock_p3), p4(gmock_p4), p5(gmock_p5), p6(gmock_p6), \ p7(gmock_p7), p8(gmock_p8) {}\ virtual return_type Perform(const args_type& args) {\ return ::testing::internal::ActionHelper<return_type, gmock_Impl>::\ Perform(this, args);\ }\ template <typename arg0_type, typename arg1_type, typename arg2_type, \ typename arg3_type, typename arg4_type, typename arg5_type, \ typename arg6_type, typename arg7_type, typename arg8_type, \ typename arg9_type>\ return_type gmock_PerformImpl(const args_type& args, arg0_type arg0, \ arg1_type arg1, arg2_type arg2, arg3_type arg3, arg4_type arg4, \ arg5_type arg5, arg6_type arg6, arg7_type arg7, arg8_type arg8, \ arg9_type arg9) const;\ p0##_type p0;\ p1##_type p1;\ p2##_type p2;\ p3##_type p3;\ p4##_type p4;\ p5##_type p5;\ p6##_type p6;\ p7##_type p7;\ p8##_type p8;\ private:\ GTEST_DISALLOW_ASSIGN_(gmock_Impl);\ };\ template <typename F> operator ::testing::Action<F>() const {\ return ::testing::Action<F>(new gmock_Impl<F>(p0, p1, p2, p3, p4, p5, \ p6, p7, p8));\ }\ p0##_type p0;\ p1##_type p1;\ p2##_type p2;\ p3##_type p3;\ p4##_type p4;\ p5##_type p5;\ p6##_type p6;\ p7##_type p7;\ p8##_type p8;\ private:\ GTEST_DISALLOW_ASSIGN_(name##ActionP9);\ };\ template <typename p0##_type, typename p1##_type, typename p2##_type, \ typename p3##_type, typename p4##_type, typename p5##_type, \ typename p6##_type, typename p7##_type, typename p8##_type>\ inline name##ActionP9<p0##_type, p1##_type, p2##_type, p3##_type, \ p4##_type, p5##_type, p6##_type, p7##_type, \ p8##_type> name(p0##_type p0, p1##_type p1, p2##_type p2, p3##_type p3, \ p4##_type p4, p5##_type p5, p6##_type p6, p7##_type p7, \ p8##_type p8) {\ return name##ActionP9<p0##_type, p1##_type, p2##_type, p3##_type, \ p4##_type, p5##_type, p6##_type, p7##_type, p8##_type>(p0, p1, p2, \ p3, p4, p5, p6, p7, p8);\ }\ template <typename p0##_type, typename p1##_type, typename p2##_type, \ typename p3##_type, typename p4##_type, typename p5##_type, \ typename p6##_type, typename p7##_type, typename p8##_type>\ template <typename F>\ template <typename arg0_type, typename arg1_type, typename arg2_type, \ typename arg3_type, typename arg4_type, typename arg5_type, \ typename arg6_type, typename arg7_type, typename arg8_type, \ typename arg9_type>\ typename ::testing::internal::Function<F>::Result\ name##ActionP9<p0##_type, p1##_type, p2##_type, p3##_type, p4##_type, \ p5##_type, p6##_type, p7##_type, \ p8##_type>::gmock_Impl<F>::gmock_PerformImpl(\ GMOCK_ACTION_ARG_TYPES_AND_NAMES_UNUSED_) const #define ACTION_P10(name, p0, p1, p2, p3, p4, p5, p6, p7, p8, p9)\ template <typename p0##_type, typename p1##_type, typename p2##_type, \ typename p3##_type, typename p4##_type, typename p5##_type, \ typename p6##_type, typename p7##_type, typename p8##_type, \ typename p9##_type>\ class name##ActionP10 {\ public:\ name##ActionP10(p0##_type gmock_p0, p1##_type gmock_p1, \ p2##_type gmock_p2, p3##_type gmock_p3, p4##_type gmock_p4, \ p5##_type gmock_p5, p6##_type gmock_p6, p7##_type gmock_p7, \ p8##_type gmock_p8, p9##_type gmock_p9) : p0(gmock_p0), p1(gmock_p1), \ p2(gmock_p2), p3(gmock_p3), p4(gmock_p4), p5(gmock_p5), p6(gmock_p6), \ p7(gmock_p7), p8(gmock_p8), p9(gmock_p9) {}\ template <typename F>\ class gmock_Impl : public ::testing::ActionInterface<F> {\ public:\ typedef F function_type;\ typedef typename ::testing::internal::Function<F>::Result return_type;\ typedef typename ::testing::internal::Function<F>::ArgumentTuple\ args_type;\ gmock_Impl(p0##_type gmock_p0, p1##_type gmock_p1, p2##_type gmock_p2, \ p3##_type gmock_p3, p4##_type gmock_p4, p5##_type gmock_p5, \ p6##_type gmock_p6, p7##_type gmock_p7, p8##_type gmock_p8, \ p9##_type gmock_p9) : p0(gmock_p0), p1(gmock_p1), p2(gmock_p2), \ p3(gmock_p3), p4(gmock_p4), p5(gmock_p5), p6(gmock_p6), \ p7(gmock_p7), p8(gmock_p8), p9(gmock_p9) {}\ virtual return_type Perform(const args_type& args) {\ return ::testing::internal::ActionHelper<return_type, gmock_Impl>::\ Perform(this, args);\ }\ template <typename arg0_type, typename arg1_type, typename arg2_type, \ typename arg3_type, typename arg4_type, typename arg5_type, \ typename arg6_type, typename arg7_type, typename arg8_type, \ typename arg9_type>\ return_type gmock_PerformImpl(const args_type& args, arg0_type arg0, \ arg1_type arg1, arg2_type arg2, arg3_type arg3, arg4_type arg4, \ arg5_type arg5, arg6_type arg6, arg7_type arg7, arg8_type arg8, \ arg9_type arg9) const;\ p0##_type p0;\ p1##_type p1;\ p2##_type p2;\ p3##_type p3;\ p4##_type p4;\ p5##_type p5;\ p6##_type p6;\ p7##_type p7;\ p8##_type p8;\ p9##_type p9;\ private:\ GTEST_DISALLOW_ASSIGN_(gmock_Impl);\ };\ template <typename F> operator ::testing::Action<F>() const {\ return ::testing::Action<F>(new gmock_Impl<F>(p0, p1, p2, p3, p4, p5, \ p6, p7, p8, p9));\ }\ p0##_type p0;\ p1##_type p1;\ p2##_type p2;\ p3##_type p3;\ p4##_type p4;\ p5##_type p5;\ p6##_type p6;\ p7##_type p7;\ p8##_type p8;\ p9##_type p9;\ private:\ GTEST_DISALLOW_ASSIGN_(name##ActionP10);\ };\ template <typename p0##_type, typename p1##_type, typename p2##_type, \ typename p3##_type, typename p4##_type, typename p5##_type, \ typename p6##_type, typename p7##_type, typename p8##_type, \ typename p9##_type>\ inline name##ActionP10<p0##_type, p1##_type, p2##_type, p3##_type, \ p4##_type, p5##_type, p6##_type, p7##_type, p8##_type, \ p9##_type> name(p0##_type p0, p1##_type p1, p2##_type p2, p3##_type p3, \ p4##_type p4, p5##_type p5, p6##_type p6, p7##_type p7, p8##_type p8, \ p9##_type p9) {\ return name##ActionP10<p0##_type, p1##_type, p2##_type, p3##_type, \ p4##_type, p5##_type, p6##_type, p7##_type, p8##_type, p9##_type>(p0, \ p1, p2, p3, p4, p5, p6, p7, p8, p9);\ }\ template <typename p0##_type, typename p1##_type, typename p2##_type, \ typename p3##_type, typename p4##_type, typename p5##_type, \ typename p6##_type, typename p7##_type, typename p8##_type, \ typename p9##_type>\ template <typename F>\ template <typename arg0_type, typename arg1_type, typename arg2_type, \ typename arg3_type, typename arg4_type, typename arg5_type, \ typename arg6_type, typename arg7_type, typename arg8_type, \ typename arg9_type>\ typename ::testing::internal::Function<F>::Result\ name##ActionP10<p0##_type, p1##_type, p2##_type, p3##_type, p4##_type, \ p5##_type, p6##_type, p7##_type, p8##_type, \ p9##_type>::gmock_Impl<F>::gmock_PerformImpl(\ GMOCK_ACTION_ARG_TYPES_AND_NAMES_UNUSED_) const // TODO(wan@google.com): move the following to a different .h file // such that we don't have to run 'pump' every time the code is // updated. namespace testing { // The ACTION*() macros trigger warning C4100 (unreferenced formal // parameter) in MSVC with -W4. Unfortunately they cannot be fixed in // the macro definition, as the warnings are generated when the macro // is expanded and macro expansion cannot contain #pragma. Therefore // we suppress them here. #ifdef _MSC_VER # pragma warning(push) # pragma warning(disable:4100) #endif // Various overloads for InvokeArgument<N>(). // // The InvokeArgument<N>(a1, a2, ..., a_k) action invokes the N-th // (0-based) argument, which must be a k-ary callable, of the mock // function, with arguments a1, a2, ..., a_k. // // Notes: // // 1. The arguments are passed by value by default. If you need to // pass an argument by reference, wrap it inside ByRef(). For // example, // // InvokeArgument<1>(5, string("Hello"), ByRef(foo)) // // passes 5 and string("Hello") by value, and passes foo by // reference. // // 2. If the callable takes an argument by reference but ByRef() is // not used, it will receive the reference to a copy of the value, // instead of the original value. For example, when the 0-th // argument of the mock function takes a const string&, the action // // InvokeArgument<0>(string("Hello")) // // makes a copy of the temporary string("Hello") object and passes a // reference of the copy, instead of the original temporary object, // to the callable. This makes it easy for a user to define an // InvokeArgument action from temporary values and have it performed // later. ACTION_TEMPLATE(InvokeArgument, HAS_1_TEMPLATE_PARAMS(int, k), AND_0_VALUE_PARAMS()) { return internal::CallableHelper<return_type>::Call( ::std::tr1::get<k>(args)); } ACTION_TEMPLATE(InvokeArgument, HAS_1_TEMPLATE_PARAMS(int, k), AND_1_VALUE_PARAMS(p0)) { return internal::CallableHelper<return_type>::Call( ::std::tr1::get<k>(args), p0); } ACTION_TEMPLATE(InvokeArgument, HAS_1_TEMPLATE_PARAMS(int, k), AND_2_VALUE_PARAMS(p0, p1)) { return internal::CallableHelper<return_type>::Call( ::std::tr1::get<k>(args), p0, p1); } ACTION_TEMPLATE(InvokeArgument, HAS_1_TEMPLATE_PARAMS(int, k), AND_3_VALUE_PARAMS(p0, p1, p2)) { return internal::CallableHelper<return_type>::Call( ::std::tr1::get<k>(args), p0, p1, p2); } ACTION_TEMPLATE(InvokeArgument, HAS_1_TEMPLATE_PARAMS(int, k), AND_4_VALUE_PARAMS(p0, p1, p2, p3)) { return internal::CallableHelper<return_type>::Call( ::std::tr1::get<k>(args), p0, p1, p2, p3); } ACTION_TEMPLATE(InvokeArgument, HAS_1_TEMPLATE_PARAMS(int, k), AND_5_VALUE_PARAMS(p0, p1, p2, p3, p4)) { return internal::CallableHelper<return_type>::Call( ::std::tr1::get<k>(args), p0, p1, p2, p3, p4); } ACTION_TEMPLATE(InvokeArgument, HAS_1_TEMPLATE_PARAMS(int, k), AND_6_VALUE_PARAMS(p0, p1, p2, p3, p4, p5)) { return internal::CallableHelper<return_type>::Call( ::std::tr1::get<k>(args), p0, p1, p2, p3, p4, p5); } ACTION_TEMPLATE(InvokeArgument, HAS_1_TEMPLATE_PARAMS(int, k), AND_7_VALUE_PARAMS(p0, p1, p2, p3, p4, p5, p6)) { return internal::CallableHelper<return_type>::Call( ::std::tr1::get<k>(args), p0, p1, p2, p3, p4, p5, p6); } ACTION_TEMPLATE(InvokeArgument, HAS_1_TEMPLATE_PARAMS(int, k), AND_8_VALUE_PARAMS(p0, p1, p2, p3, p4, p5, p6, p7)) { return internal::CallableHelper<return_type>::Call( ::std::tr1::get<k>(args), p0, p1, p2, p3, p4, p5, p6, p7); } ACTION_TEMPLATE(InvokeArgument, HAS_1_TEMPLATE_PARAMS(int, k), AND_9_VALUE_PARAMS(p0, p1, p2, p3, p4, p5, p6, p7, p8)) { return internal::CallableHelper<return_type>::Call( ::std::tr1::get<k>(args), p0, p1, p2, p3, p4, p5, p6, p7, p8); } ACTION_TEMPLATE(InvokeArgument, HAS_1_TEMPLATE_PARAMS(int, k), AND_10_VALUE_PARAMS(p0, p1, p2, p3, p4, p5, p6, p7, p8, p9)) { return internal::CallableHelper<return_type>::Call( ::std::tr1::get<k>(args), p0, p1, p2, p3, p4, p5, p6, p7, p8, p9); } // Various overloads for ReturnNew<T>(). // // The ReturnNew<T>(a1, a2, ..., a_k) action returns a pointer to a new // instance of type T, constructed on the heap with constructor arguments // a1, a2, ..., and a_k. The caller assumes ownership of the returned value. ACTION_TEMPLATE(ReturnNew, HAS_1_TEMPLATE_PARAMS(typename, T), AND_0_VALUE_PARAMS()) { return new T(); } ACTION_TEMPLATE(ReturnNew, HAS_1_TEMPLATE_PARAMS(typename, T), AND_1_VALUE_PARAMS(p0)) { return new T(p0); } ACTION_TEMPLATE(ReturnNew, HAS_1_TEMPLATE_PARAMS(typename, T), AND_2_VALUE_PARAMS(p0, p1)) { return new T(p0, p1); } ACTION_TEMPLATE(ReturnNew, HAS_1_TEMPLATE_PARAMS(typename, T), AND_3_VALUE_PARAMS(p0, p1, p2)) { return new T(p0, p1, p2); } ACTION_TEMPLATE(ReturnNew, HAS_1_TEMPLATE_PARAMS(typename, T), AND_4_VALUE_PARAMS(p0, p1, p2, p3)) { return new T(p0, p1, p2, p3); } ACTION_TEMPLATE(ReturnNew, HAS_1_TEMPLATE_PARAMS(typename, T), AND_5_VALUE_PARAMS(p0, p1, p2, p3, p4)) { return new T(p0, p1, p2, p3, p4); } ACTION_TEMPLATE(ReturnNew, HAS_1_TEMPLATE_PARAMS(typename, T), AND_6_VALUE_PARAMS(p0, p1, p2, p3, p4, p5)) { return new T(p0, p1, p2, p3, p4, p5); } ACTION_TEMPLATE(ReturnNew, HAS_1_TEMPLATE_PARAMS(typename, T), AND_7_VALUE_PARAMS(p0, p1, p2, p3, p4, p5, p6)) { return new T(p0, p1, p2, p3, p4, p5, p6); } ACTION_TEMPLATE(ReturnNew, HAS_1_TEMPLATE_PARAMS(typename, T), AND_8_VALUE_PARAMS(p0, p1, p2, p3, p4, p5, p6, p7)) { return new T(p0, p1, p2, p3, p4, p5, p6, p7); } ACTION_TEMPLATE(ReturnNew, HAS_1_TEMPLATE_PARAMS(typename, T), AND_9_VALUE_PARAMS(p0, p1, p2, p3, p4, p5, p6, p7, p8)) { return new T(p0, p1, p2, p3, p4, p5, p6, p7, p8); } ACTION_TEMPLATE(ReturnNew, HAS_1_TEMPLATE_PARAMS(typename, T), AND_10_VALUE_PARAMS(p0, p1, p2, p3, p4, p5, p6, p7, p8, p9)) { return new T(p0, p1, p2, p3, p4, p5, p6, p7, p8, p9); } #ifdef _MSC_VER # pragma warning(pop) #endif } // namespace testing #endif // GMOCK_INCLUDE_GMOCK_GMOCK_GENERATED_ACTIONS_H_ // This file was GENERATED by command: // pump.py gmock-generated-function-mockers.h.pump // DO NOT EDIT BY HAND!!! // Copyright 2007, Google Inc. // All rights reserved. // // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions are // met: // // * Redistributions of source code must retain the above copyright // notice, this list of conditions and the following disclaimer. // * Redistributions in binary form must reproduce the above // copyright notice, this list of conditions and the following disclaimer // in the documentation and/or other materials provided with the // distribution. // * Neither the name of Google Inc. nor the names of its // contributors may be used to endorse or promote products derived from // this software without specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. // // Author: wan@google.com (Zhanyong Wan) // Google Mock - a framework for writing C++ mock classes. // // This file implements function mockers of various arities. #ifndef GMOCK_INCLUDE_GMOCK_GMOCK_GENERATED_FUNCTION_MOCKERS_H_ #define GMOCK_INCLUDE_GMOCK_GMOCK_GENERATED_FUNCTION_MOCKERS_H_ // Copyright 2007, Google Inc. // All rights reserved. // // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions are // met: // // * Redistributions of source code must retain the above copyright // notice, this list of conditions and the following disclaimer. // * Redistributions in binary form must reproduce the above // copyright notice, this list of conditions and the following disclaimer // in the documentation and/or other materials provided with the // distribution. // * Neither the name of Google Inc. nor the names of its // contributors may be used to endorse or promote products derived from // this software without specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. // // Author: wan@google.com (Zhanyong Wan) // Google Mock - a framework for writing C++ mock classes. // // This file implements the ON_CALL() and EXPECT_CALL() macros. // // A user can use the ON_CALL() macro to specify the default action of // a mock method. The syntax is: // // ON_CALL(mock_object, Method(argument-matchers)) // .With(multi-argument-matcher) // .WillByDefault(action); // // where the .With() clause is optional. // // A user can use the EXPECT_CALL() macro to specify an expectation on // a mock method. The syntax is: // // EXPECT_CALL(mock_object, Method(argument-matchers)) // .With(multi-argument-matchers) // .Times(cardinality) // .InSequence(sequences) // .After(expectations) // .WillOnce(action) // .WillRepeatedly(action) // .RetiresOnSaturation(); // // where all clauses are optional, and .InSequence()/.After()/ // .WillOnce() can appear any number of times. #ifndef GMOCK_INCLUDE_GMOCK_GMOCK_SPEC_BUILDERS_H_ #define GMOCK_INCLUDE_GMOCK_GMOCK_SPEC_BUILDERS_H_ #include <map> #include <set> #include <sstream> #include <string> #include <vector> // Copyright 2007, Google Inc. // All rights reserved. // // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions are // met: // // * Redistributions of source code must retain the above copyright // notice, this list of conditions and the following disclaimer. // * Redistributions in binary form must reproduce the above // copyright notice, this list of conditions and the following disclaimer // in the documentation and/or other materials provided with the // distribution. // * Neither the name of Google Inc. nor the names of its // contributors may be used to endorse or promote products derived from // this software without specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. // // Author: wan@google.com (Zhanyong Wan) // Google Mock - a framework for writing C++ mock classes. // // This file implements some commonly used argument matchers. More // matchers can be defined by the user implementing the // MatcherInterface<T> interface if necessary. #ifndef GMOCK_INCLUDE_GMOCK_GMOCK_MATCHERS_H_ #define GMOCK_INCLUDE_GMOCK_GMOCK_MATCHERS_H_ #include <algorithm> #include <limits> #include <ostream> // NOLINT #include <sstream> #include <string> #include <utility> #include <vector> namespace testing { // To implement a matcher Foo for type T, define: // 1. a class FooMatcherImpl that implements the // MatcherInterface<T> interface, and // 2. a factory function that creates a Matcher<T> object from a // FooMatcherImpl*. // // The two-level delegation design makes it possible to allow a user // to write "v" instead of "Eq(v)" where a Matcher is expected, which // is impossible if we pass matchers by pointers. It also eases // ownership management as Matcher objects can now be copied like // plain values. // MatchResultListener is an abstract class. Its << operator can be // used by a matcher to explain why a value matches or doesn't match. // // TODO(wan@google.com): add method // bool InterestedInWhy(bool result) const; // to indicate whether the listener is interested in why the match // result is 'result'. class MatchResultListener { public: // Creates a listener object with the given underlying ostream. The // listener does not own the ostream. explicit MatchResultListener(::std::ostream* os) : stream_(os) {} virtual ~MatchResultListener() = 0; // Makes this class abstract. // Streams x to the underlying ostream; does nothing if the ostream // is NULL. template <typename T> MatchResultListener& operator<<(const T& x) { if (stream_ != NULL) *stream_ << x; return *this; } // Returns the underlying ostream. ::std::ostream* stream() { return stream_; } // Returns true iff the listener is interested in an explanation of // the match result. A matcher's MatchAndExplain() method can use // this information to avoid generating the explanation when no one // intends to hear it. bool IsInterested() const { return stream_ != NULL; } private: ::std::ostream* const stream_; GTEST_DISALLOW_COPY_AND_ASSIGN_(MatchResultListener); }; inline MatchResultListener::~MatchResultListener() { } // The implementation of a matcher. template <typename T> class MatcherInterface { public: virtual ~MatcherInterface() {} // Returns true iff the matcher matches x; also explains the match // result to 'listener', in the form of a non-restrictive relative // clause ("which ...", "whose ...", etc) that describes x. For // example, the MatchAndExplain() method of the Pointee(...) matcher // should generate an explanation like "which points to ...". // // You should override this method when defining a new matcher. // // It's the responsibility of the caller (Google Mock) to guarantee // that 'listener' is not NULL. This helps to simplify a matcher's // implementation when it doesn't care about the performance, as it // can talk to 'listener' without checking its validity first. // However, in order to implement dummy listeners efficiently, // listener->stream() may be NULL. virtual bool MatchAndExplain(T x, MatchResultListener* listener) const = 0; // Describes this matcher to an ostream. The function should print // a verb phrase that describes the property a value matching this // matcher should have. The subject of the verb phrase is the value // being matched. For example, the DescribeTo() method of the Gt(7) // matcher prints "is greater than 7". virtual void DescribeTo(::std::ostream* os) const = 0; // Describes the negation of this matcher to an ostream. For // example, if the description of this matcher is "is greater than // 7", the negated description could be "is not greater than 7". // You are not required to override this when implementing // MatcherInterface, but it is highly advised so that your matcher // can produce good error messages. virtual void DescribeNegationTo(::std::ostream* os) const { *os << "not ("; DescribeTo(os); *os << ")"; } }; namespace internal { // A match result listener that ignores the explanation. class DummyMatchResultListener : public MatchResultListener { public: DummyMatchResultListener() : MatchResultListener(NULL) {} private: GTEST_DISALLOW_COPY_AND_ASSIGN_(DummyMatchResultListener); }; // A match result listener that forwards the explanation to a given // ostream. The difference between this and MatchResultListener is // that the former is concrete. class StreamMatchResultListener : public MatchResultListener { public: explicit StreamMatchResultListener(::std::ostream* os) : MatchResultListener(os) {} private: GTEST_DISALLOW_COPY_AND_ASSIGN_(StreamMatchResultListener); }; // A match result listener that stores the explanation in a string. class StringMatchResultListener : public MatchResultListener { public: StringMatchResultListener() : MatchResultListener(&ss_) {} // Returns the explanation heard so far. internal::string str() const { return ss_.str(); } private: ::std::stringstream ss_; GTEST_DISALLOW_COPY_AND_ASSIGN_(StringMatchResultListener); }; // An internal class for implementing Matcher<T>, which will derive // from it. We put functionalities common to all Matcher<T> // specializations here to avoid code duplication. template <typename T> class MatcherBase { public: // Returns true iff the matcher matches x; also explains the match // result to 'listener'. bool MatchAndExplain(T x, MatchResultListener* listener) const { return impl_->MatchAndExplain(x, listener); } // Returns true iff this matcher matches x. bool Matches(T x) const { DummyMatchResultListener dummy; return MatchAndExplain(x, &dummy); } // Describes this matcher to an ostream. void DescribeTo(::std::ostream* os) const { impl_->DescribeTo(os); } // Describes the negation of this matcher to an ostream. void DescribeNegationTo(::std::ostream* os) const { impl_->DescribeNegationTo(os); } // Explains why x matches, or doesn't match, the matcher. void ExplainMatchResultTo(T x, ::std::ostream* os) const { StreamMatchResultListener listener(os); MatchAndExplain(x, &listener); } protected: MatcherBase() {} // Constructs a matcher from its implementation. explicit MatcherBase(const MatcherInterface<T>* impl) : impl_(impl) {} virtual ~MatcherBase() {} private: // shared_ptr (util/gtl/shared_ptr.h) and linked_ptr have similar // interfaces. The former dynamically allocates a chunk of memory // to hold the reference count, while the latter tracks all // references using a circular linked list without allocating // memory. It has been observed that linked_ptr performs better in // typical scenarios. However, shared_ptr can out-perform // linked_ptr when there are many more uses of the copy constructor // than the default constructor. // // If performance becomes a problem, we should see if using // shared_ptr helps. ::testing::internal::linked_ptr<const MatcherInterface<T> > impl_; }; } // namespace internal // A Matcher<T> is a copyable and IMMUTABLE (except by assignment) // object that can check whether a value of type T matches. The // implementation of Matcher<T> is just a linked_ptr to const // MatcherInterface<T>, so copying is fairly cheap. Don't inherit // from Matcher! template <typename T> class Matcher : public internal::MatcherBase<T> { public: // Constructs a null matcher. Needed for storing Matcher objects in STL // containers. A default-constructed matcher is not yet initialized. You // cannot use it until a valid value has been assigned to it. Matcher() {} // Constructs a matcher from its implementation. explicit Matcher(const MatcherInterface<T>* impl) : internal::MatcherBase<T>(impl) {} // Implicit constructor here allows people to write // EXPECT_CALL(foo, Bar(5)) instead of EXPECT_CALL(foo, Bar(Eq(5))) sometimes Matcher(T value); // NOLINT }; // The following two specializations allow the user to write str // instead of Eq(str) and "foo" instead of Eq("foo") when a string // matcher is expected. template <> class Matcher<const internal::string&> : public internal::MatcherBase<const internal::string&> { public: Matcher() {} explicit Matcher(const MatcherInterface<const internal::string&>* impl) : internal::MatcherBase<const internal::string&>(impl) {} // Allows the user to write str instead of Eq(str) sometimes, where // str is a string object. Matcher(const internal::string& s); // NOLINT // Allows the user to write "foo" instead of Eq("foo") sometimes. Matcher(const char* s); // NOLINT }; template <> class Matcher<internal::string> : public internal::MatcherBase<internal::string> { public: Matcher() {} explicit Matcher(const MatcherInterface<internal::string>* impl) : internal::MatcherBase<internal::string>(impl) {} // Allows the user to write str instead of Eq(str) sometimes, where // str is a string object. Matcher(const internal::string& s); // NOLINT // Allows the user to write "foo" instead of Eq("foo") sometimes. Matcher(const char* s); // NOLINT }; // The PolymorphicMatcher class template makes it easy to implement a // polymorphic matcher (i.e. a matcher that can match values of more // than one type, e.g. Eq(n) and NotNull()). // // To define a polymorphic matcher, a user should provide an Impl // class that has a DescribeTo() method and a DescribeNegationTo() // method, and define a member function (or member function template) // // bool MatchAndExplain(const Value& value, // MatchResultListener* listener) const; // // See the definition of NotNull() for a complete example. template <class Impl> class PolymorphicMatcher { public: explicit PolymorphicMatcher(const Impl& an_impl) : impl_(an_impl) {} // Returns a mutable reference to the underlying matcher // implementation object. Impl& mutable_impl() { return impl_; } // Returns an immutable reference to the underlying matcher // implementation object. const Impl& impl() const { return impl_; } template <typename T> operator Matcher<T>() const { return Matcher<T>(new MonomorphicImpl<T>(impl_)); } private: template <typename T> class MonomorphicImpl : public MatcherInterface<T> { public: explicit MonomorphicImpl(const Impl& impl) : impl_(impl) {} virtual void DescribeTo(::std::ostream* os) const { impl_.DescribeTo(os); } virtual void DescribeNegationTo(::std::ostream* os) const { impl_.DescribeNegationTo(os); } virtual bool MatchAndExplain(T x, MatchResultListener* listener) const { return impl_.MatchAndExplain(x, listener); } private: const Impl impl_; GTEST_DISALLOW_ASSIGN_(MonomorphicImpl); }; Impl impl_; GTEST_DISALLOW_ASSIGN_(PolymorphicMatcher); }; // Creates a matcher from its implementation. This is easier to use // than the Matcher<T> constructor as it doesn't require you to // explicitly write the template argument, e.g. // // MakeMatcher(foo); // vs // Matcher<const string&>(foo); template <typename T> inline Matcher<T> MakeMatcher(const MatcherInterface<T>* impl) { return Matcher<T>(impl); }; // Creates a polymorphic matcher from its implementation. This is // easier to use than the PolymorphicMatcher<Impl> constructor as it // doesn't require you to explicitly write the template argument, e.g. // // MakePolymorphicMatcher(foo); // vs // PolymorphicMatcher<TypeOfFoo>(foo); template <class Impl> inline PolymorphicMatcher<Impl> MakePolymorphicMatcher(const Impl& impl) { return PolymorphicMatcher<Impl>(impl); } // In order to be safe and clear, casting between different matcher // types is done explicitly via MatcherCast<T>(m), which takes a // matcher m and returns a Matcher<T>. It compiles only when T can be // statically converted to the argument type of m. template <typename T, typename M> Matcher<T> MatcherCast(M m); // Implements SafeMatcherCast(). // // We use an intermediate class to do the actual safe casting as Nokia's // Symbian compiler cannot decide between // template <T, M> ... (M) and // template <T, U> ... (const Matcher<U>&) // for function templates but can for member function templates. template <typename T> class SafeMatcherCastImpl { public: // This overload handles polymorphic matchers only since monomorphic // matchers are handled by the next one. template <typename M> static inline Matcher<T> Cast(M polymorphic_matcher) { return Matcher<T>(polymorphic_matcher); } // This overload handles monomorphic matchers. // // In general, if type T can be implicitly converted to type U, we can // safely convert a Matcher<U> to a Matcher<T> (i.e. Matcher is // contravariant): just keep a copy of the original Matcher<U>, convert the // argument from type T to U, and then pass it to the underlying Matcher<U>. // The only exception is when U is a reference and T is not, as the // underlying Matcher<U> may be interested in the argument's address, which // is not preserved in the conversion from T to U. template <typename U> static inline Matcher<T> Cast(const Matcher<U>& matcher) { // Enforce that T can be implicitly converted to U. GTEST_COMPILE_ASSERT_((internal::ImplicitlyConvertible<T, U>::value), T_must_be_implicitly_convertible_to_U); // Enforce that we are not converting a non-reference type T to a reference // type U. GTEST_COMPILE_ASSERT_( internal::is_reference<T>::value || !internal::is_reference<U>::value, cannot_convert_non_referentce_arg_to_reference); // In case both T and U are arithmetic types, enforce that the // conversion is not lossy. typedef GTEST_REMOVE_REFERENCE_AND_CONST_(T) RawT; typedef GTEST_REMOVE_REFERENCE_AND_CONST_(U) RawU; const bool kTIsOther = GMOCK_KIND_OF_(RawT) == internal::kOther; const bool kUIsOther = GMOCK_KIND_OF_(RawU) == internal::kOther; GTEST_COMPILE_ASSERT_( kTIsOther || kUIsOther || (internal::LosslessArithmeticConvertible<RawT, RawU>::value), conversion_of_arithmetic_types_must_be_lossless); return MatcherCast<T>(matcher); } }; template <typename T, typename M> inline Matcher<T> SafeMatcherCast(const M& polymorphic_matcher) { return SafeMatcherCastImpl<T>::Cast(polymorphic_matcher); } // A<T>() returns a matcher that matches any value of type T. template <typename T> Matcher<T> A(); // Anything inside the 'internal' namespace IS INTERNAL IMPLEMENTATION // and MUST NOT BE USED IN USER CODE!!! namespace internal { // If the explanation is not empty, prints it to the ostream. inline void PrintIfNotEmpty(const internal::string& explanation, std::ostream* os) { if (explanation != "" && os != NULL) { *os << ", " << explanation; } } // Returns true if the given type name is easy to read by a human. // This is used to decide whether printing the type of a value might // be helpful. inline bool IsReadableTypeName(const string& type_name) { // We consider a type name readable if it's short or doesn't contain // a template or function type. return (type_name.length() <= 20 || type_name.find_first_of("<(") == string::npos); } // Matches the value against the given matcher, prints the value and explains // the match result to the listener. Returns the match result. // 'listener' must not be NULL. // Value cannot be passed by const reference, because some matchers take a // non-const argument. template <typename Value, typename T> bool MatchPrintAndExplain(Value& value, const Matcher<T>& matcher, MatchResultListener* listener) { if (!listener->IsInterested()) { // If the listener is not interested, we do not need to construct the // inner explanation. return matcher.Matches(value); } StringMatchResultListener inner_listener; const bool match = matcher.MatchAndExplain(value, &inner_listener); UniversalPrint(value, listener->stream()); #if GTEST_HAS_RTTI const string& type_name = GetTypeName<Value>(); if (IsReadableTypeName(type_name)) *listener->stream() << " (of type " << type_name << ")"; #endif PrintIfNotEmpty(inner_listener.str(), listener->stream()); return match; } // An internal helper class for doing compile-time loop on a tuple's // fields. template <size_t N> class TuplePrefix { public: // TuplePrefix<N>::Matches(matcher_tuple, value_tuple) returns true // iff the first N fields of matcher_tuple matches the first N // fields of value_tuple, respectively. template <typename MatcherTuple, typename ValueTuple> static bool Matches(const MatcherTuple& matcher_tuple, const ValueTuple& value_tuple) { using ::std::tr1::get; return TuplePrefix<N - 1>::Matches(matcher_tuple, value_tuple) && get<N - 1>(matcher_tuple).Matches(get<N - 1>(value_tuple)); } // TuplePrefix<N>::ExplainMatchFailuresTo(matchers, values, os) // describes failures in matching the first N fields of matchers // against the first N fields of values. If there is no failure, // nothing will be streamed to os. template <typename MatcherTuple, typename ValueTuple> static void ExplainMatchFailuresTo(const MatcherTuple& matchers, const ValueTuple& values, ::std::ostream* os) { using ::std::tr1::tuple_element; using ::std::tr1::get; // First, describes failures in the first N - 1 fields. TuplePrefix<N - 1>::ExplainMatchFailuresTo(matchers, values, os); // Then describes the failure (if any) in the (N - 1)-th (0-based) // field. typename tuple_element<N - 1, MatcherTuple>::type matcher = get<N - 1>(matchers); typedef typename tuple_element<N - 1, ValueTuple>::type Value; Value value = get<N - 1>(values); StringMatchResultListener listener; if (!matcher.MatchAndExplain(value, &listener)) { // TODO(wan): include in the message the name of the parameter // as used in MOCK_METHOD*() when possible. *os << " Expected arg #" << N - 1 << ": "; get<N - 1>(matchers).DescribeTo(os); *os << "\n Actual: "; // We remove the reference in type Value to prevent the // universal printer from printing the address of value, which // isn't interesting to the user most of the time. The // matcher's MatchAndExplain() method handles the case when // the address is interesting. internal::UniversalPrint(value, os); PrintIfNotEmpty(listener.str(), os); *os << "\n"; } } }; // The base case. template <> class TuplePrefix<0> { public: template <typename MatcherTuple, typename ValueTuple> static bool Matches(const MatcherTuple& /* matcher_tuple */, const ValueTuple& /* value_tuple */) { return true; } template <typename MatcherTuple, typename ValueTuple> static void ExplainMatchFailuresTo(const MatcherTuple& /* matchers */, const ValueTuple& /* values */, ::std::ostream* /* os */) {} }; // TupleMatches(matcher_tuple, value_tuple) returns true iff all // matchers in matcher_tuple match the corresponding fields in // value_tuple. It is a compiler error if matcher_tuple and // value_tuple have different number of fields or incompatible field // types. template <typename MatcherTuple, typename ValueTuple> bool TupleMatches(const MatcherTuple& matcher_tuple, const ValueTuple& value_tuple) { using ::std::tr1::tuple_size; // Makes sure that matcher_tuple and value_tuple have the same // number of fields. GTEST_COMPILE_ASSERT_(tuple_size<MatcherTuple>::value == tuple_size<ValueTuple>::value, matcher_and_value_have_different_numbers_of_fields); return TuplePrefix<tuple_size<ValueTuple>::value>:: Matches(matcher_tuple, value_tuple); } // Describes failures in matching matchers against values. If there // is no failure, nothing will be streamed to os. template <typename MatcherTuple, typename ValueTuple> void ExplainMatchFailureTupleTo(const MatcherTuple& matchers, const ValueTuple& values, ::std::ostream* os) { using ::std::tr1::tuple_size; TuplePrefix<tuple_size<MatcherTuple>::value>::ExplainMatchFailuresTo( matchers, values, os); } // The MatcherCastImpl class template is a helper for implementing // MatcherCast(). We need this helper in order to partially // specialize the implementation of MatcherCast() (C++ allows // class/struct templates to be partially specialized, but not // function templates.). // This general version is used when MatcherCast()'s argument is a // polymorphic matcher (i.e. something that can be converted to a // Matcher but is not one yet; for example, Eq(value)). template <typename T, typename M> class MatcherCastImpl { public: static Matcher<T> Cast(M polymorphic_matcher) { return Matcher<T>(polymorphic_matcher); } }; // This more specialized version is used when MatcherCast()'s argument // is already a Matcher. This only compiles when type T can be // statically converted to type U. template <typename T, typename U> class MatcherCastImpl<T, Matcher<U> > { public: static Matcher<T> Cast(const Matcher<U>& source_matcher) { return Matcher<T>(new Impl(source_matcher)); } private: class Impl : public MatcherInterface<T> { public: explicit Impl(const Matcher<U>& source_matcher) : source_matcher_(source_matcher) {} // We delegate the matching logic to the source matcher. virtual bool MatchAndExplain(T x, MatchResultListener* listener) const { return source_matcher_.MatchAndExplain(static_cast<U>(x), listener); } virtual void DescribeTo(::std::ostream* os) const { source_matcher_.DescribeTo(os); } virtual void DescribeNegationTo(::std::ostream* os) const { source_matcher_.DescribeNegationTo(os); } private: const Matcher<U> source_matcher_; GTEST_DISALLOW_ASSIGN_(Impl); }; }; // This even more specialized version is used for efficiently casting // a matcher to its own type. template <typename T> class MatcherCastImpl<T, Matcher<T> > { public: static Matcher<T> Cast(const Matcher<T>& matcher) { return matcher; } }; // Implements A<T>(). template <typename T> class AnyMatcherImpl : public MatcherInterface<T> { public: virtual bool MatchAndExplain( T /* x */, MatchResultListener* /* listener */) const { return true; } virtual void DescribeTo(::std::ostream* os) const { *os << "is anything"; } virtual void DescribeNegationTo(::std::ostream* os) const { // This is mostly for completeness' safe, as it's not very useful // to write Not(A<bool>()). However we cannot completely rule out // such a possibility, and it doesn't hurt to be prepared. *os << "never matches"; } }; // Implements _, a matcher that matches any value of any // type. This is a polymorphic matcher, so we need a template type // conversion operator to make it appearing as a Matcher<T> for any // type T. class AnythingMatcher { public: template <typename T> operator Matcher<T>() const { return A<T>(); } }; // Implements a matcher that compares a given value with a // pre-supplied value using one of the ==, <=, <, etc, operators. The // two values being compared don't have to have the same type. // // The matcher defined here is polymorphic (for example, Eq(5) can be // used to match an int, a short, a double, etc). Therefore we use // a template type conversion operator in the implementation. // // We define this as a macro in order to eliminate duplicated source // code. // // The following template definition assumes that the Rhs parameter is // a "bare" type (i.e. neither 'const T' nor 'T&'). #define GMOCK_IMPLEMENT_COMPARISON_MATCHER_( \ name, op, relation, negated_relation) \ template <typename Rhs> class name##Matcher { \ public: \ explicit name##Matcher(const Rhs& rhs) : rhs_(rhs) {} \ template <typename Lhs> \ operator Matcher<Lhs>() const { \ return MakeMatcher(new Impl<Lhs>(rhs_)); \ } \ private: \ template <typename Lhs> \ class Impl : public MatcherInterface<Lhs> { \ public: \ explicit Impl(const Rhs& rhs) : rhs_(rhs) {} \ virtual bool MatchAndExplain(\ Lhs lhs, MatchResultListener* /* listener */) const { \ return lhs op rhs_; \ } \ virtual void DescribeTo(::std::ostream* os) const { \ *os << relation " "; \ UniversalPrint(rhs_, os); \ } \ virtual void DescribeNegationTo(::std::ostream* os) const { \ *os << negated_relation " "; \ UniversalPrint(rhs_, os); \ } \ private: \ Rhs rhs_; \ GTEST_DISALLOW_ASSIGN_(Impl); \ }; \ Rhs rhs_; \ GTEST_DISALLOW_ASSIGN_(name##Matcher); \ } // Implements Eq(v), Ge(v), Gt(v), Le(v), Lt(v), and Ne(v) // respectively. GMOCK_IMPLEMENT_COMPARISON_MATCHER_(Eq, ==, "is equal to", "isn't equal to"); GMOCK_IMPLEMENT_COMPARISON_MATCHER_(Ge, >=, "is >=", "isn't >="); GMOCK_IMPLEMENT_COMPARISON_MATCHER_(Gt, >, "is >", "isn't >"); GMOCK_IMPLEMENT_COMPARISON_MATCHER_(Le, <=, "is <=", "isn't <="); GMOCK_IMPLEMENT_COMPARISON_MATCHER_(Lt, <, "is <", "isn't <"); GMOCK_IMPLEMENT_COMPARISON_MATCHER_(Ne, !=, "isn't equal to", "is equal to"); #undef GMOCK_IMPLEMENT_COMPARISON_MATCHER_ // Implements the polymorphic IsNull() matcher, which matches any raw or smart // pointer that is NULL. class IsNullMatcher { public: template <typename Pointer> bool MatchAndExplain(const Pointer& p, MatchResultListener* /* listener */) const { return GetRawPointer(p) == NULL; } void DescribeTo(::std::ostream* os) const { *os << "is NULL"; } void DescribeNegationTo(::std::ostream* os) const { *os << "isn't NULL"; } }; // Implements the polymorphic NotNull() matcher, which matches any raw or smart // pointer that is not NULL. class NotNullMatcher { public: template <typename Pointer> bool MatchAndExplain(const Pointer& p, MatchResultListener* /* listener */) const { return GetRawPointer(p) != NULL; } void DescribeTo(::std::ostream* os) const { *os << "isn't NULL"; } void DescribeNegationTo(::std::ostream* os) const { *os << "is NULL"; } }; // Ref(variable) matches any argument that is a reference to // 'variable'. This matcher is polymorphic as it can match any // super type of the type of 'variable'. // // The RefMatcher template class implements Ref(variable). It can // only be instantiated with a reference type. This prevents a user // from mistakenly using Ref(x) to match a non-reference function // argument. For example, the following will righteously cause a // compiler error: // // int n; // Matcher<int> m1 = Ref(n); // This won't compile. // Matcher<int&> m2 = Ref(n); // This will compile. template <typename T> class RefMatcher; template <typename T> class RefMatcher<T&> { // Google Mock is a generic framework and thus needs to support // mocking any function types, including those that take non-const // reference arguments. Therefore the template parameter T (and // Super below) can be instantiated to either a const type or a // non-const type. public: // RefMatcher() takes a T& instead of const T&, as we want the // compiler to catch using Ref(const_value) as a matcher for a // non-const reference. explicit RefMatcher(T& x) : object_(x) {} // NOLINT template <typename Super> operator Matcher<Super&>() const { // By passing object_ (type T&) to Impl(), which expects a Super&, // we make sure that Super is a super type of T. In particular, // this catches using Ref(const_value) as a matcher for a // non-const reference, as you cannot implicitly convert a const // reference to a non-const reference. return MakeMatcher(new Impl<Super>(object_)); } private: template <typename Super> class Impl : public MatcherInterface<Super&> { public: explicit Impl(Super& x) : object_(x) {} // NOLINT // MatchAndExplain() takes a Super& (as opposed to const Super&) // in order to match the interface MatcherInterface<Super&>. virtual bool MatchAndExplain( Super& x, MatchResultListener* listener) const { *listener << "which is located @" << static_cast<const void*>(&x); return &x == &object_; } virtual void DescribeTo(::std::ostream* os) const { *os << "references the variable "; UniversalPrinter<Super&>::Print(object_, os); } virtual void DescribeNegationTo(::std::ostream* os) const { *os << "does not reference the variable "; UniversalPrinter<Super&>::Print(object_, os); } private: const Super& object_; GTEST_DISALLOW_ASSIGN_(Impl); }; T& object_; GTEST_DISALLOW_ASSIGN_(RefMatcher); }; // Polymorphic helper functions for narrow and wide string matchers. inline bool CaseInsensitiveCStringEquals(const char* lhs, const char* rhs) { return String::CaseInsensitiveCStringEquals(lhs, rhs); } inline bool CaseInsensitiveCStringEquals(const wchar_t* lhs, const wchar_t* rhs) { return String::CaseInsensitiveWideCStringEquals(lhs, rhs); } // String comparison for narrow or wide strings that can have embedded NUL // characters. template <typename StringType> bool CaseInsensitiveStringEquals(const StringType& s1, const StringType& s2) { // Are the heads equal? if (!CaseInsensitiveCStringEquals(s1.c_str(), s2.c_str())) { return false; } // Skip the equal heads. const typename StringType::value_type nul = 0; const size_t i1 = s1.find(nul), i2 = s2.find(nul); // Are we at the end of either s1 or s2? if (i1 == StringType::npos || i2 == StringType::npos) { return i1 == i2; } // Are the tails equal? return CaseInsensitiveStringEquals(s1.substr(i1 + 1), s2.substr(i2 + 1)); } // String matchers. // Implements equality-based string matchers like StrEq, StrCaseNe, and etc. template <typename StringType> class StrEqualityMatcher { public: typedef typename StringType::const_pointer ConstCharPointer; StrEqualityMatcher(const StringType& str, bool expect_eq, bool case_sensitive) : string_(str), expect_eq_(expect_eq), case_sensitive_(case_sensitive) {} // When expect_eq_ is true, returns true iff s is equal to string_; // otherwise returns true iff s is not equal to string_. bool MatchAndExplain(ConstCharPointer s, MatchResultListener* listener) const { if (s == NULL) { return !expect_eq_; } return MatchAndExplain(StringType(s), listener); } bool MatchAndExplain(const StringType& s, MatchResultListener* /* listener */) const { const bool eq = case_sensitive_ ? s == string_ : CaseInsensitiveStringEquals(s, string_); return expect_eq_ == eq; } void DescribeTo(::std::ostream* os) const { DescribeToHelper(expect_eq_, os); } void DescribeNegationTo(::std::ostream* os) const { DescribeToHelper(!expect_eq_, os); } private: void DescribeToHelper(bool expect_eq, ::std::ostream* os) const { *os << (expect_eq ? "is " : "isn't "); *os << "equal to "; if (!case_sensitive_) { *os << "(ignoring case) "; } UniversalPrint(string_, os); } const StringType string_; const bool expect_eq_; const bool case_sensitive_; GTEST_DISALLOW_ASSIGN_(StrEqualityMatcher); }; // Implements the polymorphic HasSubstr(substring) matcher, which // can be used as a Matcher<T> as long as T can be converted to a // string. template <typename StringType> class HasSubstrMatcher { public: typedef typename StringType::const_pointer ConstCharPointer; explicit HasSubstrMatcher(const StringType& substring) : substring_(substring) {} // These overloaded methods allow HasSubstr(substring) to be used as a // Matcher<T> as long as T can be converted to string. Returns true // iff s contains substring_ as a substring. bool MatchAndExplain(ConstCharPointer s, MatchResultListener* listener) const { return s != NULL && MatchAndExplain(StringType(s), listener); } bool MatchAndExplain(const StringType& s, MatchResultListener* /* listener */) const { return s.find(substring_) != StringType::npos; } // Describes what this matcher matches. void DescribeTo(::std::ostream* os) const { *os << "has substring "; UniversalPrint(substring_, os); } void DescribeNegationTo(::std::ostream* os) const { *os << "has no substring "; UniversalPrint(substring_, os); } private: const StringType substring_; GTEST_DISALLOW_ASSIGN_(HasSubstrMatcher); }; // Implements the polymorphic StartsWith(substring) matcher, which // can be used as a Matcher<T> as long as T can be converted to a // string. template <typename StringType> class StartsWithMatcher { public: typedef typename StringType::const_pointer ConstCharPointer; explicit StartsWithMatcher(const StringType& prefix) : prefix_(prefix) { } // These overloaded methods allow StartsWith(prefix) to be used as a // Matcher<T> as long as T can be converted to string. Returns true // iff s starts with prefix_. bool MatchAndExplain(ConstCharPointer s, MatchResultListener* listener) const { return s != NULL && MatchAndExplain(StringType(s), listener); } bool MatchAndExplain(const StringType& s, MatchResultListener* /* listener */) const { return s.length() >= prefix_.length() && s.substr(0, prefix_.length()) == prefix_; } void DescribeTo(::std::ostream* os) const { *os << "starts with "; UniversalPrint(prefix_, os); } void DescribeNegationTo(::std::ostream* os) const { *os << "doesn't start with "; UniversalPrint(prefix_, os); } private: const StringType prefix_; GTEST_DISALLOW_ASSIGN_(StartsWithMatcher); }; // Implements the polymorphic EndsWith(substring) matcher, which // can be used as a Matcher<T> as long as T can be converted to a // string. template <typename StringType> class EndsWithMatcher { public: typedef typename StringType::const_pointer ConstCharPointer; explicit EndsWithMatcher(const StringType& suffix) : suffix_(suffix) {} // These overloaded methods allow EndsWith(suffix) to be used as a // Matcher<T> as long as T can be converted to string. Returns true // iff s ends with suffix_. bool MatchAndExplain(ConstCharPointer s, MatchResultListener* listener) const { return s != NULL && MatchAndExplain(StringType(s), listener); } bool MatchAndExplain(const StringType& s, MatchResultListener* /* listener */) const { return s.length() >= suffix_.length() && s.substr(s.length() - suffix_.length()) == suffix_; } void DescribeTo(::std::ostream* os) const { *os << "ends with "; UniversalPrint(suffix_, os); } void DescribeNegationTo(::std::ostream* os) const { *os << "doesn't end with "; UniversalPrint(suffix_, os); } private: const StringType suffix_; GTEST_DISALLOW_ASSIGN_(EndsWithMatcher); }; // Implements polymorphic matchers MatchesRegex(regex) and // ContainsRegex(regex), which can be used as a Matcher<T> as long as // T can be converted to a string. class MatchesRegexMatcher { public: MatchesRegexMatcher(const RE* regex, bool full_match) : regex_(regex), full_match_(full_match) {} // These overloaded methods allow MatchesRegex(regex) to be used as // a Matcher<T> as long as T can be converted to string. Returns // true iff s matches regular expression regex. When full_match_ is // true, a full match is done; otherwise a partial match is done. bool MatchAndExplain(const char* s, MatchResultListener* listener) const { return s != NULL && MatchAndExplain(internal::string(s), listener); } bool MatchAndExplain(const internal::string& s, MatchResultListener* /* listener */) const { return full_match_ ? RE::FullMatch(s, *regex_) : RE::PartialMatch(s, *regex_); } void DescribeTo(::std::ostream* os) const { *os << (full_match_ ? "matches" : "contains") << " regular expression "; UniversalPrinter<internal::string>::Print(regex_->pattern(), os); } void DescribeNegationTo(::std::ostream* os) const { *os << "doesn't " << (full_match_ ? "match" : "contain") << " regular expression "; UniversalPrinter<internal::string>::Print(regex_->pattern(), os); } private: const internal::linked_ptr<const RE> regex_; const bool full_match_; GTEST_DISALLOW_ASSIGN_(MatchesRegexMatcher); }; // Implements a matcher that compares the two fields of a 2-tuple // using one of the ==, <=, <, etc, operators. The two fields being // compared don't have to have the same type. // // The matcher defined here is polymorphic (for example, Eq() can be // used to match a tuple<int, short>, a tuple<const long&, double>, // etc). Therefore we use a template type conversion operator in the // implementation. // // We define this as a macro in order to eliminate duplicated source // code. #define GMOCK_IMPLEMENT_COMPARISON2_MATCHER_(name, op, relation) \ class name##2Matcher { \ public: \ template <typename T1, typename T2> \ operator Matcher< ::std::tr1::tuple<T1, T2> >() const { \ return MakeMatcher(new Impl< ::std::tr1::tuple<T1, T2> >); \ } \ template <typename T1, typename T2> \ operator Matcher<const ::std::tr1::tuple<T1, T2>&>() const { \ return MakeMatcher(new Impl<const ::std::tr1::tuple<T1, T2>&>); \ } \ private: \ template <typename Tuple> \ class Impl : public MatcherInterface<Tuple> { \ public: \ virtual bool MatchAndExplain( \ Tuple args, \ MatchResultListener* /* listener */) const { \ return ::std::tr1::get<0>(args) op ::std::tr1::get<1>(args); \ } \ virtual void DescribeTo(::std::ostream* os) const { \ *os << "are " relation; \ } \ virtual void DescribeNegationTo(::std::ostream* os) const { \ *os << "aren't " relation; \ } \ }; \ } // Implements Eq(), Ge(), Gt(), Le(), Lt(), and Ne() respectively. GMOCK_IMPLEMENT_COMPARISON2_MATCHER_(Eq, ==, "an equal pair"); GMOCK_IMPLEMENT_COMPARISON2_MATCHER_( Ge, >=, "a pair where the first >= the second"); GMOCK_IMPLEMENT_COMPARISON2_MATCHER_( Gt, >, "a pair where the first > the second"); GMOCK_IMPLEMENT_COMPARISON2_MATCHER_( Le, <=, "a pair where the first <= the second"); GMOCK_IMPLEMENT_COMPARISON2_MATCHER_( Lt, <, "a pair where the first < the second"); GMOCK_IMPLEMENT_COMPARISON2_MATCHER_(Ne, !=, "an unequal pair"); #undef GMOCK_IMPLEMENT_COMPARISON2_MATCHER_ // Implements the Not(...) matcher for a particular argument type T. // We do not nest it inside the NotMatcher class template, as that // will prevent different instantiations of NotMatcher from sharing // the same NotMatcherImpl<T> class. template <typename T> class NotMatcherImpl : public MatcherInterface<T> { public: explicit NotMatcherImpl(const Matcher<T>& matcher) : matcher_(matcher) {} virtual bool MatchAndExplain(T x, MatchResultListener* listener) const { return !matcher_.MatchAndExplain(x, listener); } virtual void DescribeTo(::std::ostream* os) const { matcher_.DescribeNegationTo(os); } virtual void DescribeNegationTo(::std::ostream* os) const { matcher_.DescribeTo(os); } private: const Matcher<T> matcher_; GTEST_DISALLOW_ASSIGN_(NotMatcherImpl); }; // Implements the Not(m) matcher, which matches a value that doesn't // match matcher m. template <typename InnerMatcher> class NotMatcher { public: explicit NotMatcher(InnerMatcher matcher) : matcher_(matcher) {} // This template type conversion operator allows Not(m) to be used // to match any type m can match. template <typename T> operator Matcher<T>() const { return Matcher<T>(new NotMatcherImpl<T>(SafeMatcherCast<T>(matcher_))); } private: InnerMatcher matcher_; GTEST_DISALLOW_ASSIGN_(NotMatcher); }; // Implements the AllOf(m1, m2) matcher for a particular argument type // T. We do not nest it inside the BothOfMatcher class template, as // that will prevent different instantiations of BothOfMatcher from // sharing the same BothOfMatcherImpl<T> class. template <typename T> class BothOfMatcherImpl : public MatcherInterface<T> { public: BothOfMatcherImpl(const Matcher<T>& matcher1, const Matcher<T>& matcher2) : matcher1_(matcher1), matcher2_(matcher2) {} virtual void DescribeTo(::std::ostream* os) const { *os << "("; matcher1_.DescribeTo(os); *os << ") and ("; matcher2_.DescribeTo(os); *os << ")"; } virtual void DescribeNegationTo(::std::ostream* os) const { *os << "("; matcher1_.DescribeNegationTo(os); *os << ") or ("; matcher2_.DescribeNegationTo(os); *os << ")"; } virtual bool MatchAndExplain(T x, MatchResultListener* listener) const { // If either matcher1_ or matcher2_ doesn't match x, we only need // to explain why one of them fails. StringMatchResultListener listener1; if (!matcher1_.MatchAndExplain(x, &listener1)) { *listener << listener1.str(); return false; } StringMatchResultListener listener2; if (!matcher2_.MatchAndExplain(x, &listener2)) { *listener << listener2.str(); return false; } // Otherwise we need to explain why *both* of them match. const internal::string s1 = listener1.str(); const internal::string s2 = listener2.str(); if (s1 == "") { *listener << s2; } else { *listener << s1; if (s2 != "") { *listener << ", and " << s2; } } return true; } private: const Matcher<T> matcher1_; const Matcher<T> matcher2_; GTEST_DISALLOW_ASSIGN_(BothOfMatcherImpl); }; // Used for implementing the AllOf(m_1, ..., m_n) matcher, which // matches a value that matches all of the matchers m_1, ..., and m_n. template <typename Matcher1, typename Matcher2> class BothOfMatcher { public: BothOfMatcher(Matcher1 matcher1, Matcher2 matcher2) : matcher1_(matcher1), matcher2_(matcher2) {} // This template type conversion operator allows a // BothOfMatcher<Matcher1, Matcher2> object to match any type that // both Matcher1 and Matcher2 can match. template <typename T> operator Matcher<T>() const { return Matcher<T>(new BothOfMatcherImpl<T>(SafeMatcherCast<T>(matcher1_), SafeMatcherCast<T>(matcher2_))); } private: Matcher1 matcher1_; Matcher2 matcher2_; GTEST_DISALLOW_ASSIGN_(BothOfMatcher); }; // Implements the AnyOf(m1, m2) matcher for a particular argument type // T. We do not nest it inside the AnyOfMatcher class template, as // that will prevent different instantiations of AnyOfMatcher from // sharing the same EitherOfMatcherImpl<T> class. template <typename T> class EitherOfMatcherImpl : public MatcherInterface<T> { public: EitherOfMatcherImpl(const Matcher<T>& matcher1, const Matcher<T>& matcher2) : matcher1_(matcher1), matcher2_(matcher2) {} virtual void DescribeTo(::std::ostream* os) const { *os << "("; matcher1_.DescribeTo(os); *os << ") or ("; matcher2_.DescribeTo(os); *os << ")"; } virtual void DescribeNegationTo(::std::ostream* os) const { *os << "("; matcher1_.DescribeNegationTo(os); *os << ") and ("; matcher2_.DescribeNegationTo(os); *os << ")"; } virtual bool MatchAndExplain(T x, MatchResultListener* listener) const { // If either matcher1_ or matcher2_ matches x, we just need to // explain why *one* of them matches. StringMatchResultListener listener1; if (matcher1_.MatchAndExplain(x, &listener1)) { *listener << listener1.str(); return true; } StringMatchResultListener listener2; if (matcher2_.MatchAndExplain(x, &listener2)) { *listener << listener2.str(); return true; } // Otherwise we need to explain why *both* of them fail. const internal::string s1 = listener1.str(); const internal::string s2 = listener2.str(); if (s1 == "") { *listener << s2; } else { *listener << s1; if (s2 != "") { *listener << ", and " << s2; } } return false; } private: const Matcher<T> matcher1_; const Matcher<T> matcher2_; GTEST_DISALLOW_ASSIGN_(EitherOfMatcherImpl); }; // Used for implementing the AnyOf(m_1, ..., m_n) matcher, which // matches a value that matches at least one of the matchers m_1, ..., // and m_n. template <typename Matcher1, typename Matcher2> class EitherOfMatcher { public: EitherOfMatcher(Matcher1 matcher1, Matcher2 matcher2) : matcher1_(matcher1), matcher2_(matcher2) {} // This template type conversion operator allows a // EitherOfMatcher<Matcher1, Matcher2> object to match any type that // both Matcher1 and Matcher2 can match. template <typename T> operator Matcher<T>() const { return Matcher<T>(new EitherOfMatcherImpl<T>( SafeMatcherCast<T>(matcher1_), SafeMatcherCast<T>(matcher2_))); } private: Matcher1 matcher1_; Matcher2 matcher2_; GTEST_DISALLOW_ASSIGN_(EitherOfMatcher); }; // Used for implementing Truly(pred), which turns a predicate into a // matcher. template <typename Predicate> class TrulyMatcher { public: explicit TrulyMatcher(Predicate pred) : predicate_(pred) {} // This method template allows Truly(pred) to be used as a matcher // for type T where T is the argument type of predicate 'pred'. The // argument is passed by reference as the predicate may be // interested in the address of the argument. template <typename T> bool MatchAndExplain(T& x, // NOLINT MatchResultListener* /* listener */) const { // Without the if-statement, MSVC sometimes warns about converting // a value to bool (warning 4800). // // We cannot write 'return !!predicate_(x);' as that doesn't work // when predicate_(x) returns a class convertible to bool but // having no operator!(). if (predicate_(x)) return true; return false; } void DescribeTo(::std::ostream* os) const { *os << "satisfies the given predicate"; } void DescribeNegationTo(::std::ostream* os) const { *os << "doesn't satisfy the given predicate"; } private: Predicate predicate_; GTEST_DISALLOW_ASSIGN_(TrulyMatcher); }; // Used for implementing Matches(matcher), which turns a matcher into // a predicate. template <typename M> class MatcherAsPredicate { public: explicit MatcherAsPredicate(M matcher) : matcher_(matcher) {} // This template operator() allows Matches(m) to be used as a // predicate on type T where m is a matcher on type T. // // The argument x is passed by reference instead of by value, as // some matcher may be interested in its address (e.g. as in // Matches(Ref(n))(x)). template <typename T> bool operator()(const T& x) const { // We let matcher_ commit to a particular type here instead of // when the MatcherAsPredicate object was constructed. This // allows us to write Matches(m) where m is a polymorphic matcher // (e.g. Eq(5)). // // If we write Matcher<T>(matcher_).Matches(x) here, it won't // compile when matcher_ has type Matcher<const T&>; if we write // Matcher<const T&>(matcher_).Matches(x) here, it won't compile // when matcher_ has type Matcher<T>; if we just write // matcher_.Matches(x), it won't compile when matcher_ is // polymorphic, e.g. Eq(5). // // MatcherCast<const T&>() is necessary for making the code work // in all of the above situations. return MatcherCast<const T&>(matcher_).Matches(x); } private: M matcher_; GTEST_DISALLOW_ASSIGN_(MatcherAsPredicate); }; // For implementing ASSERT_THAT() and EXPECT_THAT(). The template // argument M must be a type that can be converted to a matcher. template <typename M> class PredicateFormatterFromMatcher { public: explicit PredicateFormatterFromMatcher(const M& m) : matcher_(m) {} // This template () operator allows a PredicateFormatterFromMatcher // object to act as a predicate-formatter suitable for using with // Google Test's EXPECT_PRED_FORMAT1() macro. template <typename T> AssertionResult operator()(const char* value_text, const T& x) const { // We convert matcher_ to a Matcher<const T&> *now* instead of // when the PredicateFormatterFromMatcher object was constructed, // as matcher_ may be polymorphic (e.g. NotNull()) and we won't // know which type to instantiate it to until we actually see the // type of x here. // // We write MatcherCast<const T&>(matcher_) instead of // Matcher<const T&>(matcher_), as the latter won't compile when // matcher_ has type Matcher<T> (e.g. An<int>()). const Matcher<const T&> matcher = MatcherCast<const T&>(matcher_); StringMatchResultListener listener; if (MatchPrintAndExplain(x, matcher, &listener)) return AssertionSuccess(); ::std::stringstream ss; ss << "Value of: " << value_text << "\n" << "Expected: "; matcher.DescribeTo(&ss); ss << "\n Actual: " << listener.str(); return AssertionFailure() << ss.str(); } private: const M matcher_; GTEST_DISALLOW_ASSIGN_(PredicateFormatterFromMatcher); }; // A helper function for converting a matcher to a predicate-formatter // without the user needing to explicitly write the type. This is // used for implementing ASSERT_THAT() and EXPECT_THAT(). template <typename M> inline PredicateFormatterFromMatcher<M> MakePredicateFormatterFromMatcher(const M& matcher) { return PredicateFormatterFromMatcher<M>(matcher); } // Implements the polymorphic floating point equality matcher, which // matches two float values using ULP-based approximation. The // template is meant to be instantiated with FloatType being either // float or double. template <typename FloatType> class FloatingEqMatcher { public: // Constructor for FloatingEqMatcher. // The matcher's input will be compared with rhs. The matcher treats two // NANs as equal if nan_eq_nan is true. Otherwise, under IEEE standards, // equality comparisons between NANs will always return false. FloatingEqMatcher(FloatType rhs, bool nan_eq_nan) : rhs_(rhs), nan_eq_nan_(nan_eq_nan) {} // Implements floating point equality matcher as a Matcher<T>. template <typename T> class Impl : public MatcherInterface<T> { public: Impl(FloatType rhs, bool nan_eq_nan) : rhs_(rhs), nan_eq_nan_(nan_eq_nan) {} virtual bool MatchAndExplain(T value, MatchResultListener* /* listener */) const { const FloatingPoint<FloatType> lhs(value), rhs(rhs_); // Compares NaNs first, if nan_eq_nan_ is true. if (nan_eq_nan_ && lhs.is_nan()) { return rhs.is_nan(); } return lhs.AlmostEquals(rhs); } virtual void DescribeTo(::std::ostream* os) const { // os->precision() returns the previously set precision, which we // store to restore the ostream to its original configuration // after outputting. const ::std::streamsize old_precision = os->precision( ::std::numeric_limits<FloatType>::digits10 + 2); if (FloatingPoint<FloatType>(rhs_).is_nan()) { if (nan_eq_nan_) { *os << "is NaN"; } else { *os << "never matches"; } } else { *os << "is approximately " << rhs_; } os->precision(old_precision); } virtual void DescribeNegationTo(::std::ostream* os) const { // As before, get original precision. const ::std::streamsize old_precision = os->precision( ::std::numeric_limits<FloatType>::digits10 + 2); if (FloatingPoint<FloatType>(rhs_).is_nan()) { if (nan_eq_nan_) { *os << "isn't NaN"; } else { *os << "is anything"; } } else { *os << "isn't approximately " << rhs_; } // Restore original precision. os->precision(old_precision); } private: const FloatType rhs_; const bool nan_eq_nan_; GTEST_DISALLOW_ASSIGN_(Impl); }; // The following 3 type conversion operators allow FloatEq(rhs) and // NanSensitiveFloatEq(rhs) to be used as a Matcher<float>, a // Matcher<const float&>, or a Matcher<float&>, but nothing else. // (While Google's C++ coding style doesn't allow arguments passed // by non-const reference, we may see them in code not conforming to // the style. Therefore Google Mock needs to support them.) operator Matcher<FloatType>() const { return MakeMatcher(new Impl<FloatType>(rhs_, nan_eq_nan_)); } operator Matcher<const FloatType&>() const { return MakeMatcher(new Impl<const FloatType&>(rhs_, nan_eq_nan_)); } operator Matcher<FloatType&>() const { return MakeMatcher(new Impl<FloatType&>(rhs_, nan_eq_nan_)); } private: const FloatType rhs_; const bool nan_eq_nan_; GTEST_DISALLOW_ASSIGN_(FloatingEqMatcher); }; // Implements the Pointee(m) matcher for matching a pointer whose // pointee matches matcher m. The pointer can be either raw or smart. template <typename InnerMatcher> class PointeeMatcher { public: explicit PointeeMatcher(const InnerMatcher& matcher) : matcher_(matcher) {} // This type conversion operator template allows Pointee(m) to be // used as a matcher for any pointer type whose pointee type is // compatible with the inner matcher, where type Pointer can be // either a raw pointer or a smart pointer. // // The reason we do this instead of relying on // MakePolymorphicMatcher() is that the latter is not flexible // enough for implementing the DescribeTo() method of Pointee(). template <typename Pointer> operator Matcher<Pointer>() const { return MakeMatcher(new Impl<Pointer>(matcher_)); } private: // The monomorphic implementation that works for a particular pointer type. template <typename Pointer> class Impl : public MatcherInterface<Pointer> { public: typedef typename PointeeOf<GTEST_REMOVE_CONST_( // NOLINT GTEST_REMOVE_REFERENCE_(Pointer))>::type Pointee; explicit Impl(const InnerMatcher& matcher) : matcher_(MatcherCast<const Pointee&>(matcher)) {} virtual void DescribeTo(::std::ostream* os) const { *os << "points to a value that "; matcher_.DescribeTo(os); } virtual void DescribeNegationTo(::std::ostream* os) const { *os << "does not point to a value that "; matcher_.DescribeTo(os); } virtual bool MatchAndExplain(Pointer pointer, MatchResultListener* listener) const { if (GetRawPointer(pointer) == NULL) return false; *listener << "which points to "; return MatchPrintAndExplain(*pointer, matcher_, listener); } private: const Matcher<const Pointee&> matcher_; GTEST_DISALLOW_ASSIGN_(Impl); }; const InnerMatcher matcher_; GTEST_DISALLOW_ASSIGN_(PointeeMatcher); }; // Implements the Field() matcher for matching a field (i.e. member // variable) of an object. template <typename Class, typename FieldType> class FieldMatcher { public: FieldMatcher(FieldType Class::*field, const Matcher<const FieldType&>& matcher) : field_(field), matcher_(matcher) {} void DescribeTo(::std::ostream* os) const { *os << "is an object whose given field "; matcher_.DescribeTo(os); } void DescribeNegationTo(::std::ostream* os) const { *os << "is an object whose given field "; matcher_.DescribeNegationTo(os); } template <typename T> bool MatchAndExplain(const T& value, MatchResultListener* listener) const { return MatchAndExplainImpl( typename ::testing::internal:: is_pointer<GTEST_REMOVE_CONST_(T)>::type(), value, listener); } private: // The first argument of MatchAndExplainImpl() is needed to help // Symbian's C++ compiler choose which overload to use. Its type is // true_type iff the Field() matcher is used to match a pointer. bool MatchAndExplainImpl(false_type /* is_not_pointer */, const Class& obj, MatchResultListener* listener) const { *listener << "whose given field is "; return MatchPrintAndExplain(obj.*field_, matcher_, listener); } bool MatchAndExplainImpl(true_type /* is_pointer */, const Class* p, MatchResultListener* listener) const { if (p == NULL) return false; *listener << "which points to an object "; // Since *p has a field, it must be a class/struct/union type and // thus cannot be a pointer. Therefore we pass false_type() as // the first argument. return MatchAndExplainImpl(false_type(), *p, listener); } const FieldType Class::*field_; const Matcher<const FieldType&> matcher_; GTEST_DISALLOW_ASSIGN_(FieldMatcher); }; // Implements the Property() matcher for matching a property // (i.e. return value of a getter method) of an object. template <typename Class, typename PropertyType> class PropertyMatcher { public: // The property may have a reference type, so 'const PropertyType&' // may cause double references and fail to compile. That's why we // need GTEST_REFERENCE_TO_CONST, which works regardless of // PropertyType being a reference or not. typedef GTEST_REFERENCE_TO_CONST_(PropertyType) RefToConstProperty; PropertyMatcher(PropertyType (Class::*property)() const, const Matcher<RefToConstProperty>& matcher) : property_(property), matcher_(matcher) {} void DescribeTo(::std::ostream* os) const { *os << "is an object whose given property "; matcher_.DescribeTo(os); } void DescribeNegationTo(::std::ostream* os) const { *os << "is an object whose given property "; matcher_.DescribeNegationTo(os); } template <typename T> bool MatchAndExplain(const T&value, MatchResultListener* listener) const { return MatchAndExplainImpl( typename ::testing::internal:: is_pointer<GTEST_REMOVE_CONST_(T)>::type(), value, listener); } private: // The first argument of MatchAndExplainImpl() is needed to help // Symbian's C++ compiler choose which overload to use. Its type is // true_type iff the Property() matcher is used to match a pointer. bool MatchAndExplainImpl(false_type /* is_not_pointer */, const Class& obj, MatchResultListener* listener) const { *listener << "whose given property is "; // Cannot pass the return value (for example, int) to MatchPrintAndExplain, // which takes a non-const reference as argument. RefToConstProperty result = (obj.*property_)(); return MatchPrintAndExplain(result, matcher_, listener); } bool MatchAndExplainImpl(true_type /* is_pointer */, const Class* p, MatchResultListener* listener) const { if (p == NULL) return false; *listener << "which points to an object "; // Since *p has a property method, it must be a class/struct/union // type and thus cannot be a pointer. Therefore we pass // false_type() as the first argument. return MatchAndExplainImpl(false_type(), *p, listener); } PropertyType (Class::*property_)() const; const Matcher<RefToConstProperty> matcher_; GTEST_DISALLOW_ASSIGN_(PropertyMatcher); }; // Type traits specifying various features of different functors for ResultOf. // The default template specifies features for functor objects. // Functor classes have to typedef argument_type and result_type // to be compatible with ResultOf. template <typename Functor> struct CallableTraits { typedef typename Functor::result_type ResultType; typedef Functor StorageType; static void CheckIsValid(Functor /* functor */) {} template <typename T> static ResultType Invoke(Functor f, T arg) { return f(arg); } }; // Specialization for function pointers. template <typename ArgType, typename ResType> struct CallableTraits<ResType(*)(ArgType)> { typedef ResType ResultType; typedef ResType(*StorageType)(ArgType); static void CheckIsValid(ResType(*f)(ArgType)) { GTEST_CHECK_(f != NULL) << "NULL function pointer is passed into ResultOf()."; } template <typename T> static ResType Invoke(ResType(*f)(ArgType), T arg) { return (*f)(arg); } }; // Implements the ResultOf() matcher for matching a return value of a // unary function of an object. template <typename Callable> class ResultOfMatcher { public: typedef typename CallableTraits<Callable>::ResultType ResultType; ResultOfMatcher(Callable callable, const Matcher<ResultType>& matcher) : callable_(callable), matcher_(matcher) { CallableTraits<Callable>::CheckIsValid(callable_); } template <typename T> operator Matcher<T>() const { return Matcher<T>(new Impl<T>(callable_, matcher_)); } private: typedef typename CallableTraits<Callable>::StorageType CallableStorageType; template <typename T> class Impl : public MatcherInterface<T> { public: Impl(CallableStorageType callable, const Matcher<ResultType>& matcher) : callable_(callable), matcher_(matcher) {} virtual void DescribeTo(::std::ostream* os) const { *os << "is mapped by the given callable to a value that "; matcher_.DescribeTo(os); } virtual void DescribeNegationTo(::std::ostream* os) const { *os << "is mapped by the given callable to a value that "; matcher_.DescribeNegationTo(os); } virtual bool MatchAndExplain(T obj, MatchResultListener* listener) const { *listener << "which is mapped by the given callable to "; // Cannot pass the return value (for example, int) to // MatchPrintAndExplain, which takes a non-const reference as argument. ResultType result = CallableTraits<Callable>::template Invoke<T>(callable_, obj); return MatchPrintAndExplain(result, matcher_, listener); } private: // Functors often define operator() as non-const method even though // they are actualy stateless. But we need to use them even when // 'this' is a const pointer. It's the user's responsibility not to // use stateful callables with ResultOf(), which does't guarantee // how many times the callable will be invoked. mutable CallableStorageType callable_; const Matcher<ResultType> matcher_; GTEST_DISALLOW_ASSIGN_(Impl); }; // class Impl const CallableStorageType callable_; const Matcher<ResultType> matcher_; GTEST_DISALLOW_ASSIGN_(ResultOfMatcher); }; // Implements an equality matcher for any STL-style container whose elements // support ==. This matcher is like Eq(), but its failure explanations provide // more detailed information that is useful when the container is used as a set. // The failure message reports elements that are in one of the operands but not // the other. The failure messages do not report duplicate or out-of-order // elements in the containers (which don't properly matter to sets, but can // occur if the containers are vectors or lists, for example). // // Uses the container's const_iterator, value_type, operator ==, // begin(), and end(). template <typename Container> class ContainerEqMatcher { public: typedef internal::StlContainerView<Container> View; typedef typename View::type StlContainer; typedef typename View::const_reference StlContainerReference; // We make a copy of rhs in case the elements in it are modified // after this matcher is created. explicit ContainerEqMatcher(const Container& rhs) : rhs_(View::Copy(rhs)) { // Makes sure the user doesn't instantiate this class template // with a const or reference type. (void)testing::StaticAssertTypeEq<Container, GTEST_REMOVE_REFERENCE_AND_CONST_(Container)>(); } void DescribeTo(::std::ostream* os) const { *os << "equals "; UniversalPrint(rhs_, os); } void DescribeNegationTo(::std::ostream* os) const { *os << "does not equal "; UniversalPrint(rhs_, os); } template <typename LhsContainer> bool MatchAndExplain(const LhsContainer& lhs, MatchResultListener* listener) const { // GTEST_REMOVE_CONST_() is needed to work around an MSVC 8.0 bug // that causes LhsContainer to be a const type sometimes. typedef internal::StlContainerView<GTEST_REMOVE_CONST_(LhsContainer)> LhsView; typedef typename LhsView::type LhsStlContainer; StlContainerReference lhs_stl_container = LhsView::ConstReference(lhs); if (lhs_stl_container == rhs_) return true; ::std::ostream* const os = listener->stream(); if (os != NULL) { // Something is different. Check for extra values first. bool printed_header = false; for (typename LhsStlContainer::const_iterator it = lhs_stl_container.begin(); it != lhs_stl_container.end(); ++it) { if (internal::ArrayAwareFind(rhs_.begin(), rhs_.end(), *it) == rhs_.end()) { if (printed_header) { *os << ", "; } else { *os << "which has these unexpected elements: "; printed_header = true; } UniversalPrint(*it, os); } } // Now check for missing values. bool printed_header2 = false; for (typename StlContainer::const_iterator it = rhs_.begin(); it != rhs_.end(); ++it) { if (internal::ArrayAwareFind( lhs_stl_container.begin(), lhs_stl_container.end(), *it) == lhs_stl_container.end()) { if (printed_header2) { *os << ", "; } else { *os << (printed_header ? ",\nand" : "which") << " doesn't have these expected elements: "; printed_header2 = true; } UniversalPrint(*it, os); } } } return false; } private: const StlContainer rhs_; GTEST_DISALLOW_ASSIGN_(ContainerEqMatcher); }; // Implements Pointwise(tuple_matcher, rhs_container). tuple_matcher // must be able to be safely cast to Matcher<tuple<const T1&, const // T2&> >, where T1 and T2 are the types of elements in the LHS // container and the RHS container respectively. template <typename TupleMatcher, typename RhsContainer> class PointwiseMatcher { public: typedef internal::StlContainerView<RhsContainer> RhsView; typedef typename RhsView::type RhsStlContainer; typedef typename RhsStlContainer::value_type RhsValue; // Like ContainerEq, we make a copy of rhs in case the elements in // it are modified after this matcher is created. PointwiseMatcher(const TupleMatcher& tuple_matcher, const RhsContainer& rhs) : tuple_matcher_(tuple_matcher), rhs_(RhsView::Copy(rhs)) { // Makes sure the user doesn't instantiate this class template // with a const or reference type. (void)testing::StaticAssertTypeEq<RhsContainer, GTEST_REMOVE_REFERENCE_AND_CONST_(RhsContainer)>(); } template <typename LhsContainer> operator Matcher<LhsContainer>() const { return MakeMatcher(new Impl<LhsContainer>(tuple_matcher_, rhs_)); } template <typename LhsContainer> class Impl : public MatcherInterface<LhsContainer> { public: typedef internal::StlContainerView< GTEST_REMOVE_REFERENCE_AND_CONST_(LhsContainer)> LhsView; typedef typename LhsView::type LhsStlContainer; typedef typename LhsView::const_reference LhsStlContainerReference; typedef typename LhsStlContainer::value_type LhsValue; // We pass the LHS value and the RHS value to the inner matcher by // reference, as they may be expensive to copy. We must use tuple // instead of pair here, as a pair cannot hold references (C++ 98, // 20.2.2 [lib.pairs]). typedef std::tr1::tuple<const LhsValue&, const RhsValue&> InnerMatcherArg; Impl(const TupleMatcher& tuple_matcher, const RhsStlContainer& rhs) // mono_tuple_matcher_ holds a monomorphic version of the tuple matcher. : mono_tuple_matcher_(SafeMatcherCast<InnerMatcherArg>(tuple_matcher)), rhs_(rhs) {} virtual void DescribeTo(::std::ostream* os) const { *os << "contains " << rhs_.size() << " values, where each value and its corresponding value in "; UniversalPrinter<RhsStlContainer>::Print(rhs_, os); *os << " "; mono_tuple_matcher_.DescribeTo(os); } virtual void DescribeNegationTo(::std::ostream* os) const { *os << "doesn't contain exactly " << rhs_.size() << " values, or contains a value x at some index i" << " where x and the i-th value of "; UniversalPrint(rhs_, os); *os << " "; mono_tuple_matcher_.DescribeNegationTo(os); } virtual bool MatchAndExplain(LhsContainer lhs, MatchResultListener* listener) const { LhsStlContainerReference lhs_stl_container = LhsView::ConstReference(lhs); const size_t actual_size = lhs_stl_container.size(); if (actual_size != rhs_.size()) { *listener << "which contains " << actual_size << " values"; return false; } typename LhsStlContainer::const_iterator left = lhs_stl_container.begin(); typename RhsStlContainer::const_iterator right = rhs_.begin(); for (size_t i = 0; i != actual_size; ++i, ++left, ++right) { const InnerMatcherArg value_pair(*left, *right); if (listener->IsInterested()) { StringMatchResultListener inner_listener; if (!mono_tuple_matcher_.MatchAndExplain( value_pair, &inner_listener)) { *listener << "where the value pair ("; UniversalPrint(*left, listener->stream()); *listener << ", "; UniversalPrint(*right, listener->stream()); *listener << ") at index #" << i << " don't match"; PrintIfNotEmpty(inner_listener.str(), listener->stream()); return false; } } else { if (!mono_tuple_matcher_.Matches(value_pair)) return false; } } return true; } private: const Matcher<InnerMatcherArg> mono_tuple_matcher_; const RhsStlContainer rhs_; GTEST_DISALLOW_ASSIGN_(Impl); }; private: const TupleMatcher tuple_matcher_; const RhsStlContainer rhs_; GTEST_DISALLOW_ASSIGN_(PointwiseMatcher); }; // Holds the logic common to ContainsMatcherImpl and EachMatcherImpl. template <typename Container> class QuantifierMatcherImpl : public MatcherInterface<Container> { public: typedef GTEST_REMOVE_REFERENCE_AND_CONST_(Container) RawContainer; typedef StlContainerView<RawContainer> View; typedef typename View::type StlContainer; typedef typename View::const_reference StlContainerReference; typedef typename StlContainer::value_type Element; template <typename InnerMatcher> explicit QuantifierMatcherImpl(InnerMatcher inner_matcher) : inner_matcher_( testing::SafeMatcherCast<const Element&>(inner_matcher)) {} // Checks whether: // * All elements in the container match, if all_elements_should_match. // * Any element in the container matches, if !all_elements_should_match. bool MatchAndExplainImpl(bool all_elements_should_match, Container container, MatchResultListener* listener) const { StlContainerReference stl_container = View::ConstReference(container); size_t i = 0; for (typename StlContainer::const_iterator it = stl_container.begin(); it != stl_container.end(); ++it, ++i) { StringMatchResultListener inner_listener; const bool matches = inner_matcher_.MatchAndExplain(*it, &inner_listener); if (matches != all_elements_should_match) { *listener << "whose element #" << i << (matches ? " matches" : " doesn't match"); PrintIfNotEmpty(inner_listener.str(), listener->stream()); return !all_elements_should_match; } } return all_elements_should_match; } protected: const Matcher<const Element&> inner_matcher_; GTEST_DISALLOW_ASSIGN_(QuantifierMatcherImpl); }; // Implements Contains(element_matcher) for the given argument type Container. // Symmetric to EachMatcherImpl. template <typename Container> class ContainsMatcherImpl : public QuantifierMatcherImpl<Container> { public: template <typename InnerMatcher> explicit ContainsMatcherImpl(InnerMatcher inner_matcher) : QuantifierMatcherImpl<Container>(inner_matcher) {} // Describes what this matcher does. virtual void DescribeTo(::std::ostream* os) const { *os << "contains at least one element that "; this->inner_matcher_.DescribeTo(os); } virtual void DescribeNegationTo(::std::ostream* os) const { *os << "doesn't contain any element that "; this->inner_matcher_.DescribeTo(os); } virtual bool MatchAndExplain(Container container, MatchResultListener* listener) const { return this->MatchAndExplainImpl(false, container, listener); } private: GTEST_DISALLOW_ASSIGN_(ContainsMatcherImpl); }; // Implements Each(element_matcher) for the given argument type Container. // Symmetric to ContainsMatcherImpl. template <typename Container> class EachMatcherImpl : public QuantifierMatcherImpl<Container> { public: template <typename InnerMatcher> explicit EachMatcherImpl(InnerMatcher inner_matcher) : QuantifierMatcherImpl<Container>(inner_matcher) {} // Describes what this matcher does. virtual void DescribeTo(::std::ostream* os) const { *os << "only contains elements that "; this->inner_matcher_.DescribeTo(os); } virtual void DescribeNegationTo(::std::ostream* os) const { *os << "contains some element that "; this->inner_matcher_.DescribeNegationTo(os); } virtual bool MatchAndExplain(Container container, MatchResultListener* listener) const { return this->MatchAndExplainImpl(true, container, listener); } private: GTEST_DISALLOW_ASSIGN_(EachMatcherImpl); }; // Implements polymorphic Contains(element_matcher). template <typename M> class ContainsMatcher { public: explicit ContainsMatcher(M m) : inner_matcher_(m) {} template <typename Container> operator Matcher<Container>() const { return MakeMatcher(new ContainsMatcherImpl<Container>(inner_matcher_)); } private: const M inner_matcher_; GTEST_DISALLOW_ASSIGN_(ContainsMatcher); }; // Implements polymorphic Each(element_matcher). template <typename M> class EachMatcher { public: explicit EachMatcher(M m) : inner_matcher_(m) {} template <typename Container> operator Matcher<Container>() const { return MakeMatcher(new EachMatcherImpl<Container>(inner_matcher_)); } private: const M inner_matcher_; GTEST_DISALLOW_ASSIGN_(EachMatcher); }; // Implements Key(inner_matcher) for the given argument pair type. // Key(inner_matcher) matches an std::pair whose 'first' field matches // inner_matcher. For example, Contains(Key(Ge(5))) can be used to match an // std::map that contains at least one element whose key is >= 5. template <typename PairType> class KeyMatcherImpl : public MatcherInterface<PairType> { public: typedef GTEST_REMOVE_REFERENCE_AND_CONST_(PairType) RawPairType; typedef typename RawPairType::first_type KeyType; template <typename InnerMatcher> explicit KeyMatcherImpl(InnerMatcher inner_matcher) : inner_matcher_( testing::SafeMatcherCast<const KeyType&>(inner_matcher)) { } // Returns true iff 'key_value.first' (the key) matches the inner matcher. virtual bool MatchAndExplain(PairType key_value, MatchResultListener* listener) const { StringMatchResultListener inner_listener; const bool match = inner_matcher_.MatchAndExplain(key_value.first, &inner_listener); const internal::string explanation = inner_listener.str(); if (explanation != "") { *listener << "whose first field is a value " << explanation; } return match; } // Describes what this matcher does. virtual void DescribeTo(::std::ostream* os) const { *os << "has a key that "; inner_matcher_.DescribeTo(os); } // Describes what the negation of this matcher does. virtual void DescribeNegationTo(::std::ostream* os) const { *os << "doesn't have a key that "; inner_matcher_.DescribeTo(os); } private: const Matcher<const KeyType&> inner_matcher_; GTEST_DISALLOW_ASSIGN_(KeyMatcherImpl); }; // Implements polymorphic Key(matcher_for_key). template <typename M> class KeyMatcher { public: explicit KeyMatcher(M m) : matcher_for_key_(m) {} template <typename PairType> operator Matcher<PairType>() const { return MakeMatcher(new KeyMatcherImpl<PairType>(matcher_for_key_)); } private: const M matcher_for_key_; GTEST_DISALLOW_ASSIGN_(KeyMatcher); }; // Implements Pair(first_matcher, second_matcher) for the given argument pair // type with its two matchers. See Pair() function below. template <typename PairType> class PairMatcherImpl : public MatcherInterface<PairType> { public: typedef GTEST_REMOVE_REFERENCE_AND_CONST_(PairType) RawPairType; typedef typename RawPairType::first_type FirstType; typedef typename RawPairType::second_type SecondType; template <typename FirstMatcher, typename SecondMatcher> PairMatcherImpl(FirstMatcher first_matcher, SecondMatcher second_matcher) : first_matcher_( testing::SafeMatcherCast<const FirstType&>(first_matcher)), second_matcher_( testing::SafeMatcherCast<const SecondType&>(second_matcher)) { } // Describes what this matcher does. virtual void DescribeTo(::std::ostream* os) const { *os << "has a first field that "; first_matcher_.DescribeTo(os); *os << ", and has a second field that "; second_matcher_.DescribeTo(os); } // Describes what the negation of this matcher does. virtual void DescribeNegationTo(::std::ostream* os) const { *os << "has a first field that "; first_matcher_.DescribeNegationTo(os); *os << ", or has a second field that "; second_matcher_.DescribeNegationTo(os); } // Returns true iff 'a_pair.first' matches first_matcher and 'a_pair.second' // matches second_matcher. virtual bool MatchAndExplain(PairType a_pair, MatchResultListener* listener) const { if (!listener->IsInterested()) { // If the listener is not interested, we don't need to construct the // explanation. return first_matcher_.Matches(a_pair.first) && second_matcher_.Matches(a_pair.second); } StringMatchResultListener first_inner_listener; if (!first_matcher_.MatchAndExplain(a_pair.first, &first_inner_listener)) { *listener << "whose first field does not match"; PrintIfNotEmpty(first_inner_listener.str(), listener->stream()); return false; } StringMatchResultListener second_inner_listener; if (!second_matcher_.MatchAndExplain(a_pair.second, &second_inner_listener)) { *listener << "whose second field does not match"; PrintIfNotEmpty(second_inner_listener.str(), listener->stream()); return false; } ExplainSuccess(first_inner_listener.str(), second_inner_listener.str(), listener); return true; } private: void ExplainSuccess(const internal::string& first_explanation, const internal::string& second_explanation, MatchResultListener* listener) const { *listener << "whose both fields match"; if (first_explanation != "") { *listener << ", where the first field is a value " << first_explanation; } if (second_explanation != "") { *listener << ", "; if (first_explanation != "") { *listener << "and "; } else { *listener << "where "; } *listener << "the second field is a value " << second_explanation; } } const Matcher<const FirstType&> first_matcher_; const Matcher<const SecondType&> second_matcher_; GTEST_DISALLOW_ASSIGN_(PairMatcherImpl); }; // Implements polymorphic Pair(first_matcher, second_matcher). template <typename FirstMatcher, typename SecondMatcher> class PairMatcher { public: PairMatcher(FirstMatcher first_matcher, SecondMatcher second_matcher) : first_matcher_(first_matcher), second_matcher_(second_matcher) {} template <typename PairType> operator Matcher<PairType> () const { return MakeMatcher( new PairMatcherImpl<PairType>( first_matcher_, second_matcher_)); } private: const FirstMatcher first_matcher_; const SecondMatcher second_matcher_; GTEST_DISALLOW_ASSIGN_(PairMatcher); }; // Implements ElementsAre() and ElementsAreArray(). template <typename Container> class ElementsAreMatcherImpl : public MatcherInterface<Container> { public: typedef GTEST_REMOVE_REFERENCE_AND_CONST_(Container) RawContainer; typedef internal::StlContainerView<RawContainer> View; typedef typename View::type StlContainer; typedef typename View::const_reference StlContainerReference; typedef typename StlContainer::value_type Element; // Constructs the matcher from a sequence of element values or // element matchers. template <typename InputIter> ElementsAreMatcherImpl(InputIter first, size_t a_count) { matchers_.reserve(a_count); InputIter it = first; for (size_t i = 0; i != a_count; ++i, ++it) { matchers_.push_back(MatcherCast<const Element&>(*it)); } } // Describes what this matcher does. virtual void DescribeTo(::std::ostream* os) const { if (count() == 0) { *os << "is empty"; } else if (count() == 1) { *os << "has 1 element that "; matchers_[0].DescribeTo(os); } else { *os << "has " << Elements(count()) << " where\n"; for (size_t i = 0; i != count(); ++i) { *os << "element #" << i << " "; matchers_[i].DescribeTo(os); if (i + 1 < count()) { *os << ",\n"; } } } } // Describes what the negation of this matcher does. virtual void DescribeNegationTo(::std::ostream* os) const { if (count() == 0) { *os << "isn't empty"; return; } *os << "doesn't have " << Elements(count()) << ", or\n"; for (size_t i = 0; i != count(); ++i) { *os << "element #" << i << " "; matchers_[i].DescribeNegationTo(os); if (i + 1 < count()) { *os << ", or\n"; } } } virtual bool MatchAndExplain(Container container, MatchResultListener* listener) const { StlContainerReference stl_container = View::ConstReference(container); const size_t actual_count = stl_container.size(); if (actual_count != count()) { // The element count doesn't match. If the container is empty, // there's no need to explain anything as Google Mock already // prints the empty container. Otherwise we just need to show // how many elements there actually are. if (actual_count != 0) { *listener << "which has " << Elements(actual_count); } return false; } typename StlContainer::const_iterator it = stl_container.begin(); // explanations[i] is the explanation of the element at index i. std::vector<internal::string> explanations(count()); for (size_t i = 0; i != count(); ++it, ++i) { StringMatchResultListener s; if (matchers_[i].MatchAndExplain(*it, &s)) { explanations[i] = s.str(); } else { // The container has the right size but the i-th element // doesn't match its expectation. *listener << "whose element #" << i << " doesn't match"; PrintIfNotEmpty(s.str(), listener->stream()); return false; } } // Every element matches its expectation. We need to explain why // (the obvious ones can be skipped). bool reason_printed = false; for (size_t i = 0; i != count(); ++i) { const internal::string& s = explanations[i]; if (!s.empty()) { if (reason_printed) { *listener << ",\nand "; } *listener << "whose element #" << i << " matches, " << s; reason_printed = true; } } return true; } private: static Message Elements(size_t count) { return Message() << count << (count == 1 ? " element" : " elements"); } size_t count() const { return matchers_.size(); } std::vector<Matcher<const Element&> > matchers_; GTEST_DISALLOW_ASSIGN_(ElementsAreMatcherImpl); }; // Implements ElementsAre() of 0 arguments. class ElementsAreMatcher0 { public: ElementsAreMatcher0() {} template <typename Container> operator Matcher<Container>() const { typedef GTEST_REMOVE_REFERENCE_AND_CONST_(Container) RawContainer; typedef typename internal::StlContainerView<RawContainer>::type::value_type Element; const Matcher<const Element&>* const matchers = NULL; return MakeMatcher(new ElementsAreMatcherImpl<Container>(matchers, 0)); } }; // Implements ElementsAreArray(). template <typename T> class ElementsAreArrayMatcher { public: ElementsAreArrayMatcher(const T* first, size_t count) : first_(first), count_(count) {} template <typename Container> operator Matcher<Container>() const { typedef GTEST_REMOVE_REFERENCE_AND_CONST_(Container) RawContainer; typedef typename internal::StlContainerView<RawContainer>::type::value_type Element; return MakeMatcher(new ElementsAreMatcherImpl<Container>(first_, count_)); } private: const T* const first_; const size_t count_; GTEST_DISALLOW_ASSIGN_(ElementsAreArrayMatcher); }; // Returns the description for a matcher defined using the MATCHER*() // macro where the user-supplied description string is "", if // 'negation' is false; otherwise returns the description of the // negation of the matcher. 'param_values' contains a list of strings // that are the print-out of the matcher's parameters. string FormatMatcherDescription(bool negation, const char* matcher_name, const Strings& param_values); } // namespace internal // Implements MatcherCast(). template <typename T, typename M> inline Matcher<T> MatcherCast(M matcher) { return internal::MatcherCastImpl<T, M>::Cast(matcher); } // _ is a matcher that matches anything of any type. // // This definition is fine as: // // 1. The C++ standard permits using the name _ in a namespace that // is not the global namespace or ::std. // 2. The AnythingMatcher class has no data member or constructor, // so it's OK to create global variables of this type. // 3. c-style has approved of using _ in this case. const internal::AnythingMatcher _ = {}; // Creates a matcher that matches any value of the given type T. template <typename T> inline Matcher<T> A() { return MakeMatcher(new internal::AnyMatcherImpl<T>()); } // Creates a matcher that matches any value of the given type T. template <typename T> inline Matcher<T> An() { return A<T>(); } // Creates a polymorphic matcher that matches anything equal to x. // Note: if the parameter of Eq() were declared as const T&, Eq("foo") // wouldn't compile. template <typename T> inline internal::EqMatcher<T> Eq(T x) { return internal::EqMatcher<T>(x); } // Constructs a Matcher<T> from a 'value' of type T. The constructed // matcher matches any value that's equal to 'value'. template <typename T> Matcher<T>::Matcher(T value) { *this = Eq(value); } // Creates a monomorphic matcher that matches anything with type Lhs // and equal to rhs. A user may need to use this instead of Eq(...) // in order to resolve an overloading ambiguity. // // TypedEq<T>(x) is just a convenient short-hand for Matcher<T>(Eq(x)) // or Matcher<T>(x), but more readable than the latter. // // We could define similar monomorphic matchers for other comparison // operations (e.g. TypedLt, TypedGe, and etc), but decided not to do // it yet as those are used much less than Eq() in practice. A user // can always write Matcher<T>(Lt(5)) to be explicit about the type, // for example. template <typename Lhs, typename Rhs> inline Matcher<Lhs> TypedEq(const Rhs& rhs) { return Eq(rhs); } // Creates a polymorphic matcher that matches anything >= x. template <typename Rhs> inline internal::GeMatcher<Rhs> Ge(Rhs x) { return internal::GeMatcher<Rhs>(x); } // Creates a polymorphic matcher that matches anything > x. template <typename Rhs> inline internal::GtMatcher<Rhs> Gt(Rhs x) { return internal::GtMatcher<Rhs>(x); } // Creates a polymorphic matcher that matches anything <= x. template <typename Rhs> inline internal::LeMatcher<Rhs> Le(Rhs x) { return internal::LeMatcher<Rhs>(x); } // Creates a polymorphic matcher that matches anything < x. template <typename Rhs> inline internal::LtMatcher<Rhs> Lt(Rhs x) { return internal::LtMatcher<Rhs>(x); } // Creates a polymorphic matcher that matches anything != x. template <typename Rhs> inline internal::NeMatcher<Rhs> Ne(Rhs x) { return internal::NeMatcher<Rhs>(x); } // Creates a polymorphic matcher that matches any NULL pointer. inline PolymorphicMatcher<internal::IsNullMatcher > IsNull() { return MakePolymorphicMatcher(internal::IsNullMatcher()); } // Creates a polymorphic matcher that matches any non-NULL pointer. // This is convenient as Not(NULL) doesn't compile (the compiler // thinks that that expression is comparing a pointer with an integer). inline PolymorphicMatcher<internal::NotNullMatcher > NotNull() { return MakePolymorphicMatcher(internal::NotNullMatcher()); } // Creates a polymorphic matcher that matches any argument that // references variable x. template <typename T> inline internal::RefMatcher<T&> Ref(T& x) { // NOLINT return internal::RefMatcher<T&>(x); } // Creates a matcher that matches any double argument approximately // equal to rhs, where two NANs are considered unequal. inline internal::FloatingEqMatcher<double> DoubleEq(double rhs) { return internal::FloatingEqMatcher<double>(rhs, false); } // Creates a matcher that matches any double argument approximately // equal to rhs, including NaN values when rhs is NaN. inline internal::FloatingEqMatcher<double> NanSensitiveDoubleEq(double rhs) { return internal::FloatingEqMatcher<double>(rhs, true); } // Creates a matcher that matches any float argument approximately // equal to rhs, where two NANs are considered unequal. inline internal::FloatingEqMatcher<float> FloatEq(float rhs) { return internal::FloatingEqMatcher<float>(rhs, false); } // Creates a matcher that matches any double argument approximately // equal to rhs, including NaN values when rhs is NaN. inline internal::FloatingEqMatcher<float> NanSensitiveFloatEq(float rhs) { return internal::FloatingEqMatcher<float>(rhs, true); } // Creates a matcher that matches a pointer (raw or smart) that points // to a value that matches inner_matcher. template <typename InnerMatcher> inline internal::PointeeMatcher<InnerMatcher> Pointee( const InnerMatcher& inner_matcher) { return internal::PointeeMatcher<InnerMatcher>(inner_matcher); } // Creates a matcher that matches an object whose given field matches // 'matcher'. For example, // Field(&Foo::number, Ge(5)) // matches a Foo object x iff x.number >= 5. template <typename Class, typename FieldType, typename FieldMatcher> inline PolymorphicMatcher< internal::FieldMatcher<Class, FieldType> > Field( FieldType Class::*field, const FieldMatcher& matcher) { return MakePolymorphicMatcher( internal::FieldMatcher<Class, FieldType>( field, MatcherCast<const FieldType&>(matcher))); // The call to MatcherCast() is required for supporting inner // matchers of compatible types. For example, it allows // Field(&Foo::bar, m) // to compile where bar is an int32 and m is a matcher for int64. } // Creates a matcher that matches an object whose given property // matches 'matcher'. For example, // Property(&Foo::str, StartsWith("hi")) // matches a Foo object x iff x.str() starts with "hi". template <typename Class, typename PropertyType, typename PropertyMatcher> inline PolymorphicMatcher< internal::PropertyMatcher<Class, PropertyType> > Property( PropertyType (Class::*property)() const, const PropertyMatcher& matcher) { return MakePolymorphicMatcher( internal::PropertyMatcher<Class, PropertyType>( property, MatcherCast<GTEST_REFERENCE_TO_CONST_(PropertyType)>(matcher))); // The call to MatcherCast() is required for supporting inner // matchers of compatible types. For example, it allows // Property(&Foo::bar, m) // to compile where bar() returns an int32 and m is a matcher for int64. } // Creates a matcher that matches an object iff the result of applying // a callable to x matches 'matcher'. // For example, // ResultOf(f, StartsWith("hi")) // matches a Foo object x iff f(x) starts with "hi". // callable parameter can be a function, function pointer, or a functor. // Callable has to satisfy the following conditions: // * It is required to keep no state affecting the results of // the calls on it and make no assumptions about how many calls // will be made. Any state it keeps must be protected from the // concurrent access. // * If it is a function object, it has to define type result_type. // We recommend deriving your functor classes from std::unary_function. template <typename Callable, typename ResultOfMatcher> internal::ResultOfMatcher<Callable> ResultOf( Callable callable, const ResultOfMatcher& matcher) { return internal::ResultOfMatcher<Callable>( callable, MatcherCast<typename internal::CallableTraits<Callable>::ResultType>( matcher)); // The call to MatcherCast() is required for supporting inner // matchers of compatible types. For example, it allows // ResultOf(Function, m) // to compile where Function() returns an int32 and m is a matcher for int64. } // String matchers. // Matches a string equal to str. inline PolymorphicMatcher<internal::StrEqualityMatcher<internal::string> > StrEq(const internal::string& str) { return MakePolymorphicMatcher(internal::StrEqualityMatcher<internal::string>( str, true, true)); } // Matches a string not equal to str. inline PolymorphicMatcher<internal::StrEqualityMatcher<internal::string> > StrNe(const internal::string& str) { return MakePolymorphicMatcher(internal::StrEqualityMatcher<internal::string>( str, false, true)); } // Matches a string equal to str, ignoring case. inline PolymorphicMatcher<internal::StrEqualityMatcher<internal::string> > StrCaseEq(const internal::string& str) { return MakePolymorphicMatcher(internal::StrEqualityMatcher<internal::string>( str, true, false)); } // Matches a string not equal to str, ignoring case. inline PolymorphicMatcher<internal::StrEqualityMatcher<internal::string> > StrCaseNe(const internal::string& str) { return MakePolymorphicMatcher(internal::StrEqualityMatcher<internal::string>( str, false, false)); } // Creates a matcher that matches any string, std::string, or C string // that contains the given substring. inline PolymorphicMatcher<internal::HasSubstrMatcher<internal::string> > HasSubstr(const internal::string& substring) { return MakePolymorphicMatcher(internal::HasSubstrMatcher<internal::string>( substring)); } // Matches a string that starts with 'prefix' (case-sensitive). inline PolymorphicMatcher<internal::StartsWithMatcher<internal::string> > StartsWith(const internal::string& prefix) { return MakePolymorphicMatcher(internal::StartsWithMatcher<internal::string>( prefix)); } // Matches a string that ends with 'suffix' (case-sensitive). inline PolymorphicMatcher<internal::EndsWithMatcher<internal::string> > EndsWith(const internal::string& suffix) { return MakePolymorphicMatcher(internal::EndsWithMatcher<internal::string>( suffix)); } // Matches a string that fully matches regular expression 'regex'. // The matcher takes ownership of 'regex'. inline PolymorphicMatcher<internal::MatchesRegexMatcher> MatchesRegex( const internal::RE* regex) { return MakePolymorphicMatcher(internal::MatchesRegexMatcher(regex, true)); } inline PolymorphicMatcher<internal::MatchesRegexMatcher> MatchesRegex( const internal::string& regex) { return MatchesRegex(new internal::RE(regex)); } // Matches a string that contains regular expression 'regex'. // The matcher takes ownership of 'regex'. inline PolymorphicMatcher<internal::MatchesRegexMatcher> ContainsRegex( const internal::RE* regex) { return MakePolymorphicMatcher(internal::MatchesRegexMatcher(regex, false)); } inline PolymorphicMatcher<internal::MatchesRegexMatcher> ContainsRegex( const internal::string& regex) { return ContainsRegex(new internal::RE(regex)); } #if GTEST_HAS_GLOBAL_WSTRING || GTEST_HAS_STD_WSTRING // Wide string matchers. // Matches a string equal to str. inline PolymorphicMatcher<internal::StrEqualityMatcher<internal::wstring> > StrEq(const internal::wstring& str) { return MakePolymorphicMatcher(internal::StrEqualityMatcher<internal::wstring>( str, true, true)); } // Matches a string not equal to str. inline PolymorphicMatcher<internal::StrEqualityMatcher<internal::wstring> > StrNe(const internal::wstring& str) { return MakePolymorphicMatcher(internal::StrEqualityMatcher<internal::wstring>( str, false, true)); } // Matches a string equal to str, ignoring case. inline PolymorphicMatcher<internal::StrEqualityMatcher<internal::wstring> > StrCaseEq(const internal::wstring& str) { return MakePolymorphicMatcher(internal::StrEqualityMatcher<internal::wstring>( str, true, false)); } // Matches a string not equal to str, ignoring case. inline PolymorphicMatcher<internal::StrEqualityMatcher<internal::wstring> > StrCaseNe(const internal::wstring& str) { return MakePolymorphicMatcher(internal::StrEqualityMatcher<internal::wstring>( str, false, false)); } // Creates a matcher that matches any wstring, std::wstring, or C wide string // that contains the given substring. inline PolymorphicMatcher<internal::HasSubstrMatcher<internal::wstring> > HasSubstr(const internal::wstring& substring) { return MakePolymorphicMatcher(internal::HasSubstrMatcher<internal::wstring>( substring)); } // Matches a string that starts with 'prefix' (case-sensitive). inline PolymorphicMatcher<internal::StartsWithMatcher<internal::wstring> > StartsWith(const internal::wstring& prefix) { return MakePolymorphicMatcher(internal::StartsWithMatcher<internal::wstring>( prefix)); } // Matches a string that ends with 'suffix' (case-sensitive). inline PolymorphicMatcher<internal::EndsWithMatcher<internal::wstring> > EndsWith(const internal::wstring& suffix) { return MakePolymorphicMatcher(internal::EndsWithMatcher<internal::wstring>( suffix)); } #endif // GTEST_HAS_GLOBAL_WSTRING || GTEST_HAS_STD_WSTRING // Creates a polymorphic matcher that matches a 2-tuple where the // first field == the second field. inline internal::Eq2Matcher Eq() { return internal::Eq2Matcher(); } // Creates a polymorphic matcher that matches a 2-tuple where the // first field >= the second field. inline internal::Ge2Matcher Ge() { return internal::Ge2Matcher(); } // Creates a polymorphic matcher that matches a 2-tuple where the // first field > the second field. inline internal::Gt2Matcher Gt() { return internal::Gt2Matcher(); } // Creates a polymorphic matcher that matches a 2-tuple where the // first field <= the second field. inline internal::Le2Matcher Le() { return internal::Le2Matcher(); } // Creates a polymorphic matcher that matches a 2-tuple where the // first field < the second field. inline internal::Lt2Matcher Lt() { return internal::Lt2Matcher(); } // Creates a polymorphic matcher that matches a 2-tuple where the // first field != the second field. inline internal::Ne2Matcher Ne() { return internal::Ne2Matcher(); } // Creates a matcher that matches any value of type T that m doesn't // match. template <typename InnerMatcher> inline internal::NotMatcher<InnerMatcher> Not(InnerMatcher m) { return internal::NotMatcher<InnerMatcher>(m); } // Returns a matcher that matches anything that satisfies the given // predicate. The predicate can be any unary function or functor // whose return type can be implicitly converted to bool. template <typename Predicate> inline PolymorphicMatcher<internal::TrulyMatcher<Predicate> > Truly(Predicate pred) { return MakePolymorphicMatcher(internal::TrulyMatcher<Predicate>(pred)); } // Returns a matcher that matches an equal container. // This matcher behaves like Eq(), but in the event of mismatch lists the // values that are included in one container but not the other. (Duplicate // values and order differences are not explained.) template <typename Container> inline PolymorphicMatcher<internal::ContainerEqMatcher< // NOLINT GTEST_REMOVE_CONST_(Container)> > ContainerEq(const Container& rhs) { // This following line is for working around a bug in MSVC 8.0, // which causes Container to be a const type sometimes. typedef GTEST_REMOVE_CONST_(Container) RawContainer; return MakePolymorphicMatcher( internal::ContainerEqMatcher<RawContainer>(rhs)); } // Matches an STL-style container or a native array that contains the // same number of elements as in rhs, where its i-th element and rhs's // i-th element (as a pair) satisfy the given pair matcher, for all i. // TupleMatcher must be able to be safely cast to Matcher<tuple<const // T1&, const T2&> >, where T1 and T2 are the types of elements in the // LHS container and the RHS container respectively. template <typename TupleMatcher, typename Container> inline internal::PointwiseMatcher<TupleMatcher, GTEST_REMOVE_CONST_(Container)> Pointwise(const TupleMatcher& tuple_matcher, const Container& rhs) { // This following line is for working around a bug in MSVC 8.0, // which causes Container to be a const type sometimes. typedef GTEST_REMOVE_CONST_(Container) RawContainer; return internal::PointwiseMatcher<TupleMatcher, RawContainer>( tuple_matcher, rhs); } // Matches an STL-style container or a native array that contains at // least one element matching the given value or matcher. // // Examples: // ::std::set<int> page_ids; // page_ids.insert(3); // page_ids.insert(1); // EXPECT_THAT(page_ids, Contains(1)); // EXPECT_THAT(page_ids, Contains(Gt(2))); // EXPECT_THAT(page_ids, Not(Contains(4))); // // ::std::map<int, size_t> page_lengths; // page_lengths[1] = 100; // EXPECT_THAT(page_lengths, // Contains(::std::pair<const int, size_t>(1, 100))); // // const char* user_ids[] = { "joe", "mike", "tom" }; // EXPECT_THAT(user_ids, Contains(Eq(::std::string("tom")))); template <typename M> inline internal::ContainsMatcher<M> Contains(M matcher) { return internal::ContainsMatcher<M>(matcher); } // Matches an STL-style container or a native array that contains only // elements matching the given value or matcher. // // Each(m) is semantically equivalent to Not(Contains(Not(m))). Only // the messages are different. // // Examples: // ::std::set<int> page_ids; // // Each(m) matches an empty container, regardless of what m is. // EXPECT_THAT(page_ids, Each(Eq(1))); // EXPECT_THAT(page_ids, Each(Eq(77))); // // page_ids.insert(3); // EXPECT_THAT(page_ids, Each(Gt(0))); // EXPECT_THAT(page_ids, Not(Each(Gt(4)))); // page_ids.insert(1); // EXPECT_THAT(page_ids, Not(Each(Lt(2)))); // // ::std::map<int, size_t> page_lengths; // page_lengths[1] = 100; // page_lengths[2] = 200; // page_lengths[3] = 300; // EXPECT_THAT(page_lengths, Not(Each(Pair(1, 100)))); // EXPECT_THAT(page_lengths, Each(Key(Le(3)))); // // const char* user_ids[] = { "joe", "mike", "tom" }; // EXPECT_THAT(user_ids, Not(Each(Eq(::std::string("tom"))))); template <typename M> inline internal::EachMatcher<M> Each(M matcher) { return internal::EachMatcher<M>(matcher); } // Key(inner_matcher) matches an std::pair whose 'first' field matches // inner_matcher. For example, Contains(Key(Ge(5))) can be used to match an // std::map that contains at least one element whose key is >= 5. template <typename M> inline internal::KeyMatcher<M> Key(M inner_matcher) { return internal::KeyMatcher<M>(inner_matcher); } // Pair(first_matcher, second_matcher) matches a std::pair whose 'first' field // matches first_matcher and whose 'second' field matches second_matcher. For // example, EXPECT_THAT(map_type, ElementsAre(Pair(Ge(5), "foo"))) can be used // to match a std::map<int, string> that contains exactly one element whose key // is >= 5 and whose value equals "foo". template <typename FirstMatcher, typename SecondMatcher> inline internal::PairMatcher<FirstMatcher, SecondMatcher> Pair(FirstMatcher first_matcher, SecondMatcher second_matcher) { return internal::PairMatcher<FirstMatcher, SecondMatcher>( first_matcher, second_matcher); } // Returns a predicate that is satisfied by anything that matches the // given matcher. template <typename M> inline internal::MatcherAsPredicate<M> Matches(M matcher) { return internal::MatcherAsPredicate<M>(matcher); } // Returns true iff the value matches the matcher. template <typename T, typename M> inline bool Value(const T& value, M matcher) { return testing::Matches(matcher)(value); } // Matches the value against the given matcher and explains the match // result to listener. template <typename T, typename M> inline bool ExplainMatchResult( M matcher, const T& value, MatchResultListener* listener) { return SafeMatcherCast<const T&>(matcher).MatchAndExplain(value, listener); } // AllArgs(m) is a synonym of m. This is useful in // // EXPECT_CALL(foo, Bar(_, _)).With(AllArgs(Eq())); // // which is easier to read than // // EXPECT_CALL(foo, Bar(_, _)).With(Eq()); template <typename InnerMatcher> inline InnerMatcher AllArgs(const InnerMatcher& matcher) { return matcher; } // These macros allow using matchers to check values in Google Test // tests. ASSERT_THAT(value, matcher) and EXPECT_THAT(value, matcher) // succeed iff the value matches the matcher. If the assertion fails, // the value and the description of the matcher will be printed. #define ASSERT_THAT(value, matcher) ASSERT_PRED_FORMAT1(\ ::testing::internal::MakePredicateFormatterFromMatcher(matcher), value) #define EXPECT_THAT(value, matcher) EXPECT_PRED_FORMAT1(\ ::testing::internal::MakePredicateFormatterFromMatcher(matcher), value) } // namespace testing #endif // GMOCK_INCLUDE_GMOCK_GMOCK_MATCHERS_H_ namespace testing { // An abstract handle of an expectation. class Expectation; // A set of expectation handles. class ExpectationSet; // Anything inside the 'internal' namespace IS INTERNAL IMPLEMENTATION // and MUST NOT BE USED IN USER CODE!!! namespace internal { // Implements a mock function. template <typename F> class FunctionMocker; // Base class for expectations. class ExpectationBase; // Implements an expectation. template <typename F> class TypedExpectation; // Helper class for testing the Expectation class template. class ExpectationTester; // Base class for function mockers. template <typename F> class FunctionMockerBase; // Protects the mock object registry (in class Mock), all function // mockers, and all expectations. // // The reason we don't use more fine-grained protection is: when a // mock function Foo() is called, it needs to consult its expectations // to see which one should be picked. If another thread is allowed to // call a mock function (either Foo() or a different one) at the same // time, it could affect the "retired" attributes of Foo()'s // expectations when InSequence() is used, and thus affect which // expectation gets picked. Therefore, we sequence all mock function // calls to ensure the integrity of the mock objects' states. GTEST_DECLARE_STATIC_MUTEX_(g_gmock_mutex); // Untyped base class for ActionResultHolder<R>. class UntypedActionResultHolderBase; // Abstract base class of FunctionMockerBase. This is the // type-agnostic part of the function mocker interface. Its pure // virtual methods are implemented by FunctionMockerBase. class UntypedFunctionMockerBase { public: UntypedFunctionMockerBase(); virtual ~UntypedFunctionMockerBase(); // Verifies that all expectations on this mock function have been // satisfied. Reports one or more Google Test non-fatal failures // and returns false if not. // L >= g_gmock_mutex bool VerifyAndClearExpectationsLocked(); // Clears the ON_CALL()s set on this mock function. // L >= g_gmock_mutex virtual void ClearDefaultActionsLocked() = 0; // In all of the following Untyped* functions, it's the caller's // responsibility to guarantee the correctness of the arguments' // types. // Performs the default action with the given arguments and returns // the action's result. The call description string will be used in // the error message to describe the call in the case the default // action fails. // L = * virtual UntypedActionResultHolderBase* UntypedPerformDefaultAction( const void* untyped_args, const string& call_description) const = 0; // Performs the given action with the given arguments and returns // the action's result. // L = * virtual UntypedActionResultHolderBase* UntypedPerformAction( const void* untyped_action, const void* untyped_args) const = 0; // Writes a message that the call is uninteresting (i.e. neither // explicitly expected nor explicitly unexpected) to the given // ostream. // L < g_gmock_mutex virtual void UntypedDescribeUninterestingCall(const void* untyped_args, ::std::ostream* os) const = 0; // Returns the expectation that matches the given function arguments // (or NULL is there's no match); when a match is found, // untyped_action is set to point to the action that should be // performed (or NULL if the action is "do default"), and // is_excessive is modified to indicate whether the call exceeds the // expected number. // L < g_gmock_mutex virtual const ExpectationBase* UntypedFindMatchingExpectation( const void* untyped_args, const void** untyped_action, bool* is_excessive, ::std::ostream* what, ::std::ostream* why) = 0; // Prints the given function arguments to the ostream. virtual void UntypedPrintArgs(const void* untyped_args, ::std::ostream* os) const = 0; // Sets the mock object this mock method belongs to, and registers // this information in the global mock registry. Will be called // whenever an EXPECT_CALL() or ON_CALL() is executed on this mock // method. // TODO(wan@google.com): rename to SetAndRegisterOwner(). // L < g_gmock_mutex void RegisterOwner(const void* mock_obj); // Sets the mock object this mock method belongs to, and sets the // name of the mock function. Will be called upon each invocation // of this mock function. // L < g_gmock_mutex void SetOwnerAndName(const void* mock_obj, const char* name); // Returns the mock object this mock method belongs to. Must be // called after RegisterOwner() or SetOwnerAndName() has been // called. // L < g_gmock_mutex const void* MockObject() const; // Returns the name of this mock method. Must be called after // SetOwnerAndName() has been called. // L < g_gmock_mutex const char* Name() const; // Returns the result of invoking this mock function with the given // arguments. This function can be safely called from multiple // threads concurrently. The caller is responsible for deleting the // result. // L < g_gmock_mutex const UntypedActionResultHolderBase* UntypedInvokeWith( const void* untyped_args); protected: typedef std::vector<const void*> UntypedOnCallSpecs; typedef std::vector<internal::linked_ptr<ExpectationBase> > UntypedExpectations; // Returns an Expectation object that references and co-owns exp, // which must be an expectation on this mock function. Expectation GetHandleOf(ExpectationBase* exp); // Address of the mock object this mock method belongs to. Only // valid after this mock method has been called or // ON_CALL/EXPECT_CALL has been invoked on it. const void* mock_obj_; // Protected by g_gmock_mutex. // Name of the function being mocked. Only valid after this mock // method has been called. const char* name_; // Protected by g_gmock_mutex. // All default action specs for this function mocker. UntypedOnCallSpecs untyped_on_call_specs_; // All expectations for this function mocker. UntypedExpectations untyped_expectations_; }; // class UntypedFunctionMockerBase // Untyped base class for OnCallSpec<F>. class UntypedOnCallSpecBase { public: // The arguments are the location of the ON_CALL() statement. UntypedOnCallSpecBase(const char* a_file, int a_line) : file_(a_file), line_(a_line), last_clause_(kNone) {} // Where in the source file was the default action spec defined? const char* file() const { return file_; } int line() const { return line_; } protected: // Gives each clause in the ON_CALL() statement a name. enum Clause { // Do not change the order of the enum members! The run-time // syntax checking relies on it. kNone, kWith, kWillByDefault }; // Asserts that the ON_CALL() statement has a certain property. void AssertSpecProperty(bool property, const string& failure_message) const { Assert(property, file_, line_, failure_message); } // Expects that the ON_CALL() statement has a certain property. void ExpectSpecProperty(bool property, const string& failure_message) const { Expect(property, file_, line_, failure_message); } const char* file_; int line_; // The last clause in the ON_CALL() statement as seen so far. // Initially kNone and changes as the statement is parsed. Clause last_clause_; }; // class UntypedOnCallSpecBase // This template class implements an ON_CALL spec. template <typename F> class OnCallSpec : public UntypedOnCallSpecBase { public: typedef typename Function<F>::ArgumentTuple ArgumentTuple; typedef typename Function<F>::ArgumentMatcherTuple ArgumentMatcherTuple; // Constructs an OnCallSpec object from the information inside // the parenthesis of an ON_CALL() statement. OnCallSpec(const char* a_file, int a_line, const ArgumentMatcherTuple& matchers) : UntypedOnCallSpecBase(a_file, a_line), matchers_(matchers), // By default, extra_matcher_ should match anything. However, // we cannot initialize it with _ as that triggers a compiler // bug in Symbian's C++ compiler (cannot decide between two // overloaded constructors of Matcher<const ArgumentTuple&>). extra_matcher_(A<const ArgumentTuple&>()) { } // Implements the .With() clause. OnCallSpec& With(const Matcher<const ArgumentTuple&>& m) { // Makes sure this is called at most once. ExpectSpecProperty(last_clause_ < kWith, ".With() cannot appear " "more than once in an ON_CALL()."); last_clause_ = kWith; extra_matcher_ = m; return *this; } // Implements the .WillByDefault() clause. OnCallSpec& WillByDefault(const Action<F>& action) { ExpectSpecProperty(last_clause_ < kWillByDefault, ".WillByDefault() must appear " "exactly once in an ON_CALL()."); last_clause_ = kWillByDefault; ExpectSpecProperty(!action.IsDoDefault(), "DoDefault() cannot be used in ON_CALL()."); action_ = action; return *this; } // Returns true iff the given arguments match the matchers. bool Matches(const ArgumentTuple& args) const { return TupleMatches(matchers_, args) && extra_matcher_.Matches(args); } // Returns the action specified by the user. const Action<F>& GetAction() const { AssertSpecProperty(last_clause_ == kWillByDefault, ".WillByDefault() must appear exactly " "once in an ON_CALL()."); return action_; } private: // The information in statement // // ON_CALL(mock_object, Method(matchers)) // .With(multi-argument-matcher) // .WillByDefault(action); // // is recorded in the data members like this: // // source file that contains the statement => file_ // line number of the statement => line_ // matchers => matchers_ // multi-argument-matcher => extra_matcher_ // action => action_ ArgumentMatcherTuple matchers_; Matcher<const ArgumentTuple&> extra_matcher_; Action<F> action_; }; // class OnCallSpec // Possible reactions on uninteresting calls. TODO(wan@google.com): // rename the enum values to the kFoo style. enum CallReaction { ALLOW, WARN, FAIL }; } // namespace internal // Utilities for manipulating mock objects. class Mock { public: // The following public methods can be called concurrently. // Tells Google Mock to ignore mock_obj when checking for leaked // mock objects. static void AllowLeak(const void* mock_obj); // Verifies and clears all expectations on the given mock object. // If the expectations aren't satisfied, generates one or more // Google Test non-fatal failures and returns false. static bool VerifyAndClearExpectations(void* mock_obj); // Verifies all expectations on the given mock object and clears its // default actions and expectations. Returns true iff the // verification was successful. static bool VerifyAndClear(void* mock_obj); private: friend class internal::UntypedFunctionMockerBase; // Needed for a function mocker to register itself (so that we know // how to clear a mock object). template <typename F> friend class internal::FunctionMockerBase; template <typename M> friend class NiceMock; template <typename M> friend class StrictMock; // Tells Google Mock to allow uninteresting calls on the given mock // object. // L < g_gmock_mutex static void AllowUninterestingCalls(const void* mock_obj); // Tells Google Mock to warn the user about uninteresting calls on // the given mock object. // L < g_gmock_mutex static void WarnUninterestingCalls(const void* mock_obj); // Tells Google Mock to fail uninteresting calls on the given mock // object. // L < g_gmock_mutex static void FailUninterestingCalls(const void* mock_obj); // Tells Google Mock the given mock object is being destroyed and // its entry in the call-reaction table should be removed. // L < g_gmock_mutex static void UnregisterCallReaction(const void* mock_obj); // Returns the reaction Google Mock will have on uninteresting calls // made on the given mock object. // L < g_gmock_mutex static internal::CallReaction GetReactionOnUninterestingCalls( const void* mock_obj); // Verifies that all expectations on the given mock object have been // satisfied. Reports one or more Google Test non-fatal failures // and returns false if not. // L >= g_gmock_mutex static bool VerifyAndClearExpectationsLocked(void* mock_obj); // Clears all ON_CALL()s set on the given mock object. // L >= g_gmock_mutex static void ClearDefaultActionsLocked(void* mock_obj); // Registers a mock object and a mock method it owns. // L < g_gmock_mutex static void Register(const void* mock_obj, internal::UntypedFunctionMockerBase* mocker); // Tells Google Mock where in the source code mock_obj is used in an // ON_CALL or EXPECT_CALL. In case mock_obj is leaked, this // information helps the user identify which object it is. // L < g_gmock_mutex static void RegisterUseByOnCallOrExpectCall( const void* mock_obj, const char* file, int line); // Unregisters a mock method; removes the owning mock object from // the registry when the last mock method associated with it has // been unregistered. This is called only in the destructor of // FunctionMockerBase. // L >= g_gmock_mutex static void UnregisterLocked(internal::UntypedFunctionMockerBase* mocker); }; // class Mock // An abstract handle of an expectation. Useful in the .After() // clause of EXPECT_CALL() for setting the (partial) order of // expectations. The syntax: // // Expectation e1 = EXPECT_CALL(...)...; // EXPECT_CALL(...).After(e1)...; // // sets two expectations where the latter can only be matched after // the former has been satisfied. // // Notes: // - This class is copyable and has value semantics. // - Constness is shallow: a const Expectation object itself cannot // be modified, but the mutable methods of the ExpectationBase // object it references can be called via expectation_base(). // - The constructors and destructor are defined out-of-line because // the Symbian WINSCW compiler wants to otherwise instantiate them // when it sees this class definition, at which point it doesn't have // ExpectationBase available yet, leading to incorrect destruction // in the linked_ptr (or compilation errors if using a checking // linked_ptr). class Expectation { public: // Constructs a null object that doesn't reference any expectation. Expectation(); ~Expectation(); // This single-argument ctor must not be explicit, in order to support the // Expectation e = EXPECT_CALL(...); // syntax. // // A TypedExpectation object stores its pre-requisites as // Expectation objects, and needs to call the non-const Retire() // method on the ExpectationBase objects they reference. Therefore // Expectation must receive a *non-const* reference to the // ExpectationBase object. Expectation(internal::ExpectationBase& exp); // NOLINT // The compiler-generated copy ctor and operator= work exactly as // intended, so we don't need to define our own. // Returns true iff rhs references the same expectation as this object does. bool operator==(const Expectation& rhs) const { return expectation_base_ == rhs.expectation_base_; } bool operator!=(const Expectation& rhs) const { return !(*this == rhs); } private: friend class ExpectationSet; friend class Sequence; friend class ::testing::internal::ExpectationBase; friend class ::testing::internal::UntypedFunctionMockerBase; template <typename F> friend class ::testing::internal::FunctionMockerBase; template <typename F> friend class ::testing::internal::TypedExpectation; // This comparator is needed for putting Expectation objects into a set. class Less { public: bool operator()(const Expectation& lhs, const Expectation& rhs) const { return lhs.expectation_base_.get() < rhs.expectation_base_.get(); } }; typedef ::std::set<Expectation, Less> Set; Expectation( const internal::linked_ptr<internal::ExpectationBase>& expectation_base); // Returns the expectation this object references. const internal::linked_ptr<internal::ExpectationBase>& expectation_base() const { return expectation_base_; } // A linked_ptr that co-owns the expectation this handle references. internal::linked_ptr<internal::ExpectationBase> expectation_base_; }; // A set of expectation handles. Useful in the .After() clause of // EXPECT_CALL() for setting the (partial) order of expectations. The // syntax: // // ExpectationSet es; // es += EXPECT_CALL(...)...; // es += EXPECT_CALL(...)...; // EXPECT_CALL(...).After(es)...; // // sets three expectations where the last one can only be matched // after the first two have both been satisfied. // // This class is copyable and has value semantics. class ExpectationSet { public: // A bidirectional iterator that can read a const element in the set. typedef Expectation::Set::const_iterator const_iterator; // An object stored in the set. This is an alias of Expectation. typedef Expectation::Set::value_type value_type; // Constructs an empty set. ExpectationSet() {} // This single-argument ctor must not be explicit, in order to support the // ExpectationSet es = EXPECT_CALL(...); // syntax. ExpectationSet(internal::ExpectationBase& exp) { // NOLINT *this += Expectation(exp); } // This single-argument ctor implements implicit conversion from // Expectation and thus must not be explicit. This allows either an // Expectation or an ExpectationSet to be used in .After(). ExpectationSet(const Expectation& e) { // NOLINT *this += e; } // The compiler-generator ctor and operator= works exactly as // intended, so we don't need to define our own. // Returns true iff rhs contains the same set of Expectation objects // as this does. bool operator==(const ExpectationSet& rhs) const { return expectations_ == rhs.expectations_; } bool operator!=(const ExpectationSet& rhs) const { return !(*this == rhs); } // Implements the syntax // expectation_set += EXPECT_CALL(...); ExpectationSet& operator+=(const Expectation& e) { expectations_.insert(e); return *this; } int size() const { return static_cast<int>(expectations_.size()); } const_iterator begin() const { return expectations_.begin(); } const_iterator end() const { return expectations_.end(); } private: Expectation::Set expectations_; }; // Sequence objects are used by a user to specify the relative order // in which the expectations should match. They are copyable (we rely // on the compiler-defined copy constructor and assignment operator). class Sequence { public: // Constructs an empty sequence. Sequence() : last_expectation_(new Expectation) {} // Adds an expectation to this sequence. The caller must ensure // that no other thread is accessing this Sequence object. void AddExpectation(const Expectation& expectation) const; private: // The last expectation in this sequence. We use a linked_ptr here // because Sequence objects are copyable and we want the copies to // be aliases. The linked_ptr allows the copies to co-own and share // the same Expectation object. internal::linked_ptr<Expectation> last_expectation_; }; // class Sequence // An object of this type causes all EXPECT_CALL() statements // encountered in its scope to be put in an anonymous sequence. The // work is done in the constructor and destructor. You should only // create an InSequence object on the stack. // // The sole purpose for this class is to support easy definition of // sequential expectations, e.g. // // { // InSequence dummy; // The name of the object doesn't matter. // // // The following expectations must match in the order they appear. // EXPECT_CALL(a, Bar())...; // EXPECT_CALL(a, Baz())...; // ... // EXPECT_CALL(b, Xyz())...; // } // // You can create InSequence objects in multiple threads, as long as // they are used to affect different mock objects. The idea is that // each thread can create and set up its own mocks as if it's the only // thread. However, for clarity of your tests we recommend you to set // up mocks in the main thread unless you have a good reason not to do // so. class InSequence { public: InSequence(); ~InSequence(); private: bool sequence_created_; GTEST_DISALLOW_COPY_AND_ASSIGN_(InSequence); // NOLINT } GTEST_ATTRIBUTE_UNUSED_; namespace internal { // Points to the implicit sequence introduced by a living InSequence // object (if any) in the current thread or NULL. extern ThreadLocal<Sequence*> g_gmock_implicit_sequence; // Base class for implementing expectations. // // There are two reasons for having a type-agnostic base class for // Expectation: // // 1. We need to store collections of expectations of different // types (e.g. all pre-requisites of a particular expectation, all // expectations in a sequence). Therefore these expectation objects // must share a common base class. // // 2. We can avoid binary code bloat by moving methods not depending // on the template argument of Expectation to the base class. // // This class is internal and mustn't be used by user code directly. class ExpectationBase { public: // source_text is the EXPECT_CALL(...) source that created this Expectation. ExpectationBase(const char* file, int line, const string& source_text); virtual ~ExpectationBase(); // Where in the source file was the expectation spec defined? const char* file() const { return file_; } int line() const { return line_; } const char* source_text() const { return source_text_.c_str(); } // Returns the cardinality specified in the expectation spec. const Cardinality& cardinality() const { return cardinality_; } // Describes the source file location of this expectation. void DescribeLocationTo(::std::ostream* os) const { *os << FormatFileLocation(file(), line()) << " "; } // Describes how many times a function call matching this // expectation has occurred. // L >= g_gmock_mutex void DescribeCallCountTo(::std::ostream* os) const; // If this mock method has an extra matcher (i.e. .With(matcher)), // describes it to the ostream. virtual void MaybeDescribeExtraMatcherTo(::std::ostream* os) = 0; protected: friend class ::testing::Expectation; friend class UntypedFunctionMockerBase; enum Clause { // Don't change the order of the enum members! kNone, kWith, kTimes, kInSequence, kAfter, kWillOnce, kWillRepeatedly, kRetiresOnSaturation }; typedef std::vector<const void*> UntypedActions; // Returns an Expectation object that references and co-owns this // expectation. virtual Expectation GetHandle() = 0; // Asserts that the EXPECT_CALL() statement has the given property. void AssertSpecProperty(bool property, const string& failure_message) const { Assert(property, file_, line_, failure_message); } // Expects that the EXPECT_CALL() statement has the given property. void ExpectSpecProperty(bool property, const string& failure_message) const { Expect(property, file_, line_, failure_message); } // Explicitly specifies the cardinality of this expectation. Used // by the subclasses to implement the .Times() clause. void SpecifyCardinality(const Cardinality& cardinality); // Returns true iff the user specified the cardinality explicitly // using a .Times(). bool cardinality_specified() const { return cardinality_specified_; } // Sets the cardinality of this expectation spec. void set_cardinality(const Cardinality& a_cardinality) { cardinality_ = a_cardinality; } // The following group of methods should only be called after the // EXPECT_CALL() statement, and only when g_gmock_mutex is held by // the current thread. // Retires all pre-requisites of this expectation. // L >= g_gmock_mutex void RetireAllPreRequisites(); // Returns true iff this expectation is retired. // L >= g_gmock_mutex bool is_retired() const { g_gmock_mutex.AssertHeld(); return retired_; } // Retires this expectation. // L >= g_gmock_mutex void Retire() { g_gmock_mutex.AssertHeld(); retired_ = true; } // Returns true iff this expectation is satisfied. // L >= g_gmock_mutex bool IsSatisfied() const { g_gmock_mutex.AssertHeld(); return cardinality().IsSatisfiedByCallCount(call_count_); } // Returns true iff this expectation is saturated. // L >= g_gmock_mutex bool IsSaturated() const { g_gmock_mutex.AssertHeld(); return cardinality().IsSaturatedByCallCount(call_count_); } // Returns true iff this expectation is over-saturated. // L >= g_gmock_mutex bool IsOverSaturated() const { g_gmock_mutex.AssertHeld(); return cardinality().IsOverSaturatedByCallCount(call_count_); } // Returns true iff all pre-requisites of this expectation are satisfied. // L >= g_gmock_mutex bool AllPrerequisitesAreSatisfied() const; // Adds unsatisfied pre-requisites of this expectation to 'result'. // L >= g_gmock_mutex void FindUnsatisfiedPrerequisites(ExpectationSet* result) const; // Returns the number this expectation has been invoked. // L >= g_gmock_mutex int call_count() const { g_gmock_mutex.AssertHeld(); return call_count_; } // Increments the number this expectation has been invoked. // L >= g_gmock_mutex void IncrementCallCount() { g_gmock_mutex.AssertHeld(); call_count_++; } // Checks the action count (i.e. the number of WillOnce() and // WillRepeatedly() clauses) against the cardinality if this hasn't // been done before. Prints a warning if there are too many or too // few actions. // L < mutex_ void CheckActionCountIfNotDone() const; friend class ::testing::Sequence; friend class ::testing::internal::ExpectationTester; template <typename Function> friend class TypedExpectation; // Implements the .Times() clause. void UntypedTimes(const Cardinality& a_cardinality); // This group of fields are part of the spec and won't change after // an EXPECT_CALL() statement finishes. const char* file_; // The file that contains the expectation. int line_; // The line number of the expectation. const string source_text_; // The EXPECT_CALL(...) source text. // True iff the cardinality is specified explicitly. bool cardinality_specified_; Cardinality cardinality_; // The cardinality of the expectation. // The immediate pre-requisites (i.e. expectations that must be // satisfied before this expectation can be matched) of this // expectation. We use linked_ptr in the set because we want an // Expectation object to be co-owned by its FunctionMocker and its // successors. This allows multiple mock objects to be deleted at // different times. ExpectationSet immediate_prerequisites_; // This group of fields are the current state of the expectation, // and can change as the mock function is called. int call_count_; // How many times this expectation has been invoked. bool retired_; // True iff this expectation has retired. UntypedActions untyped_actions_; bool extra_matcher_specified_; bool repeated_action_specified_; // True if a WillRepeatedly() was specified. bool retires_on_saturation_; Clause last_clause_; mutable bool action_count_checked_; // Under mutex_. mutable Mutex mutex_; // Protects action_count_checked_. GTEST_DISALLOW_ASSIGN_(ExpectationBase); }; // class ExpectationBase // Impements an expectation for the given function type. template <typename F> class TypedExpectation : public ExpectationBase { public: typedef typename Function<F>::ArgumentTuple ArgumentTuple; typedef typename Function<F>::ArgumentMatcherTuple ArgumentMatcherTuple; typedef typename Function<F>::Result Result; TypedExpectation(FunctionMockerBase<F>* owner, const char* a_file, int a_line, const string& a_source_text, const ArgumentMatcherTuple& m) : ExpectationBase(a_file, a_line, a_source_text), owner_(owner), matchers_(m), // By default, extra_matcher_ should match anything. However, // we cannot initialize it with _ as that triggers a compiler // bug in Symbian's C++ compiler (cannot decide between two // overloaded constructors of Matcher<const ArgumentTuple&>). extra_matcher_(A<const ArgumentTuple&>()), repeated_action_(DoDefault()) {} virtual ~TypedExpectation() { // Check the validity of the action count if it hasn't been done // yet (for example, if the expectation was never used). CheckActionCountIfNotDone(); for (UntypedActions::const_iterator it = untyped_actions_.begin(); it != untyped_actions_.end(); ++it) { delete static_cast<const Action<F>*>(*it); } } // Implements the .With() clause. TypedExpectation& With(const Matcher<const ArgumentTuple&>& m) { if (last_clause_ == kWith) { ExpectSpecProperty(false, ".With() cannot appear " "more than once in an EXPECT_CALL()."); } else { ExpectSpecProperty(last_clause_ < kWith, ".With() must be the first " "clause in an EXPECT_CALL()."); } last_clause_ = kWith; extra_matcher_ = m; extra_matcher_specified_ = true; return *this; } // Implements the .Times() clause. TypedExpectation& Times(const Cardinality& a_cardinality) { ExpectationBase::UntypedTimes(a_cardinality); return *this; } // Implements the .Times() clause. TypedExpectation& Times(int n) { return Times(Exactly(n)); } // Implements the .InSequence() clause. TypedExpectation& InSequence(const Sequence& s) { ExpectSpecProperty(last_clause_ <= kInSequence, ".InSequence() cannot appear after .After()," " .WillOnce(), .WillRepeatedly(), or " ".RetiresOnSaturation()."); last_clause_ = kInSequence; s.AddExpectation(GetHandle()); return *this; } TypedExpectation& InSequence(const Sequence& s1, const Sequence& s2) { return InSequence(s1).InSequence(s2); } TypedExpectation& InSequence(const Sequence& s1, const Sequence& s2, const Sequence& s3) { return InSequence(s1, s2).InSequence(s3); } TypedExpectation& InSequence(const Sequence& s1, const Sequence& s2, const Sequence& s3, const Sequence& s4) { return InSequence(s1, s2, s3).InSequence(s4); } TypedExpectation& InSequence(const Sequence& s1, const Sequence& s2, const Sequence& s3, const Sequence& s4, const Sequence& s5) { return InSequence(s1, s2, s3, s4).InSequence(s5); } // Implements that .After() clause. TypedExpectation& After(const ExpectationSet& s) { ExpectSpecProperty(last_clause_ <= kAfter, ".After() cannot appear after .WillOnce()," " .WillRepeatedly(), or " ".RetiresOnSaturation()."); last_clause_ = kAfter; for (ExpectationSet::const_iterator it = s.begin(); it != s.end(); ++it) { immediate_prerequisites_ += *it; } return *this; } TypedExpectation& After(const ExpectationSet& s1, const ExpectationSet& s2) { return After(s1).After(s2); } TypedExpectation& After(const ExpectationSet& s1, const ExpectationSet& s2, const ExpectationSet& s3) { return After(s1, s2).After(s3); } TypedExpectation& After(const ExpectationSet& s1, const ExpectationSet& s2, const ExpectationSet& s3, const ExpectationSet& s4) { return After(s1, s2, s3).After(s4); } TypedExpectation& After(const ExpectationSet& s1, const ExpectationSet& s2, const ExpectationSet& s3, const ExpectationSet& s4, const ExpectationSet& s5) { return After(s1, s2, s3, s4).After(s5); } // Implements the .WillOnce() clause. TypedExpectation& WillOnce(const Action<F>& action) { ExpectSpecProperty(last_clause_ <= kWillOnce, ".WillOnce() cannot appear after " ".WillRepeatedly() or .RetiresOnSaturation()."); last_clause_ = kWillOnce; untyped_actions_.push_back(new Action<F>(action)); if (!cardinality_specified()) { set_cardinality(Exactly(static_cast<int>(untyped_actions_.size()))); } return *this; } // Implements the .WillRepeatedly() clause. TypedExpectation& WillRepeatedly(const Action<F>& action) { if (last_clause_ == kWillRepeatedly) { ExpectSpecProperty(false, ".WillRepeatedly() cannot appear " "more than once in an EXPECT_CALL()."); } else { ExpectSpecProperty(last_clause_ < kWillRepeatedly, ".WillRepeatedly() cannot appear " "after .RetiresOnSaturation()."); } last_clause_ = kWillRepeatedly; repeated_action_specified_ = true; repeated_action_ = action; if (!cardinality_specified()) { set_cardinality(AtLeast(static_cast<int>(untyped_actions_.size()))); } // Now that no more action clauses can be specified, we check // whether their count makes sense. CheckActionCountIfNotDone(); return *this; } // Implements the .RetiresOnSaturation() clause. TypedExpectation& RetiresOnSaturation() { ExpectSpecProperty(last_clause_ < kRetiresOnSaturation, ".RetiresOnSaturation() cannot appear " "more than once."); last_clause_ = kRetiresOnSaturation; retires_on_saturation_ = true; // Now that no more action clauses can be specified, we check // whether their count makes sense. CheckActionCountIfNotDone(); return *this; } // Returns the matchers for the arguments as specified inside the // EXPECT_CALL() macro. const ArgumentMatcherTuple& matchers() const { return matchers_; } // Returns the matcher specified by the .With() clause. const Matcher<const ArgumentTuple&>& extra_matcher() const { return extra_matcher_; } // Returns the action specified by the .WillRepeatedly() clause. const Action<F>& repeated_action() const { return repeated_action_; } // If this mock method has an extra matcher (i.e. .With(matcher)), // describes it to the ostream. virtual void MaybeDescribeExtraMatcherTo(::std::ostream* os) { if (extra_matcher_specified_) { *os << " Expected args: "; extra_matcher_.DescribeTo(os); *os << "\n"; } } private: template <typename Function> friend class FunctionMockerBase; // Returns an Expectation object that references and co-owns this // expectation. virtual Expectation GetHandle() { return owner_->GetHandleOf(this); } // The following methods will be called only after the EXPECT_CALL() // statement finishes and when the current thread holds // g_gmock_mutex. // Returns true iff this expectation matches the given arguments. // L >= g_gmock_mutex bool Matches(const ArgumentTuple& args) const { g_gmock_mutex.AssertHeld(); return TupleMatches(matchers_, args) && extra_matcher_.Matches(args); } // Returns true iff this expectation should handle the given arguments. // L >= g_gmock_mutex bool ShouldHandleArguments(const ArgumentTuple& args) const { g_gmock_mutex.AssertHeld(); // In case the action count wasn't checked when the expectation // was defined (e.g. if this expectation has no WillRepeatedly() // or RetiresOnSaturation() clause), we check it when the // expectation is used for the first time. CheckActionCountIfNotDone(); return !is_retired() && AllPrerequisitesAreSatisfied() && Matches(args); } // Describes the result of matching the arguments against this // expectation to the given ostream. // L >= g_gmock_mutex void ExplainMatchResultTo(const ArgumentTuple& args, ::std::ostream* os) const { g_gmock_mutex.AssertHeld(); if (is_retired()) { *os << " Expected: the expectation is active\n" << " Actual: it is retired\n"; } else if (!Matches(args)) { if (!TupleMatches(matchers_, args)) { ExplainMatchFailureTupleTo(matchers_, args, os); } StringMatchResultListener listener; if (!extra_matcher_.MatchAndExplain(args, &listener)) { *os << " Expected args: "; extra_matcher_.DescribeTo(os); *os << "\n Actual: don't match"; internal::PrintIfNotEmpty(listener.str(), os); *os << "\n"; } } else if (!AllPrerequisitesAreSatisfied()) { *os << " Expected: all pre-requisites are satisfied\n" << " Actual: the following immediate pre-requisites " << "are not satisfied:\n"; ExpectationSet unsatisfied_prereqs; FindUnsatisfiedPrerequisites(&unsatisfied_prereqs); int i = 0; for (ExpectationSet::const_iterator it = unsatisfied_prereqs.begin(); it != unsatisfied_prereqs.end(); ++it) { it->expectation_base()->DescribeLocationTo(os); *os << "pre-requisite #" << i++ << "\n"; } *os << " (end of pre-requisites)\n"; } else { // This line is here just for completeness' sake. It will never // be executed as currently the ExplainMatchResultTo() function // is called only when the mock function call does NOT match the // expectation. *os << "The call matches the expectation.\n"; } } // Returns the action that should be taken for the current invocation. // L >= g_gmock_mutex const Action<F>& GetCurrentAction(const FunctionMockerBase<F>* mocker, const ArgumentTuple& args) const { g_gmock_mutex.AssertHeld(); const int count = call_count(); Assert(count >= 1, __FILE__, __LINE__, "call_count() is <= 0 when GetCurrentAction() is " "called - this should never happen."); const int action_count = static_cast<int>(untyped_actions_.size()); if (action_count > 0 && !repeated_action_specified_ && count > action_count) { // If there is at least one WillOnce() and no WillRepeatedly(), // we warn the user when the WillOnce() clauses ran out. ::std::stringstream ss; DescribeLocationTo(&ss); ss << "Actions ran out in " << source_text() << "...\n" << "Called " << count << " times, but only " << action_count << " WillOnce()" << (action_count == 1 ? " is" : "s are") << " specified - "; mocker->DescribeDefaultActionTo(args, &ss); Log(WARNING, ss.str(), 1); } return count <= action_count ? *static_cast<const Action<F>*>(untyped_actions_[count - 1]) : repeated_action(); } // Given the arguments of a mock function call, if the call will // over-saturate this expectation, returns the default action; // otherwise, returns the next action in this expectation. Also // describes *what* happened to 'what', and explains *why* Google // Mock does it to 'why'. This method is not const as it calls // IncrementCallCount(). A return value of NULL means the default // action. // L >= g_gmock_mutex const Action<F>* GetActionForArguments(const FunctionMockerBase<F>* mocker, const ArgumentTuple& args, ::std::ostream* what, ::std::ostream* why) { g_gmock_mutex.AssertHeld(); if (IsSaturated()) { // We have an excessive call. IncrementCallCount(); *what << "Mock function called more times than expected - "; mocker->DescribeDefaultActionTo(args, what); DescribeCallCountTo(why); // TODO(wan@google.com): allow the user to control whether // unexpected calls should fail immediately or continue using a // flag --gmock_unexpected_calls_are_fatal. return NULL; } IncrementCallCount(); RetireAllPreRequisites(); if (retires_on_saturation_ && IsSaturated()) { Retire(); } // Must be done after IncrementCount()! *what << "Mock function call matches " << source_text() <<"...\n"; return &(GetCurrentAction(mocker, args)); } // All the fields below won't change once the EXPECT_CALL() // statement finishes. FunctionMockerBase<F>* const owner_; ArgumentMatcherTuple matchers_; Matcher<const ArgumentTuple&> extra_matcher_; Action<F> repeated_action_; GTEST_DISALLOW_COPY_AND_ASSIGN_(TypedExpectation); }; // class TypedExpectation // A MockSpec object is used by ON_CALL() or EXPECT_CALL() for // specifying the default behavior of, or expectation on, a mock // function. // Note: class MockSpec really belongs to the ::testing namespace. // However if we define it in ::testing, MSVC will complain when // classes in ::testing::internal declare it as a friend class // template. To workaround this compiler bug, we define MockSpec in // ::testing::internal and import it into ::testing. // Logs a message including file and line number information. void LogWithLocation(testing::internal::LogSeverity severity, const char* file, int line, const string& message); template <typename F> class MockSpec { public: typedef typename internal::Function<F>::ArgumentTuple ArgumentTuple; typedef typename internal::Function<F>::ArgumentMatcherTuple ArgumentMatcherTuple; // Constructs a MockSpec object, given the function mocker object // that the spec is associated with. explicit MockSpec(internal::FunctionMockerBase<F>* function_mocker) : function_mocker_(function_mocker) {} // Adds a new default action spec to the function mocker and returns // the newly created spec. internal::OnCallSpec<F>& InternalDefaultActionSetAt( const char* file, int line, const char* obj, const char* call) { LogWithLocation(internal::INFO, file, line, string("ON_CALL(") + obj + ", " + call + ") invoked"); return function_mocker_->AddNewOnCallSpec(file, line, matchers_); } // Adds a new expectation spec to the function mocker and returns // the newly created spec. internal::TypedExpectation<F>& InternalExpectedAt( const char* file, int line, const char* obj, const char* call) { const string source_text(string("EXPECT_CALL(") + obj + ", " + call + ")"); LogWithLocation(internal::INFO, file, line, source_text + " invoked"); return function_mocker_->AddNewExpectation( file, line, source_text, matchers_); } private: template <typename Function> friend class internal::FunctionMocker; void SetMatchers(const ArgumentMatcherTuple& matchers) { matchers_ = matchers; } // The function mocker that owns this spec. internal::FunctionMockerBase<F>* const function_mocker_; // The argument matchers specified in the spec. ArgumentMatcherTuple matchers_; GTEST_DISALLOW_ASSIGN_(MockSpec); }; // class MockSpec // MSVC warns about using 'this' in base member initializer list, so // we need to temporarily disable the warning. We have to do it for // the entire class to suppress the warning, even though it's about // the constructor only. #ifdef _MSC_VER # pragma warning(push) // Saves the current warning state. # pragma warning(disable:4355) // Temporarily disables warning 4355. #endif // _MSV_VER // C++ treats the void type specially. For example, you cannot define // a void-typed variable or pass a void value to a function. // ActionResultHolder<T> holds a value of type T, where T must be a // copyable type or void (T doesn't need to be default-constructable). // It hides the syntactic difference between void and other types, and // is used to unify the code for invoking both void-returning and // non-void-returning mock functions. // Untyped base class for ActionResultHolder<T>. class UntypedActionResultHolderBase { public: virtual ~UntypedActionResultHolderBase() {} // Prints the held value as an action's result to os. virtual void PrintAsActionResult(::std::ostream* os) const = 0; }; // This generic definition is used when T is not void. template <typename T> class ActionResultHolder : public UntypedActionResultHolderBase { public: explicit ActionResultHolder(T a_value) : value_(a_value) {} // The compiler-generated copy constructor and assignment operator // are exactly what we need, so we don't need to define them. // Returns the held value and deletes this object. T GetValueAndDelete() const { T retval(value_); delete this; return retval; } // Prints the held value as an action's result to os. virtual void PrintAsActionResult(::std::ostream* os) const { *os << "\n Returns: "; // T may be a reference type, so we don't use UniversalPrint(). UniversalPrinter<T>::Print(value_, os); } // Performs the given mock function's default action and returns the // result in a new-ed ActionResultHolder. template <typename F> static ActionResultHolder* PerformDefaultAction( const FunctionMockerBase<F>* func_mocker, const typename Function<F>::ArgumentTuple& args, const string& call_description) { return new ActionResultHolder( func_mocker->PerformDefaultAction(args, call_description)); } // Performs the given action and returns the result in a new-ed // ActionResultHolder. template <typename F> static ActionResultHolder* PerformAction(const Action<F>& action, const typename Function<F>::ArgumentTuple& args) { return new ActionResultHolder(action.Perform(args)); } private: T value_; // T could be a reference type, so = isn't supported. GTEST_DISALLOW_ASSIGN_(ActionResultHolder); }; // Specialization for T = void. template <> class ActionResultHolder<void> : public UntypedActionResultHolderBase { public: void GetValueAndDelete() const { delete this; } virtual void PrintAsActionResult(::std::ostream* /* os */) const {} // Performs the given mock function's default action and returns NULL; template <typename F> static ActionResultHolder* PerformDefaultAction( const FunctionMockerBase<F>* func_mocker, const typename Function<F>::ArgumentTuple& args, const string& call_description) { func_mocker->PerformDefaultAction(args, call_description); return NULL; } // Performs the given action and returns NULL. template <typename F> static ActionResultHolder* PerformAction( const Action<F>& action, const typename Function<F>::ArgumentTuple& args) { action.Perform(args); return NULL; } }; // The base of the function mocker class for the given function type. // We put the methods in this class instead of its child to avoid code // bloat. template <typename F> class FunctionMockerBase : public UntypedFunctionMockerBase { public: typedef typename Function<F>::Result Result; typedef typename Function<F>::ArgumentTuple ArgumentTuple; typedef typename Function<F>::ArgumentMatcherTuple ArgumentMatcherTuple; FunctionMockerBase() : current_spec_(this) {} // The destructor verifies that all expectations on this mock // function have been satisfied. If not, it will report Google Test // non-fatal failures for the violations. // L < g_gmock_mutex virtual ~FunctionMockerBase() { MutexLock l(&g_gmock_mutex); VerifyAndClearExpectationsLocked(); Mock::UnregisterLocked(this); ClearDefaultActionsLocked(); } // Returns the ON_CALL spec that matches this mock function with the // given arguments; returns NULL if no matching ON_CALL is found. // L = * const OnCallSpec<F>* FindOnCallSpec( const ArgumentTuple& args) const { for (UntypedOnCallSpecs::const_reverse_iterator it = untyped_on_call_specs_.rbegin(); it != untyped_on_call_specs_.rend(); ++it) { const OnCallSpec<F>* spec = static_cast<const OnCallSpec<F>*>(*it); if (spec->Matches(args)) return spec; } return NULL; } // Performs the default action of this mock function on the given arguments // and returns the result. Asserts with a helpful call descrption if there is // no valid return value. This method doesn't depend on the mutable state of // this object, and thus can be called concurrently without locking. // L = * Result PerformDefaultAction(const ArgumentTuple& args, const string& call_description) const { const OnCallSpec<F>* const spec = this->FindOnCallSpec(args); if (spec != NULL) { return spec->GetAction().Perform(args); } Assert(DefaultValue<Result>::Exists(), "", -1, call_description + "\n The mock function has no default action " "set, and its return type has no default value set."); return DefaultValue<Result>::Get(); } // Performs the default action with the given arguments and returns // the action's result. The call description string will be used in // the error message to describe the call in the case the default // action fails. The caller is responsible for deleting the result. // L = * virtual UntypedActionResultHolderBase* UntypedPerformDefaultAction( const void* untyped_args, // must point to an ArgumentTuple const string& call_description) const { const ArgumentTuple& args = *static_cast<const ArgumentTuple*>(untyped_args); return ResultHolder::PerformDefaultAction(this, args, call_description); } // Performs the given action with the given arguments and returns // the action's result. The caller is responsible for deleting the // result. // L = * virtual UntypedActionResultHolderBase* UntypedPerformAction( const void* untyped_action, const void* untyped_args) const { // Make a copy of the action before performing it, in case the // action deletes the mock object (and thus deletes itself). const Action<F> action = *static_cast<const Action<F>*>(untyped_action); const ArgumentTuple& args = *static_cast<const ArgumentTuple*>(untyped_args); return ResultHolder::PerformAction(action, args); } // Implements UntypedFunctionMockerBase::ClearDefaultActionsLocked(): // clears the ON_CALL()s set on this mock function. // L >= g_gmock_mutex virtual void ClearDefaultActionsLocked() { g_gmock_mutex.AssertHeld(); for (UntypedOnCallSpecs::const_iterator it = untyped_on_call_specs_.begin(); it != untyped_on_call_specs_.end(); ++it) { delete static_cast<const OnCallSpec<F>*>(*it); } untyped_on_call_specs_.clear(); } protected: template <typename Function> friend class MockSpec; typedef ActionResultHolder<Result> ResultHolder; // Returns the result of invoking this mock function with the given // arguments. This function can be safely called from multiple // threads concurrently. // L < g_gmock_mutex Result InvokeWith(const ArgumentTuple& args) { return static_cast<const ResultHolder*>( this->UntypedInvokeWith(&args))->GetValueAndDelete(); } // Adds and returns a default action spec for this mock function. // L < g_gmock_mutex OnCallSpec<F>& AddNewOnCallSpec( const char* file, int line, const ArgumentMatcherTuple& m) { Mock::RegisterUseByOnCallOrExpectCall(MockObject(), file, line); OnCallSpec<F>* const on_call_spec = new OnCallSpec<F>(file, line, m); untyped_on_call_specs_.push_back(on_call_spec); return *on_call_spec; } // Adds and returns an expectation spec for this mock function. // L < g_gmock_mutex TypedExpectation<F>& AddNewExpectation( const char* file, int line, const string& source_text, const ArgumentMatcherTuple& m) { Mock::RegisterUseByOnCallOrExpectCall(MockObject(), file, line); TypedExpectation<F>* const expectation = new TypedExpectation<F>(this, file, line, source_text, m); const linked_ptr<ExpectationBase> untyped_expectation(expectation); untyped_expectations_.push_back(untyped_expectation); // Adds this expectation into the implicit sequence if there is one. Sequence* const implicit_sequence = g_gmock_implicit_sequence.get(); if (implicit_sequence != NULL) { implicit_sequence->AddExpectation(Expectation(untyped_expectation)); } return *expectation; } // The current spec (either default action spec or expectation spec) // being described on this function mocker. MockSpec<F>& current_spec() { return current_spec_; } private: template <typename Func> friend class TypedExpectation; // Some utilities needed for implementing UntypedInvokeWith(). // Describes what default action will be performed for the given // arguments. // L = * void DescribeDefaultActionTo(const ArgumentTuple& args, ::std::ostream* os) const { const OnCallSpec<F>* const spec = FindOnCallSpec(args); if (spec == NULL) { *os << (internal::type_equals<Result, void>::value ? "returning directly.\n" : "returning default value.\n"); } else { *os << "taking default action specified at:\n" << FormatFileLocation(spec->file(), spec->line()) << "\n"; } } // Writes a message that the call is uninteresting (i.e. neither // explicitly expected nor explicitly unexpected) to the given // ostream. // L < g_gmock_mutex virtual void UntypedDescribeUninterestingCall(const void* untyped_args, ::std::ostream* os) const { const ArgumentTuple& args = *static_cast<const ArgumentTuple*>(untyped_args); *os << "Uninteresting mock function call - "; DescribeDefaultActionTo(args, os); *os << " Function call: " << Name(); UniversalPrint(args, os); } // Returns the expectation that matches the given function arguments // (or NULL is there's no match); when a match is found, // untyped_action is set to point to the action that should be // performed (or NULL if the action is "do default"), and // is_excessive is modified to indicate whether the call exceeds the // expected number. // // Critical section: We must find the matching expectation and the // corresponding action that needs to be taken in an ATOMIC // transaction. Otherwise another thread may call this mock // method in the middle and mess up the state. // // However, performing the action has to be left out of the critical // section. The reason is that we have no control on what the // action does (it can invoke an arbitrary user function or even a // mock function) and excessive locking could cause a dead lock. // L < g_gmock_mutex virtual const ExpectationBase* UntypedFindMatchingExpectation( const void* untyped_args, const void** untyped_action, bool* is_excessive, ::std::ostream* what, ::std::ostream* why) { const ArgumentTuple& args = *static_cast<const ArgumentTuple*>(untyped_args); MutexLock l(&g_gmock_mutex); TypedExpectation<F>* exp = this->FindMatchingExpectationLocked(args); if (exp == NULL) { // A match wasn't found. this->FormatUnexpectedCallMessageLocked(args, what, why); return NULL; } // This line must be done before calling GetActionForArguments(), // which will increment the call count for *exp and thus affect // its saturation status. *is_excessive = exp->IsSaturated(); const Action<F>* action = exp->GetActionForArguments(this, args, what, why); if (action != NULL && action->IsDoDefault()) action = NULL; // Normalize "do default" to NULL. *untyped_action = action; return exp; } // Prints the given function arguments to the ostream. virtual void UntypedPrintArgs(const void* untyped_args, ::std::ostream* os) const { const ArgumentTuple& args = *static_cast<const ArgumentTuple*>(untyped_args); UniversalPrint(args, os); } // Returns the expectation that matches the arguments, or NULL if no // expectation matches them. // L >= g_gmock_mutex TypedExpectation<F>* FindMatchingExpectationLocked( const ArgumentTuple& args) const { g_gmock_mutex.AssertHeld(); for (typename UntypedExpectations::const_reverse_iterator it = untyped_expectations_.rbegin(); it != untyped_expectations_.rend(); ++it) { TypedExpectation<F>* const exp = static_cast<TypedExpectation<F>*>(it->get()); if (exp->ShouldHandleArguments(args)) { return exp; } } return NULL; } // Returns a message that the arguments don't match any expectation. // L >= g_gmock_mutex void FormatUnexpectedCallMessageLocked(const ArgumentTuple& args, ::std::ostream* os, ::std::ostream* why) const { g_gmock_mutex.AssertHeld(); *os << "\nUnexpected mock function call - "; DescribeDefaultActionTo(args, os); PrintTriedExpectationsLocked(args, why); } // Prints a list of expectations that have been tried against the // current mock function call. // L >= g_gmock_mutex void PrintTriedExpectationsLocked(const ArgumentTuple& args, ::std::ostream* why) const { g_gmock_mutex.AssertHeld(); const int count = static_cast<int>(untyped_expectations_.size()); *why << "Google Mock tried the following " << count << " " << (count == 1 ? "expectation, but it didn't match" : "expectations, but none matched") << ":\n"; for (int i = 0; i < count; i++) { TypedExpectation<F>* const expectation = static_cast<TypedExpectation<F>*>(untyped_expectations_[i].get()); *why << "\n"; expectation->DescribeLocationTo(why); if (count > 1) { *why << "tried expectation #" << i << ": "; } *why << expectation->source_text() << "...\n"; expectation->ExplainMatchResultTo(args, why); expectation->DescribeCallCountTo(why); } } // The current spec (either default action spec or expectation spec) // being described on this function mocker. MockSpec<F> current_spec_; // There is no generally useful and implementable semantics of // copying a mock object, so copying a mock is usually a user error. // Thus we disallow copying function mockers. If the user really // wants to copy a mock object, he should implement his own copy // operation, for example: // // class MockFoo : public Foo { // public: // // Defines a copy constructor explicitly. // MockFoo(const MockFoo& src) {} // ... // }; GTEST_DISALLOW_COPY_AND_ASSIGN_(FunctionMockerBase); }; // class FunctionMockerBase #ifdef _MSC_VER # pragma warning(pop) // Restores the warning state. #endif // _MSV_VER // Implements methods of FunctionMockerBase. // Verifies that all expectations on this mock function have been // satisfied. Reports one or more Google Test non-fatal failures and // returns false if not. // L >= g_gmock_mutex // Reports an uninteresting call (whose description is in msg) in the // manner specified by 'reaction'. void ReportUninterestingCall(CallReaction reaction, const string& msg); } // namespace internal // The style guide prohibits "using" statements in a namespace scope // inside a header file. However, the MockSpec class template is // meant to be defined in the ::testing namespace. The following line // is just a trick for working around a bug in MSVC 8.0, which cannot // handle it if we define MockSpec in ::testing. using internal::MockSpec; // Const(x) is a convenient function for obtaining a const reference // to x. This is useful for setting expectations on an overloaded // const mock method, e.g. // // class MockFoo : public FooInterface { // public: // MOCK_METHOD0(Bar, int()); // MOCK_CONST_METHOD0(Bar, int&()); // }; // // MockFoo foo; // // Expects a call to non-const MockFoo::Bar(). // EXPECT_CALL(foo, Bar()); // // Expects a call to const MockFoo::Bar(). // EXPECT_CALL(Const(foo), Bar()); template <typename T> inline const T& Const(const T& x) { return x; } // Constructs an Expectation object that references and co-owns exp. inline Expectation::Expectation(internal::ExpectationBase& exp) // NOLINT : expectation_base_(exp.GetHandle().expectation_base()) {} } // namespace testing // A separate macro is required to avoid compile errors when the name // of the method used in call is a result of macro expansion. // See CompilesWithMethodNameExpandedFromMacro tests in // internal/gmock-spec-builders_test.cc for more details. #define GMOCK_ON_CALL_IMPL_(obj, call) \ ((obj).gmock_##call).InternalDefaultActionSetAt(__FILE__, __LINE__, \ #obj, #call) #define ON_CALL(obj, call) GMOCK_ON_CALL_IMPL_(obj, call) #define GMOCK_EXPECT_CALL_IMPL_(obj, call) \ ((obj).gmock_##call).InternalExpectedAt(__FILE__, __LINE__, #obj, #call) #define EXPECT_CALL(obj, call) GMOCK_EXPECT_CALL_IMPL_(obj, call) #endif // GMOCK_INCLUDE_GMOCK_GMOCK_SPEC_BUILDERS_H_ namespace testing { namespace internal { template <typename F> class FunctionMockerBase; // Note: class FunctionMocker really belongs to the ::testing // namespace. However if we define it in ::testing, MSVC will // complain when classes in ::testing::internal declare it as a // friend class template. To workaround this compiler bug, we define // FunctionMocker in ::testing::internal and import it into ::testing. template <typename F> class FunctionMocker; template <typename R> class FunctionMocker<R()> : public internal::FunctionMockerBase<R()> { public: typedef R F(); typedef typename internal::Function<F>::ArgumentTuple ArgumentTuple; MockSpec<F>& With() { return this->current_spec(); } R Invoke() { // Even though gcc and MSVC don't enforce it, 'this->' is required // by the C++ standard [14.6.4] here, as the base class type is // dependent on the template argument (and thus shouldn't be // looked into when resolving InvokeWith). return this->InvokeWith(ArgumentTuple()); } }; template <typename R, typename A1> class FunctionMocker<R(A1)> : public internal::FunctionMockerBase<R(A1)> { public: typedef R F(A1); typedef typename internal::Function<F>::ArgumentTuple ArgumentTuple; MockSpec<F>& With(const Matcher<A1>& m1) { this->current_spec().SetMatchers(::std::tr1::make_tuple(m1)); return this->current_spec(); } R Invoke(A1 a1) { // Even though gcc and MSVC don't enforce it, 'this->' is required // by the C++ standard [14.6.4] here, as the base class type is // dependent on the template argument (and thus shouldn't be // looked into when resolving InvokeWith). return this->InvokeWith(ArgumentTuple(a1)); } }; template <typename R, typename A1, typename A2> class FunctionMocker<R(A1, A2)> : public internal::FunctionMockerBase<R(A1, A2)> { public: typedef R F(A1, A2); typedef typename internal::Function<F>::ArgumentTuple ArgumentTuple; MockSpec<F>& With(const Matcher<A1>& m1, const Matcher<A2>& m2) { this->current_spec().SetMatchers(::std::tr1::make_tuple(m1, m2)); return this->current_spec(); } R Invoke(A1 a1, A2 a2) { // Even though gcc and MSVC don't enforce it, 'this->' is required // by the C++ standard [14.6.4] here, as the base class type is // dependent on the template argument (and thus shouldn't be // looked into when resolving InvokeWith). return this->InvokeWith(ArgumentTuple(a1, a2)); } }; template <typename R, typename A1, typename A2, typename A3> class FunctionMocker<R(A1, A2, A3)> : public internal::FunctionMockerBase<R(A1, A2, A3)> { public: typedef R F(A1, A2, A3); typedef typename internal::Function<F>::ArgumentTuple ArgumentTuple; MockSpec<F>& With(const Matcher<A1>& m1, const Matcher<A2>& m2, const Matcher<A3>& m3) { this->current_spec().SetMatchers(::std::tr1::make_tuple(m1, m2, m3)); return this->current_spec(); } R Invoke(A1 a1, A2 a2, A3 a3) { // Even though gcc and MSVC don't enforce it, 'this->' is required // by the C++ standard [14.6.4] here, as the base class type is // dependent on the template argument (and thus shouldn't be // looked into when resolving InvokeWith). return this->InvokeWith(ArgumentTuple(a1, a2, a3)); } }; template <typename R, typename A1, typename A2, typename A3, typename A4> class FunctionMocker<R(A1, A2, A3, A4)> : public internal::FunctionMockerBase<R(A1, A2, A3, A4)> { public: typedef R F(A1, A2, A3, A4); typedef typename internal::Function<F>::ArgumentTuple ArgumentTuple; MockSpec<F>& With(const Matcher<A1>& m1, const Matcher<A2>& m2, const Matcher<A3>& m3, const Matcher<A4>& m4) { this->current_spec().SetMatchers(::std::tr1::make_tuple(m1, m2, m3, m4)); return this->current_spec(); } R Invoke(A1 a1, A2 a2, A3 a3, A4 a4) { // Even though gcc and MSVC don't enforce it, 'this->' is required // by the C++ standard [14.6.4] here, as the base class type is // dependent on the template argument (and thus shouldn't be // looked into when resolving InvokeWith). return this->InvokeWith(ArgumentTuple(a1, a2, a3, a4)); } }; template <typename R, typename A1, typename A2, typename A3, typename A4, typename A5> class FunctionMocker<R(A1, A2, A3, A4, A5)> : public internal::FunctionMockerBase<R(A1, A2, A3, A4, A5)> { public: typedef R F(A1, A2, A3, A4, A5); typedef typename internal::Function<F>::ArgumentTuple ArgumentTuple; MockSpec<F>& With(const Matcher<A1>& m1, const Matcher<A2>& m2, const Matcher<A3>& m3, const Matcher<A4>& m4, const Matcher<A5>& m5) { this->current_spec().SetMatchers(::std::tr1::make_tuple(m1, m2, m3, m4, m5)); return this->current_spec(); } R Invoke(A1 a1, A2 a2, A3 a3, A4 a4, A5 a5) { // Even though gcc and MSVC don't enforce it, 'this->' is required // by the C++ standard [14.6.4] here, as the base class type is // dependent on the template argument (and thus shouldn't be // looked into when resolving InvokeWith). return this->InvokeWith(ArgumentTuple(a1, a2, a3, a4, a5)); } }; template <typename R, typename A1, typename A2, typename A3, typename A4, typename A5, typename A6> class FunctionMocker<R(A1, A2, A3, A4, A5, A6)> : public internal::FunctionMockerBase<R(A1, A2, A3, A4, A5, A6)> { public: typedef R F(A1, A2, A3, A4, A5, A6); typedef typename internal::Function<F>::ArgumentTuple ArgumentTuple; MockSpec<F>& With(const Matcher<A1>& m1, const Matcher<A2>& m2, const Matcher<A3>& m3, const Matcher<A4>& m4, const Matcher<A5>& m5, const Matcher<A6>& m6) { this->current_spec().SetMatchers(::std::tr1::make_tuple(m1, m2, m3, m4, m5, m6)); return this->current_spec(); } R Invoke(A1 a1, A2 a2, A3 a3, A4 a4, A5 a5, A6 a6) { // Even though gcc and MSVC don't enforce it, 'this->' is required // by the C++ standard [14.6.4] here, as the base class type is // dependent on the template argument (and thus shouldn't be // looked into when resolving InvokeWith). return this->InvokeWith(ArgumentTuple(a1, a2, a3, a4, a5, a6)); } }; template <typename R, typename A1, typename A2, typename A3, typename A4, typename A5, typename A6, typename A7> class FunctionMocker<R(A1, A2, A3, A4, A5, A6, A7)> : public internal::FunctionMockerBase<R(A1, A2, A3, A4, A5, A6, A7)> { public: typedef R F(A1, A2, A3, A4, A5, A6, A7); typedef typename internal::Function<F>::ArgumentTuple ArgumentTuple; MockSpec<F>& With(const Matcher<A1>& m1, const Matcher<A2>& m2, const Matcher<A3>& m3, const Matcher<A4>& m4, const Matcher<A5>& m5, const Matcher<A6>& m6, const Matcher<A7>& m7) { this->current_spec().SetMatchers(::std::tr1::make_tuple(m1, m2, m3, m4, m5, m6, m7)); return this->current_spec(); } R Invoke(A1 a1, A2 a2, A3 a3, A4 a4, A5 a5, A6 a6, A7 a7) { // Even though gcc and MSVC don't enforce it, 'this->' is required // by the C++ standard [14.6.4] here, as the base class type is // dependent on the template argument (and thus shouldn't be // looked into when resolving InvokeWith). return this->InvokeWith(ArgumentTuple(a1, a2, a3, a4, a5, a6, a7)); } }; template <typename R, typename A1, typename A2, typename A3, typename A4, typename A5, typename A6, typename A7, typename A8> class FunctionMocker<R(A1, A2, A3, A4, A5, A6, A7, A8)> : public internal::FunctionMockerBase<R(A1, A2, A3, A4, A5, A6, A7, A8)> { public: typedef R F(A1, A2, A3, A4, A5, A6, A7, A8); typedef typename internal::Function<F>::ArgumentTuple ArgumentTuple; MockSpec<F>& With(const Matcher<A1>& m1, const Matcher<A2>& m2, const Matcher<A3>& m3, const Matcher<A4>& m4, const Matcher<A5>& m5, const Matcher<A6>& m6, const Matcher<A7>& m7, const Matcher<A8>& m8) { this->current_spec().SetMatchers(::std::tr1::make_tuple(m1, m2, m3, m4, m5, m6, m7, m8)); return this->current_spec(); } R Invoke(A1 a1, A2 a2, A3 a3, A4 a4, A5 a5, A6 a6, A7 a7, A8 a8) { // Even though gcc and MSVC don't enforce it, 'this->' is required // by the C++ standard [14.6.4] here, as the base class type is // dependent on the template argument (and thus shouldn't be // looked into when resolving InvokeWith). return this->InvokeWith(ArgumentTuple(a1, a2, a3, a4, a5, a6, a7, a8)); } }; template <typename R, typename A1, typename A2, typename A3, typename A4, typename A5, typename A6, typename A7, typename A8, typename A9> class FunctionMocker<R(A1, A2, A3, A4, A5, A6, A7, A8, A9)> : public internal::FunctionMockerBase<R(A1, A2, A3, A4, A5, A6, A7, A8, A9)> { public: typedef R F(A1, A2, A3, A4, A5, A6, A7, A8, A9); typedef typename internal::Function<F>::ArgumentTuple ArgumentTuple; MockSpec<F>& With(const Matcher<A1>& m1, const Matcher<A2>& m2, const Matcher<A3>& m3, const Matcher<A4>& m4, const Matcher<A5>& m5, const Matcher<A6>& m6, const Matcher<A7>& m7, const Matcher<A8>& m8, const Matcher<A9>& m9) { this->current_spec().SetMatchers(::std::tr1::make_tuple(m1, m2, m3, m4, m5, m6, m7, m8, m9)); return this->current_spec(); } R Invoke(A1 a1, A2 a2, A3 a3, A4 a4, A5 a5, A6 a6, A7 a7, A8 a8, A9 a9) { // Even though gcc and MSVC don't enforce it, 'this->' is required // by the C++ standard [14.6.4] here, as the base class type is // dependent on the template argument (and thus shouldn't be // looked into when resolving InvokeWith). return this->InvokeWith(ArgumentTuple(a1, a2, a3, a4, a5, a6, a7, a8, a9)); } }; template <typename R, typename A1, typename A2, typename A3, typename A4, typename A5, typename A6, typename A7, typename A8, typename A9, typename A10> class FunctionMocker<R(A1, A2, A3, A4, A5, A6, A7, A8, A9, A10)> : public internal::FunctionMockerBase<R(A1, A2, A3, A4, A5, A6, A7, A8, A9, A10)> { public: typedef R F(A1, A2, A3, A4, A5, A6, A7, A8, A9, A10); typedef typename internal::Function<F>::ArgumentTuple ArgumentTuple; MockSpec<F>& With(const Matcher<A1>& m1, const Matcher<A2>& m2, const Matcher<A3>& m3, const Matcher<A4>& m4, const Matcher<A5>& m5, const Matcher<A6>& m6, const Matcher<A7>& m7, const Matcher<A8>& m8, const Matcher<A9>& m9, const Matcher<A10>& m10) { this->current_spec().SetMatchers(::std::tr1::make_tuple(m1, m2, m3, m4, m5, m6, m7, m8, m9, m10)); return this->current_spec(); } R Invoke(A1 a1, A2 a2, A3 a3, A4 a4, A5 a5, A6 a6, A7 a7, A8 a8, A9 a9, A10 a10) { // Even though gcc and MSVC don't enforce it, 'this->' is required // by the C++ standard [14.6.4] here, as the base class type is // dependent on the template argument (and thus shouldn't be // looked into when resolving InvokeWith). return this->InvokeWith(ArgumentTuple(a1, a2, a3, a4, a5, a6, a7, a8, a9, a10)); } }; } // namespace internal // The style guide prohibits "using" statements in a namespace scope // inside a header file. However, the FunctionMocker class template // is meant to be defined in the ::testing namespace. The following // line is just a trick for working around a bug in MSVC 8.0, which // cannot handle it if we define FunctionMocker in ::testing. using internal::FunctionMocker; // The result type of function type F. // INTERNAL IMPLEMENTATION - DON'T USE IN USER CODE!!! #define GMOCK_RESULT_(tn, F) tn ::testing::internal::Function<F>::Result // The type of argument N of function type F. // INTERNAL IMPLEMENTATION - DON'T USE IN USER CODE!!! #define GMOCK_ARG_(tn, F, N) tn ::testing::internal::Function<F>::Argument##N // The matcher type for argument N of function type F. // INTERNAL IMPLEMENTATION - DON'T USE IN USER CODE!!! #define GMOCK_MATCHER_(tn, F, N) const ::testing::Matcher<GMOCK_ARG_(tn, F, N)>& // The variable for mocking the given method. // INTERNAL IMPLEMENTATION - DON'T USE IN USER CODE!!! #define GMOCK_MOCKER_(arity, constness, Method) \ GTEST_CONCAT_TOKEN_(gmock##constness##arity##_##Method##_, __LINE__) // INTERNAL IMPLEMENTATION - DON'T USE IN USER CODE!!! #define GMOCK_METHOD0_(tn, constness, ct, Method, F) \ GMOCK_RESULT_(tn, F) ct Method() constness { \ GTEST_COMPILE_ASSERT_(::std::tr1::tuple_size< \ tn ::testing::internal::Function<F>::ArgumentTuple>::value == 0, \ this_method_does_not_take_0_arguments); \ GMOCK_MOCKER_(0, constness, Method).SetOwnerAndName(this, #Method); \ return GMOCK_MOCKER_(0, constness, Method).Invoke(); \ } \ ::testing::MockSpec<F>& \ gmock_##Method() constness { \ GMOCK_MOCKER_(0, constness, Method).RegisterOwner(this); \ return GMOCK_MOCKER_(0, constness, Method).With(); \ } \ mutable ::testing::FunctionMocker<F> GMOCK_MOCKER_(0, constness, Method) // INTERNAL IMPLEMENTATION - DON'T USE IN USER CODE!!! #define GMOCK_METHOD1_(tn, constness, ct, Method, F) \ GMOCK_RESULT_(tn, F) ct Method(GMOCK_ARG_(tn, F, 1) gmock_a1) constness { \ GTEST_COMPILE_ASSERT_(::std::tr1::tuple_size< \ tn ::testing::internal::Function<F>::ArgumentTuple>::value == 1, \ this_method_does_not_take_1_argument); \ GMOCK_MOCKER_(1, constness, Method).SetOwnerAndName(this, #Method); \ return GMOCK_MOCKER_(1, constness, Method).Invoke(gmock_a1); \ } \ ::testing::MockSpec<F>& \ gmock_##Method(GMOCK_MATCHER_(tn, F, 1) gmock_a1) constness { \ GMOCK_MOCKER_(1, constness, Method).RegisterOwner(this); \ return GMOCK_MOCKER_(1, constness, Method).With(gmock_a1); \ } \ mutable ::testing::FunctionMocker<F> GMOCK_MOCKER_(1, constness, Method) // INTERNAL IMPLEMENTATION - DON'T USE IN USER CODE!!! #define GMOCK_METHOD2_(tn, constness, ct, Method, F) \ GMOCK_RESULT_(tn, F) ct Method(GMOCK_ARG_(tn, F, 1) gmock_a1, \ GMOCK_ARG_(tn, F, 2) gmock_a2) constness { \ GTEST_COMPILE_ASSERT_(::std::tr1::tuple_size< \ tn ::testing::internal::Function<F>::ArgumentTuple>::value == 2, \ this_method_does_not_take_2_arguments); \ GMOCK_MOCKER_(2, constness, Method).SetOwnerAndName(this, #Method); \ return GMOCK_MOCKER_(2, constness, Method).Invoke(gmock_a1, gmock_a2); \ } \ ::testing::MockSpec<F>& \ gmock_##Method(GMOCK_MATCHER_(tn, F, 1) gmock_a1, \ GMOCK_MATCHER_(tn, F, 2) gmock_a2) constness { \ GMOCK_MOCKER_(2, constness, Method).RegisterOwner(this); \ return GMOCK_MOCKER_(2, constness, Method).With(gmock_a1, gmock_a2); \ } \ mutable ::testing::FunctionMocker<F> GMOCK_MOCKER_(2, constness, Method) // INTERNAL IMPLEMENTATION - DON'T USE IN USER CODE!!! #define GMOCK_METHOD3_(tn, constness, ct, Method, F) \ GMOCK_RESULT_(tn, F) ct Method(GMOCK_ARG_(tn, F, 1) gmock_a1, \ GMOCK_ARG_(tn, F, 2) gmock_a2, \ GMOCK_ARG_(tn, F, 3) gmock_a3) constness { \ GTEST_COMPILE_ASSERT_(::std::tr1::tuple_size< \ tn ::testing::internal::Function<F>::ArgumentTuple>::value == 3, \ this_method_does_not_take_3_arguments); \ GMOCK_MOCKER_(3, constness, Method).SetOwnerAndName(this, #Method); \ return GMOCK_MOCKER_(3, constness, Method).Invoke(gmock_a1, gmock_a2, \ gmock_a3); \ } \ ::testing::MockSpec<F>& \ gmock_##Method(GMOCK_MATCHER_(tn, F, 1) gmock_a1, \ GMOCK_MATCHER_(tn, F, 2) gmock_a2, \ GMOCK_MATCHER_(tn, F, 3) gmock_a3) constness { \ GMOCK_MOCKER_(3, constness, Method).RegisterOwner(this); \ return GMOCK_MOCKER_(3, constness, Method).With(gmock_a1, gmock_a2, \ gmock_a3); \ } \ mutable ::testing::FunctionMocker<F> GMOCK_MOCKER_(3, constness, Method) // INTERNAL IMPLEMENTATION - DON'T USE IN USER CODE!!! #define GMOCK_METHOD4_(tn, constness, ct, Method, F) \ GMOCK_RESULT_(tn, F) ct Method(GMOCK_ARG_(tn, F, 1) gmock_a1, \ GMOCK_ARG_(tn, F, 2) gmock_a2, \ GMOCK_ARG_(tn, F, 3) gmock_a3, \ GMOCK_ARG_(tn, F, 4) gmock_a4) constness { \ GTEST_COMPILE_ASSERT_(::std::tr1::tuple_size< \ tn ::testing::internal::Function<F>::ArgumentTuple>::value == 4, \ this_method_does_not_take_4_arguments); \ GMOCK_MOCKER_(4, constness, Method).SetOwnerAndName(this, #Method); \ return GMOCK_MOCKER_(4, constness, Method).Invoke(gmock_a1, gmock_a2, \ gmock_a3, gmock_a4); \ } \ ::testing::MockSpec<F>& \ gmock_##Method(GMOCK_MATCHER_(tn, F, 1) gmock_a1, \ GMOCK_MATCHER_(tn, F, 2) gmock_a2, \ GMOCK_MATCHER_(tn, F, 3) gmock_a3, \ GMOCK_MATCHER_(tn, F, 4) gmock_a4) constness { \ GMOCK_MOCKER_(4, constness, Method).RegisterOwner(this); \ return GMOCK_MOCKER_(4, constness, Method).With(gmock_a1, gmock_a2, \ gmock_a3, gmock_a4); \ } \ mutable ::testing::FunctionMocker<F> GMOCK_MOCKER_(4, constness, Method) // INTERNAL IMPLEMENTATION - DON'T USE IN USER CODE!!! #define GMOCK_METHOD5_(tn, constness, ct, Method, F) \ GMOCK_RESULT_(tn, F) ct Method(GMOCK_ARG_(tn, F, 1) gmock_a1, \ GMOCK_ARG_(tn, F, 2) gmock_a2, \ GMOCK_ARG_(tn, F, 3) gmock_a3, \ GMOCK_ARG_(tn, F, 4) gmock_a4, \ GMOCK_ARG_(tn, F, 5) gmock_a5) constness { \ GTEST_COMPILE_ASSERT_(::std::tr1::tuple_size< \ tn ::testing::internal::Function<F>::ArgumentTuple>::value == 5, \ this_method_does_not_take_5_arguments); \ GMOCK_MOCKER_(5, constness, Method).SetOwnerAndName(this, #Method); \ return GMOCK_MOCKER_(5, constness, Method).Invoke(gmock_a1, gmock_a2, \ gmock_a3, gmock_a4, gmock_a5); \ } \ ::testing::MockSpec<F>& \ gmock_##Method(GMOCK_MATCHER_(tn, F, 1) gmock_a1, \ GMOCK_MATCHER_(tn, F, 2) gmock_a2, \ GMOCK_MATCHER_(tn, F, 3) gmock_a3, \ GMOCK_MATCHER_(tn, F, 4) gmock_a4, \ GMOCK_MATCHER_(tn, F, 5) gmock_a5) constness { \ GMOCK_MOCKER_(5, constness, Method).RegisterOwner(this); \ return GMOCK_MOCKER_(5, constness, Method).With(gmock_a1, gmock_a2, \ gmock_a3, gmock_a4, gmock_a5); \ } \ mutable ::testing::FunctionMocker<F> GMOCK_MOCKER_(5, constness, Method) // INTERNAL IMPLEMENTATION - DON'T USE IN USER CODE!!! #define GMOCK_METHOD6_(tn, constness, ct, Method, F) \ GMOCK_RESULT_(tn, F) ct Method(GMOCK_ARG_(tn, F, 1) gmock_a1, \ GMOCK_ARG_(tn, F, 2) gmock_a2, \ GMOCK_ARG_(tn, F, 3) gmock_a3, \ GMOCK_ARG_(tn, F, 4) gmock_a4, \ GMOCK_ARG_(tn, F, 5) gmock_a5, \ GMOCK_ARG_(tn, F, 6) gmock_a6) constness { \ GTEST_COMPILE_ASSERT_(::std::tr1::tuple_size< \ tn ::testing::internal::Function<F>::ArgumentTuple>::value == 6, \ this_method_does_not_take_6_arguments); \ GMOCK_MOCKER_(6, constness, Method).SetOwnerAndName(this, #Method); \ return GMOCK_MOCKER_(6, constness, Method).Invoke(gmock_a1, gmock_a2, \ gmock_a3, gmock_a4, gmock_a5, gmock_a6); \ } \ ::testing::MockSpec<F>& \ gmock_##Method(GMOCK_MATCHER_(tn, F, 1) gmock_a1, \ GMOCK_MATCHER_(tn, F, 2) gmock_a2, \ GMOCK_MATCHER_(tn, F, 3) gmock_a3, \ GMOCK_MATCHER_(tn, F, 4) gmock_a4, \ GMOCK_MATCHER_(tn, F, 5) gmock_a5, \ GMOCK_MATCHER_(tn, F, 6) gmock_a6) constness { \ GMOCK_MOCKER_(6, constness, Method).RegisterOwner(this); \ return GMOCK_MOCKER_(6, constness, Method).With(gmock_a1, gmock_a2, \ gmock_a3, gmock_a4, gmock_a5, gmock_a6); \ } \ mutable ::testing::FunctionMocker<F> GMOCK_MOCKER_(6, constness, Method) // INTERNAL IMPLEMENTATION - DON'T USE IN USER CODE!!! #define GMOCK_METHOD7_(tn, constness, ct, Method, F) \ GMOCK_RESULT_(tn, F) ct Method(GMOCK_ARG_(tn, F, 1) gmock_a1, \ GMOCK_ARG_(tn, F, 2) gmock_a2, \ GMOCK_ARG_(tn, F, 3) gmock_a3, \ GMOCK_ARG_(tn, F, 4) gmock_a4, \ GMOCK_ARG_(tn, F, 5) gmock_a5, \ GMOCK_ARG_(tn, F, 6) gmock_a6, \ GMOCK_ARG_(tn, F, 7) gmock_a7) constness { \ GTEST_COMPILE_ASSERT_(::std::tr1::tuple_size< \ tn ::testing::internal::Function<F>::ArgumentTuple>::value == 7, \ this_method_does_not_take_7_arguments); \ GMOCK_MOCKER_(7, constness, Method).SetOwnerAndName(this, #Method); \ return GMOCK_MOCKER_(7, constness, Method).Invoke(gmock_a1, gmock_a2, \ gmock_a3, gmock_a4, gmock_a5, gmock_a6, gmock_a7); \ } \ ::testing::MockSpec<F>& \ gmock_##Method(GMOCK_MATCHER_(tn, F, 1) gmock_a1, \ GMOCK_MATCHER_(tn, F, 2) gmock_a2, \ GMOCK_MATCHER_(tn, F, 3) gmock_a3, \ GMOCK_MATCHER_(tn, F, 4) gmock_a4, \ GMOCK_MATCHER_(tn, F, 5) gmock_a5, \ GMOCK_MATCHER_(tn, F, 6) gmock_a6, \ GMOCK_MATCHER_(tn, F, 7) gmock_a7) constness { \ GMOCK_MOCKER_(7, constness, Method).RegisterOwner(this); \ return GMOCK_MOCKER_(7, constness, Method).With(gmock_a1, gmock_a2, \ gmock_a3, gmock_a4, gmock_a5, gmock_a6, gmock_a7); \ } \ mutable ::testing::FunctionMocker<F> GMOCK_MOCKER_(7, constness, Method) // INTERNAL IMPLEMENTATION - DON'T USE IN USER CODE!!! #define GMOCK_METHOD8_(tn, constness, ct, Method, F) \ GMOCK_RESULT_(tn, F) ct Method(GMOCK_ARG_(tn, F, 1) gmock_a1, \ GMOCK_ARG_(tn, F, 2) gmock_a2, \ GMOCK_ARG_(tn, F, 3) gmock_a3, \ GMOCK_ARG_(tn, F, 4) gmock_a4, \ GMOCK_ARG_(tn, F, 5) gmock_a5, \ GMOCK_ARG_(tn, F, 6) gmock_a6, \ GMOCK_ARG_(tn, F, 7) gmock_a7, \ GMOCK_ARG_(tn, F, 8) gmock_a8) constness { \ GTEST_COMPILE_ASSERT_(::std::tr1::tuple_size< \ tn ::testing::internal::Function<F>::ArgumentTuple>::value == 8, \ this_method_does_not_take_8_arguments); \ GMOCK_MOCKER_(8, constness, Method).SetOwnerAndName(this, #Method); \ return GMOCK_MOCKER_(8, constness, Method).Invoke(gmock_a1, gmock_a2, \ gmock_a3, gmock_a4, gmock_a5, gmock_a6, gmock_a7, gmock_a8); \ } \ ::testing::MockSpec<F>& \ gmock_##Method(GMOCK_MATCHER_(tn, F, 1) gmock_a1, \ GMOCK_MATCHER_(tn, F, 2) gmock_a2, \ GMOCK_MATCHER_(tn, F, 3) gmock_a3, \ GMOCK_MATCHER_(tn, F, 4) gmock_a4, \ GMOCK_MATCHER_(tn, F, 5) gmock_a5, \ GMOCK_MATCHER_(tn, F, 6) gmock_a6, \ GMOCK_MATCHER_(tn, F, 7) gmock_a7, \ GMOCK_MATCHER_(tn, F, 8) gmock_a8) constness { \ GMOCK_MOCKER_(8, constness, Method).RegisterOwner(this); \ return GMOCK_MOCKER_(8, constness, Method).With(gmock_a1, gmock_a2, \ gmock_a3, gmock_a4, gmock_a5, gmock_a6, gmock_a7, gmock_a8); \ } \ mutable ::testing::FunctionMocker<F> GMOCK_MOCKER_(8, constness, Method) // INTERNAL IMPLEMENTATION - DON'T USE IN USER CODE!!! #define GMOCK_METHOD9_(tn, constness, ct, Method, F) \ GMOCK_RESULT_(tn, F) ct Method(GMOCK_ARG_(tn, F, 1) gmock_a1, \ GMOCK_ARG_(tn, F, 2) gmock_a2, \ GMOCK_ARG_(tn, F, 3) gmock_a3, \ GMOCK_ARG_(tn, F, 4) gmock_a4, \ GMOCK_ARG_(tn, F, 5) gmock_a5, \ GMOCK_ARG_(tn, F, 6) gmock_a6, \ GMOCK_ARG_(tn, F, 7) gmock_a7, \ GMOCK_ARG_(tn, F, 8) gmock_a8, \ GMOCK_ARG_(tn, F, 9) gmock_a9) constness { \ GTEST_COMPILE_ASSERT_(::std::tr1::tuple_size< \ tn ::testing::internal::Function<F>::ArgumentTuple>::value == 9, \ this_method_does_not_take_9_arguments); \ GMOCK_MOCKER_(9, constness, Method).SetOwnerAndName(this, #Method); \ return GMOCK_MOCKER_(9, constness, Method).Invoke(gmock_a1, gmock_a2, \ gmock_a3, gmock_a4, gmock_a5, gmock_a6, gmock_a7, gmock_a8, \ gmock_a9); \ } \ ::testing::MockSpec<F>& \ gmock_##Method(GMOCK_MATCHER_(tn, F, 1) gmock_a1, \ GMOCK_MATCHER_(tn, F, 2) gmock_a2, \ GMOCK_MATCHER_(tn, F, 3) gmock_a3, \ GMOCK_MATCHER_(tn, F, 4) gmock_a4, \ GMOCK_MATCHER_(tn, F, 5) gmock_a5, \ GMOCK_MATCHER_(tn, F, 6) gmock_a6, \ GMOCK_MATCHER_(tn, F, 7) gmock_a7, \ GMOCK_MATCHER_(tn, F, 8) gmock_a8, \ GMOCK_MATCHER_(tn, F, 9) gmock_a9) constness { \ GMOCK_MOCKER_(9, constness, Method).RegisterOwner(this); \ return GMOCK_MOCKER_(9, constness, Method).With(gmock_a1, gmock_a2, \ gmock_a3, gmock_a4, gmock_a5, gmock_a6, gmock_a7, gmock_a8, \ gmock_a9); \ } \ mutable ::testing::FunctionMocker<F> GMOCK_MOCKER_(9, constness, Method) // INTERNAL IMPLEMENTATION - DON'T USE IN USER CODE!!! #define GMOCK_METHOD10_(tn, constness, ct, Method, F) \ GMOCK_RESULT_(tn, F) ct Method(GMOCK_ARG_(tn, F, 1) gmock_a1, \ GMOCK_ARG_(tn, F, 2) gmock_a2, \ GMOCK_ARG_(tn, F, 3) gmock_a3, \ GMOCK_ARG_(tn, F, 4) gmock_a4, \ GMOCK_ARG_(tn, F, 5) gmock_a5, \ GMOCK_ARG_(tn, F, 6) gmock_a6, \ GMOCK_ARG_(tn, F, 7) gmock_a7, \ GMOCK_ARG_(tn, F, 8) gmock_a8, \ GMOCK_ARG_(tn, F, 9) gmock_a9, \ GMOCK_ARG_(tn, F, 10) gmock_a10) constness { \ GTEST_COMPILE_ASSERT_(::std::tr1::tuple_size< \ tn ::testing::internal::Function<F>::ArgumentTuple>::value == 10, \ this_method_does_not_take_10_arguments); \ GMOCK_MOCKER_(10, constness, Method).SetOwnerAndName(this, #Method); \ return GMOCK_MOCKER_(10, constness, Method).Invoke(gmock_a1, gmock_a2, \ gmock_a3, gmock_a4, gmock_a5, gmock_a6, gmock_a7, gmock_a8, gmock_a9, \ gmock_a10); \ } \ ::testing::MockSpec<F>& \ gmock_##Method(GMOCK_MATCHER_(tn, F, 1) gmock_a1, \ GMOCK_MATCHER_(tn, F, 2) gmock_a2, \ GMOCK_MATCHER_(tn, F, 3) gmock_a3, \ GMOCK_MATCHER_(tn, F, 4) gmock_a4, \ GMOCK_MATCHER_(tn, F, 5) gmock_a5, \ GMOCK_MATCHER_(tn, F, 6) gmock_a6, \ GMOCK_MATCHER_(tn, F, 7) gmock_a7, \ GMOCK_MATCHER_(tn, F, 8) gmock_a8, \ GMOCK_MATCHER_(tn, F, 9) gmock_a9, \ GMOCK_MATCHER_(tn, F, 10) gmock_a10) constness { \ GMOCK_MOCKER_(10, constness, Method).RegisterOwner(this); \ return GMOCK_MOCKER_(10, constness, Method).With(gmock_a1, gmock_a2, \ gmock_a3, gmock_a4, gmock_a5, gmock_a6, gmock_a7, gmock_a8, gmock_a9, \ gmock_a10); \ } \ mutable ::testing::FunctionMocker<F> GMOCK_MOCKER_(10, constness, Method) #define MOCK_METHOD0(m, F) GMOCK_METHOD0_(, , , m, F) #define MOCK_METHOD1(m, F) GMOCK_METHOD1_(, , , m, F) #define MOCK_METHOD2(m, F) GMOCK_METHOD2_(, , , m, F) #define MOCK_METHOD3(m, F) GMOCK_METHOD3_(, , , m, F) #define MOCK_METHOD4(m, F) GMOCK_METHOD4_(, , , m, F) #define MOCK_METHOD5(m, F) GMOCK_METHOD5_(, , , m, F) #define MOCK_METHOD6(m, F) GMOCK_METHOD6_(, , , m, F) #define MOCK_METHOD7(m, F) GMOCK_METHOD7_(, , , m, F) #define MOCK_METHOD8(m, F) GMOCK_METHOD8_(, , , m, F) #define MOCK_METHOD9(m, F) GMOCK_METHOD9_(, , , m, F) #define MOCK_METHOD10(m, F) GMOCK_METHOD10_(, , , m, F) #define MOCK_CONST_METHOD0(m, F) GMOCK_METHOD0_(, const, , m, F) #define MOCK_CONST_METHOD1(m, F) GMOCK_METHOD1_(, const, , m, F) #define MOCK_CONST_METHOD2(m, F) GMOCK_METHOD2_(, const, , m, F) #define MOCK_CONST_METHOD3(m, F) GMOCK_METHOD3_(, const, , m, F) #define MOCK_CONST_METHOD4(m, F) GMOCK_METHOD4_(, const, , m, F) #define MOCK_CONST_METHOD5(m, F) GMOCK_METHOD5_(, const, , m, F) #define MOCK_CONST_METHOD6(m, F) GMOCK_METHOD6_(, const, , m, F) #define MOCK_CONST_METHOD7(m, F) GMOCK_METHOD7_(, const, , m, F) #define MOCK_CONST_METHOD8(m, F) GMOCK_METHOD8_(, const, , m, F) #define MOCK_CONST_METHOD9(m, F) GMOCK_METHOD9_(, const, , m, F) #define MOCK_CONST_METHOD10(m, F) GMOCK_METHOD10_(, const, , m, F) #define MOCK_METHOD0_T(m, F) GMOCK_METHOD0_(typename, , , m, F) #define MOCK_METHOD1_T(m, F) GMOCK_METHOD1_(typename, , , m, F) #define MOCK_METHOD2_T(m, F) GMOCK_METHOD2_(typename, , , m, F) #define MOCK_METHOD3_T(m, F) GMOCK_METHOD3_(typename, , , m, F) #define MOCK_METHOD4_T(m, F) GMOCK_METHOD4_(typename, , , m, F) #define MOCK_METHOD5_T(m, F) GMOCK_METHOD5_(typename, , , m, F) #define MOCK_METHOD6_T(m, F) GMOCK_METHOD6_(typename, , , m, F) #define MOCK_METHOD7_T(m, F) GMOCK_METHOD7_(typename, , , m, F) #define MOCK_METHOD8_T(m, F) GMOCK_METHOD8_(typename, , , m, F) #define MOCK_METHOD9_T(m, F) GMOCK_METHOD9_(typename, , , m, F) #define MOCK_METHOD10_T(m, F) GMOCK_METHOD10_(typename, , , m, F) #define MOCK_CONST_METHOD0_T(m, F) GMOCK_METHOD0_(typename, const, , m, F) #define MOCK_CONST_METHOD1_T(m, F) GMOCK_METHOD1_(typename, const, , m, F) #define MOCK_CONST_METHOD2_T(m, F) GMOCK_METHOD2_(typename, const, , m, F) #define MOCK_CONST_METHOD3_T(m, F) GMOCK_METHOD3_(typename, const, , m, F) #define MOCK_CONST_METHOD4_T(m, F) GMOCK_METHOD4_(typename, const, , m, F) #define MOCK_CONST_METHOD5_T(m, F) GMOCK_METHOD5_(typename, const, , m, F) #define MOCK_CONST_METHOD6_T(m, F) GMOCK_METHOD6_(typename, const, , m, F) #define MOCK_CONST_METHOD7_T(m, F) GMOCK_METHOD7_(typename, const, , m, F) #define MOCK_CONST_METHOD8_T(m, F) GMOCK_METHOD8_(typename, const, , m, F) #define MOCK_CONST_METHOD9_T(m, F) GMOCK_METHOD9_(typename, const, , m, F) #define MOCK_CONST_METHOD10_T(m, F) GMOCK_METHOD10_(typename, const, , m, F) #define MOCK_METHOD0_WITH_CALLTYPE(ct, m, F) GMOCK_METHOD0_(, , ct, m, F) #define MOCK_METHOD1_WITH_CALLTYPE(ct, m, F) GMOCK_METHOD1_(, , ct, m, F) #define MOCK_METHOD2_WITH_CALLTYPE(ct, m, F) GMOCK_METHOD2_(, , ct, m, F) #define MOCK_METHOD3_WITH_CALLTYPE(ct, m, F) GMOCK_METHOD3_(, , ct, m, F) #define MOCK_METHOD4_WITH_CALLTYPE(ct, m, F) GMOCK_METHOD4_(, , ct, m, F) #define MOCK_METHOD5_WITH_CALLTYPE(ct, m, F) GMOCK_METHOD5_(, , ct, m, F) #define MOCK_METHOD6_WITH_CALLTYPE(ct, m, F) GMOCK_METHOD6_(, , ct, m, F) #define MOCK_METHOD7_WITH_CALLTYPE(ct, m, F) GMOCK_METHOD7_(, , ct, m, F) #define MOCK_METHOD8_WITH_CALLTYPE(ct, m, F) GMOCK_METHOD8_(, , ct, m, F) #define MOCK_METHOD9_WITH_CALLTYPE(ct, m, F) GMOCK_METHOD9_(, , ct, m, F) #define MOCK_METHOD10_WITH_CALLTYPE(ct, m, F) GMOCK_METHOD10_(, , ct, m, F) #define MOCK_CONST_METHOD0_WITH_CALLTYPE(ct, m, F) \ GMOCK_METHOD0_(, const, ct, m, F) #define MOCK_CONST_METHOD1_WITH_CALLTYPE(ct, m, F) \ GMOCK_METHOD1_(, const, ct, m, F) #define MOCK_CONST_METHOD2_WITH_CALLTYPE(ct, m, F) \ GMOCK_METHOD2_(, const, ct, m, F) #define MOCK_CONST_METHOD3_WITH_CALLTYPE(ct, m, F) \ GMOCK_METHOD3_(, const, ct, m, F) #define MOCK_CONST_METHOD4_WITH_CALLTYPE(ct, m, F) \ GMOCK_METHOD4_(, const, ct, m, F) #define MOCK_CONST_METHOD5_WITH_CALLTYPE(ct, m, F) \ GMOCK_METHOD5_(, const, ct, m, F) #define MOCK_CONST_METHOD6_WITH_CALLTYPE(ct, m, F) \ GMOCK_METHOD6_(, const, ct, m, F) #define MOCK_CONST_METHOD7_WITH_CALLTYPE(ct, m, F) \ GMOCK_METHOD7_(, const, ct, m, F) #define MOCK_CONST_METHOD8_WITH_CALLTYPE(ct, m, F) \ GMOCK_METHOD8_(, const, ct, m, F) #define MOCK_CONST_METHOD9_WITH_CALLTYPE(ct, m, F) \ GMOCK_METHOD9_(, const, ct, m, F) #define MOCK_CONST_METHOD10_WITH_CALLTYPE(ct, m, F) \ GMOCK_METHOD10_(, const, ct, m, F) #define MOCK_METHOD0_T_WITH_CALLTYPE(ct, m, F) \ GMOCK_METHOD0_(typename, , ct, m, F) #define MOCK_METHOD1_T_WITH_CALLTYPE(ct, m, F) \ GMOCK_METHOD1_(typename, , ct, m, F) #define MOCK_METHOD2_T_WITH_CALLTYPE(ct, m, F) \ GMOCK_METHOD2_(typename, , ct, m, F) #define MOCK_METHOD3_T_WITH_CALLTYPE(ct, m, F) \ GMOCK_METHOD3_(typename, , ct, m, F) #define MOCK_METHOD4_T_WITH_CALLTYPE(ct, m, F) \ GMOCK_METHOD4_(typename, , ct, m, F) #define MOCK_METHOD5_T_WITH_CALLTYPE(ct, m, F) \ GMOCK_METHOD5_(typename, , ct, m, F) #define MOCK_METHOD6_T_WITH_CALLTYPE(ct, m, F) \ GMOCK_METHOD6_(typename, , ct, m, F) #define MOCK_METHOD7_T_WITH_CALLTYPE(ct, m, F) \ GMOCK_METHOD7_(typename, , ct, m, F) #define MOCK_METHOD8_T_WITH_CALLTYPE(ct, m, F) \ GMOCK_METHOD8_(typename, , ct, m, F) #define MOCK_METHOD9_T_WITH_CALLTYPE(ct, m, F) \ GMOCK_METHOD9_(typename, , ct, m, F) #define MOCK_METHOD10_T_WITH_CALLTYPE(ct, m, F) \ GMOCK_METHOD10_(typename, , ct, m, F) #define MOCK_CONST_METHOD0_T_WITH_CALLTYPE(ct, m, F) \ GMOCK_METHOD0_(typename, const, ct, m, F) #define MOCK_CONST_METHOD1_T_WITH_CALLTYPE(ct, m, F) \ GMOCK_METHOD1_(typename, const, ct, m, F) #define MOCK_CONST_METHOD2_T_WITH_CALLTYPE(ct, m, F) \ GMOCK_METHOD2_(typename, const, ct, m, F) #define MOCK_CONST_METHOD3_T_WITH_CALLTYPE(ct, m, F) \ GMOCK_METHOD3_(typename, const, ct, m, F) #define MOCK_CONST_METHOD4_T_WITH_CALLTYPE(ct, m, F) \ GMOCK_METHOD4_(typename, const, ct, m, F) #define MOCK_CONST_METHOD5_T_WITH_CALLTYPE(ct, m, F) \ GMOCK_METHOD5_(typename, const, ct, m, F) #define MOCK_CONST_METHOD6_T_WITH_CALLTYPE(ct, m, F) \ GMOCK_METHOD6_(typename, const, ct, m, F) #define MOCK_CONST_METHOD7_T_WITH_CALLTYPE(ct, m, F) \ GMOCK_METHOD7_(typename, const, ct, m, F) #define MOCK_CONST_METHOD8_T_WITH_CALLTYPE(ct, m, F) \ GMOCK_METHOD8_(typename, const, ct, m, F) #define MOCK_CONST_METHOD9_T_WITH_CALLTYPE(ct, m, F) \ GMOCK_METHOD9_(typename, const, ct, m, F) #define MOCK_CONST_METHOD10_T_WITH_CALLTYPE(ct, m, F) \ GMOCK_METHOD10_(typename, const, ct, m, F) // A MockFunction<F> class has one mock method whose type is F. It is // useful when you just want your test code to emit some messages and // have Google Mock verify the right messages are sent (and perhaps at // the right times). For example, if you are exercising code: // // Foo(1); // Foo(2); // Foo(3); // // and want to verify that Foo(1) and Foo(3) both invoke // mock.Bar("a"), but Foo(2) doesn't invoke anything, you can write: // // TEST(FooTest, InvokesBarCorrectly) { // MyMock mock; // MockFunction<void(string check_point_name)> check; // { // InSequence s; // // EXPECT_CALL(mock, Bar("a")); // EXPECT_CALL(check, Call("1")); // EXPECT_CALL(check, Call("2")); // EXPECT_CALL(mock, Bar("a")); // } // Foo(1); // check.Call("1"); // Foo(2); // check.Call("2"); // Foo(3); // } // // The expectation spec says that the first Bar("a") must happen // before check point "1", the second Bar("a") must happen after check // point "2", and nothing should happen between the two check // points. The explicit check points make it easy to tell which // Bar("a") is called by which call to Foo(). template <typename F> class MockFunction; template <typename R> class MockFunction<R()> { public: MockFunction() {} MOCK_METHOD0_T(Call, R()); private: GTEST_DISALLOW_COPY_AND_ASSIGN_(MockFunction); }; template <typename R, typename A0> class MockFunction<R(A0)> { public: MockFunction() {} MOCK_METHOD1_T(Call, R(A0)); private: GTEST_DISALLOW_COPY_AND_ASSIGN_(MockFunction); }; template <typename R, typename A0, typename A1> class MockFunction<R(A0, A1)> { public: MockFunction() {} MOCK_METHOD2_T(Call, R(A0, A1)); private: GTEST_DISALLOW_COPY_AND_ASSIGN_(MockFunction); }; template <typename R, typename A0, typename A1, typename A2> class MockFunction<R(A0, A1, A2)> { public: MockFunction() {} MOCK_METHOD3_T(Call, R(A0, A1, A2)); private: GTEST_DISALLOW_COPY_AND_ASSIGN_(MockFunction); }; template <typename R, typename A0, typename A1, typename A2, typename A3> class MockFunction<R(A0, A1, A2, A3)> { public: MockFunction() {} MOCK_METHOD4_T(Call, R(A0, A1, A2, A3)); private: GTEST_DISALLOW_COPY_AND_ASSIGN_(MockFunction); }; template <typename R, typename A0, typename A1, typename A2, typename A3, typename A4> class MockFunction<R(A0, A1, A2, A3, A4)> { public: MockFunction() {} MOCK_METHOD5_T(Call, R(A0, A1, A2, A3, A4)); private: GTEST_DISALLOW_COPY_AND_ASSIGN_(MockFunction); }; template <typename R, typename A0, typename A1, typename A2, typename A3, typename A4, typename A5> class MockFunction<R(A0, A1, A2, A3, A4, A5)> { public: MockFunction() {} MOCK_METHOD6_T(Call, R(A0, A1, A2, A3, A4, A5)); private: GTEST_DISALLOW_COPY_AND_ASSIGN_(MockFunction); }; template <typename R, typename A0, typename A1, typename A2, typename A3, typename A4, typename A5, typename A6> class MockFunction<R(A0, A1, A2, A3, A4, A5, A6)> { public: MockFunction() {} MOCK_METHOD7_T(Call, R(A0, A1, A2, A3, A4, A5, A6)); private: GTEST_DISALLOW_COPY_AND_ASSIGN_(MockFunction); }; template <typename R, typename A0, typename A1, typename A2, typename A3, typename A4, typename A5, typename A6, typename A7> class MockFunction<R(A0, A1, A2, A3, A4, A5, A6, A7)> { public: MockFunction() {} MOCK_METHOD8_T(Call, R(A0, A1, A2, A3, A4, A5, A6, A7)); private: GTEST_DISALLOW_COPY_AND_ASSIGN_(MockFunction); }; template <typename R, typename A0, typename A1, typename A2, typename A3, typename A4, typename A5, typename A6, typename A7, typename A8> class MockFunction<R(A0, A1, A2, A3, A4, A5, A6, A7, A8)> { public: MockFunction() {} MOCK_METHOD9_T(Call, R(A0, A1, A2, A3, A4, A5, A6, A7, A8)); private: GTEST_DISALLOW_COPY_AND_ASSIGN_(MockFunction); }; template <typename R, typename A0, typename A1, typename A2, typename A3, typename A4, typename A5, typename A6, typename A7, typename A8, typename A9> class MockFunction<R(A0, A1, A2, A3, A4, A5, A6, A7, A8, A9)> { public: MockFunction() {} MOCK_METHOD10_T(Call, R(A0, A1, A2, A3, A4, A5, A6, A7, A8, A9)); private: GTEST_DISALLOW_COPY_AND_ASSIGN_(MockFunction); }; } // namespace testing #endif // GMOCK_INCLUDE_GMOCK_GMOCK_GENERATED_FUNCTION_MOCKERS_H_ // This file was GENERATED by command: // pump.py gmock-generated-matchers.h.pump // DO NOT EDIT BY HAND!!! // Copyright 2008, Google Inc. // All rights reserved. // // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions are // met: // // * Redistributions of source code must retain the above copyright // notice, this list of conditions and the following disclaimer. // * Redistributions in binary form must reproduce the above // copyright notice, this list of conditions and the following disclaimer // in the documentation and/or other materials provided with the // distribution. // * Neither the name of Google Inc. nor the names of its // contributors may be used to endorse or promote products derived from // this software without specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. // Google Mock - a framework for writing C++ mock classes. // // This file implements some commonly used variadic matchers. #ifndef GMOCK_INCLUDE_GMOCK_GMOCK_GENERATED_MATCHERS_H_ #define GMOCK_INCLUDE_GMOCK_GMOCK_GENERATED_MATCHERS_H_ #include <sstream> #include <string> #include <vector> namespace testing { namespace internal { // The type of the i-th (0-based) field of Tuple. #define GMOCK_FIELD_TYPE_(Tuple, i) \ typename ::std::tr1::tuple_element<i, Tuple>::type // TupleFields<Tuple, k0, ..., kn> is for selecting fields from a // tuple of type Tuple. It has two members: // // type: a tuple type whose i-th field is the ki-th field of Tuple. // GetSelectedFields(t): returns fields k0, ..., and kn of t as a tuple. // // For example, in class TupleFields<tuple<bool, char, int>, 2, 0>, we have: // // type is tuple<int, bool>, and // GetSelectedFields(make_tuple(true, 'a', 42)) is (42, true). template <class Tuple, int k0 = -1, int k1 = -1, int k2 = -1, int k3 = -1, int k4 = -1, int k5 = -1, int k6 = -1, int k7 = -1, int k8 = -1, int k9 = -1> class TupleFields; // This generic version is used when there are 10 selectors. template <class Tuple, int k0, int k1, int k2, int k3, int k4, int k5, int k6, int k7, int k8, int k9> class TupleFields { public: typedef ::std::tr1::tuple<GMOCK_FIELD_TYPE_(Tuple, k0), GMOCK_FIELD_TYPE_(Tuple, k1), GMOCK_FIELD_TYPE_(Tuple, k2), GMOCK_FIELD_TYPE_(Tuple, k3), GMOCK_FIELD_TYPE_(Tuple, k4), GMOCK_FIELD_TYPE_(Tuple, k5), GMOCK_FIELD_TYPE_(Tuple, k6), GMOCK_FIELD_TYPE_(Tuple, k7), GMOCK_FIELD_TYPE_(Tuple, k8), GMOCK_FIELD_TYPE_(Tuple, k9)> type; static type GetSelectedFields(const Tuple& t) { using ::std::tr1::get; return type(get<k0>(t), get<k1>(t), get<k2>(t), get<k3>(t), get<k4>(t), get<k5>(t), get<k6>(t), get<k7>(t), get<k8>(t), get<k9>(t)); } }; // The following specialization is used for 0 ~ 9 selectors. template <class Tuple> class TupleFields<Tuple, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1> { public: typedef ::std::tr1::tuple<> type; static type GetSelectedFields(const Tuple& /* t */) { using ::std::tr1::get; return type(); } }; template <class Tuple, int k0> class TupleFields<Tuple, k0, -1, -1, -1, -1, -1, -1, -1, -1, -1> { public: typedef ::std::tr1::tuple<GMOCK_FIELD_TYPE_(Tuple, k0)> type; static type GetSelectedFields(const Tuple& t) { using ::std::tr1::get; return type(get<k0>(t)); } }; template <class Tuple, int k0, int k1> class TupleFields<Tuple, k0, k1, -1, -1, -1, -1, -1, -1, -1, -1> { public: typedef ::std::tr1::tuple<GMOCK_FIELD_TYPE_(Tuple, k0), GMOCK_FIELD_TYPE_(Tuple, k1)> type; static type GetSelectedFields(const Tuple& t) { using ::std::tr1::get; return type(get<k0>(t), get<k1>(t)); } }; template <class Tuple, int k0, int k1, int k2> class TupleFields<Tuple, k0, k1, k2, -1, -1, -1, -1, -1, -1, -1> { public: typedef ::std::tr1::tuple<GMOCK_FIELD_TYPE_(Tuple, k0), GMOCK_FIELD_TYPE_(Tuple, k1), GMOCK_FIELD_TYPE_(Tuple, k2)> type; static type GetSelectedFields(const Tuple& t) { using ::std::tr1::get; return type(get<k0>(t), get<k1>(t), get<k2>(t)); } }; template <class Tuple, int k0, int k1, int k2, int k3> class TupleFields<Tuple, k0, k1, k2, k3, -1, -1, -1, -1, -1, -1> { public: typedef ::std::tr1::tuple<GMOCK_FIELD_TYPE_(Tuple, k0), GMOCK_FIELD_TYPE_(Tuple, k1), GMOCK_FIELD_TYPE_(Tuple, k2), GMOCK_FIELD_TYPE_(Tuple, k3)> type; static type GetSelectedFields(const Tuple& t) { using ::std::tr1::get; return type(get<k0>(t), get<k1>(t), get<k2>(t), get<k3>(t)); } }; template <class Tuple, int k0, int k1, int k2, int k3, int k4> class TupleFields<Tuple, k0, k1, k2, k3, k4, -1, -1, -1, -1, -1> { public: typedef ::std::tr1::tuple<GMOCK_FIELD_TYPE_(Tuple, k0), GMOCK_FIELD_TYPE_(Tuple, k1), GMOCK_FIELD_TYPE_(Tuple, k2), GMOCK_FIELD_TYPE_(Tuple, k3), GMOCK_FIELD_TYPE_(Tuple, k4)> type; static type GetSelectedFields(const Tuple& t) { using ::std::tr1::get; return type(get<k0>(t), get<k1>(t), get<k2>(t), get<k3>(t), get<k4>(t)); } }; template <class Tuple, int k0, int k1, int k2, int k3, int k4, int k5> class TupleFields<Tuple, k0, k1, k2, k3, k4, k5, -1, -1, -1, -1> { public: typedef ::std::tr1::tuple<GMOCK_FIELD_TYPE_(Tuple, k0), GMOCK_FIELD_TYPE_(Tuple, k1), GMOCK_FIELD_TYPE_(Tuple, k2), GMOCK_FIELD_TYPE_(Tuple, k3), GMOCK_FIELD_TYPE_(Tuple, k4), GMOCK_FIELD_TYPE_(Tuple, k5)> type; static type GetSelectedFields(const Tuple& t) { using ::std::tr1::get; return type(get<k0>(t), get<k1>(t), get<k2>(t), get<k3>(t), get<k4>(t), get<k5>(t)); } }; template <class Tuple, int k0, int k1, int k2, int k3, int k4, int k5, int k6> class TupleFields<Tuple, k0, k1, k2, k3, k4, k5, k6, -1, -1, -1> { public: typedef ::std::tr1::tuple<GMOCK_FIELD_TYPE_(Tuple, k0), GMOCK_FIELD_TYPE_(Tuple, k1), GMOCK_FIELD_TYPE_(Tuple, k2), GMOCK_FIELD_TYPE_(Tuple, k3), GMOCK_FIELD_TYPE_(Tuple, k4), GMOCK_FIELD_TYPE_(Tuple, k5), GMOCK_FIELD_TYPE_(Tuple, k6)> type; static type GetSelectedFields(const Tuple& t) { using ::std::tr1::get; return type(get<k0>(t), get<k1>(t), get<k2>(t), get<k3>(t), get<k4>(t), get<k5>(t), get<k6>(t)); } }; template <class Tuple, int k0, int k1, int k2, int k3, int k4, int k5, int k6, int k7> class TupleFields<Tuple, k0, k1, k2, k3, k4, k5, k6, k7, -1, -1> { public: typedef ::std::tr1::tuple<GMOCK_FIELD_TYPE_(Tuple, k0), GMOCK_FIELD_TYPE_(Tuple, k1), GMOCK_FIELD_TYPE_(Tuple, k2), GMOCK_FIELD_TYPE_(Tuple, k3), GMOCK_FIELD_TYPE_(Tuple, k4), GMOCK_FIELD_TYPE_(Tuple, k5), GMOCK_FIELD_TYPE_(Tuple, k6), GMOCK_FIELD_TYPE_(Tuple, k7)> type; static type GetSelectedFields(const Tuple& t) { using ::std::tr1::get; return type(get<k0>(t), get<k1>(t), get<k2>(t), get<k3>(t), get<k4>(t), get<k5>(t), get<k6>(t), get<k7>(t)); } }; template <class Tuple, int k0, int k1, int k2, int k3, int k4, int k5, int k6, int k7, int k8> class TupleFields<Tuple, k0, k1, k2, k3, k4, k5, k6, k7, k8, -1> { public: typedef ::std::tr1::tuple<GMOCK_FIELD_TYPE_(Tuple, k0), GMOCK_FIELD_TYPE_(Tuple, k1), GMOCK_FIELD_TYPE_(Tuple, k2), GMOCK_FIELD_TYPE_(Tuple, k3), GMOCK_FIELD_TYPE_(Tuple, k4), GMOCK_FIELD_TYPE_(Tuple, k5), GMOCK_FIELD_TYPE_(Tuple, k6), GMOCK_FIELD_TYPE_(Tuple, k7), GMOCK_FIELD_TYPE_(Tuple, k8)> type; static type GetSelectedFields(const Tuple& t) { using ::std::tr1::get; return type(get<k0>(t), get<k1>(t), get<k2>(t), get<k3>(t), get<k4>(t), get<k5>(t), get<k6>(t), get<k7>(t), get<k8>(t)); } }; #undef GMOCK_FIELD_TYPE_ // Implements the Args() matcher. template <class ArgsTuple, int k0 = -1, int k1 = -1, int k2 = -1, int k3 = -1, int k4 = -1, int k5 = -1, int k6 = -1, int k7 = -1, int k8 = -1, int k9 = -1> class ArgsMatcherImpl : public MatcherInterface<ArgsTuple> { public: // ArgsTuple may have top-level const or reference modifiers. typedef GTEST_REMOVE_REFERENCE_AND_CONST_(ArgsTuple) RawArgsTuple; typedef typename internal::TupleFields<RawArgsTuple, k0, k1, k2, k3, k4, k5, k6, k7, k8, k9>::type SelectedArgs; typedef Matcher<const SelectedArgs&> MonomorphicInnerMatcher; template <typename InnerMatcher> explicit ArgsMatcherImpl(const InnerMatcher& inner_matcher) : inner_matcher_(SafeMatcherCast<const SelectedArgs&>(inner_matcher)) {} virtual bool MatchAndExplain(ArgsTuple args, MatchResultListener* listener) const { const SelectedArgs& selected_args = GetSelectedArgs(args); if (!listener->IsInterested()) return inner_matcher_.Matches(selected_args); PrintIndices(listener->stream()); *listener << "are " << PrintToString(selected_args); StringMatchResultListener inner_listener; const bool match = inner_matcher_.MatchAndExplain(selected_args, &inner_listener); PrintIfNotEmpty(inner_listener.str(), listener->stream()); return match; } virtual void DescribeTo(::std::ostream* os) const { *os << "are a tuple "; PrintIndices(os); inner_matcher_.DescribeTo(os); } virtual void DescribeNegationTo(::std::ostream* os) const { *os << "are a tuple "; PrintIndices(os); inner_matcher_.DescribeNegationTo(os); } private: static SelectedArgs GetSelectedArgs(ArgsTuple args) { return TupleFields<RawArgsTuple, k0, k1, k2, k3, k4, k5, k6, k7, k8, k9>::GetSelectedFields(args); } // Prints the indices of the selected fields. static void PrintIndices(::std::ostream* os) { *os << "whose fields ("; const int indices[10] = { k0, k1, k2, k3, k4, k5, k6, k7, k8, k9 }; for (int i = 0; i < 10; i++) { if (indices[i] < 0) break; if (i >= 1) *os << ", "; *os << "#" << indices[i]; } *os << ") "; } const MonomorphicInnerMatcher inner_matcher_; GTEST_DISALLOW_ASSIGN_(ArgsMatcherImpl); }; template <class InnerMatcher, int k0 = -1, int k1 = -1, int k2 = -1, int k3 = -1, int k4 = -1, int k5 = -1, int k6 = -1, int k7 = -1, int k8 = -1, int k9 = -1> class ArgsMatcher { public: explicit ArgsMatcher(const InnerMatcher& inner_matcher) : inner_matcher_(inner_matcher) {} template <typename ArgsTuple> operator Matcher<ArgsTuple>() const { return MakeMatcher(new ArgsMatcherImpl<ArgsTuple, k0, k1, k2, k3, k4, k5, k6, k7, k8, k9>(inner_matcher_)); } private: const InnerMatcher inner_matcher_; GTEST_DISALLOW_ASSIGN_(ArgsMatcher); }; // Implements ElementsAre() of 1-10 arguments. template <typename T1> class ElementsAreMatcher1 { public: explicit ElementsAreMatcher1(const T1& e1) : e1_(e1) {} template <typename Container> operator Matcher<Container>() const { typedef GTEST_REMOVE_REFERENCE_AND_CONST_(Container) RawContainer; typedef typename internal::StlContainerView<RawContainer>::type::value_type Element; // Nokia's Symbian Compiler has a nasty bug where the object put // in a one-element local array is not destructed when the array // goes out of scope. This leads to obvious badness as we've // added the linked_ptr in it to our other linked_ptrs list. // Hence we implement ElementsAreMatcher1 specially to avoid using // a local array. const Matcher<const Element&> matcher = MatcherCast<const Element&>(e1_); return MakeMatcher(new ElementsAreMatcherImpl<Container>(&matcher, 1)); } private: const T1& e1_; GTEST_DISALLOW_ASSIGN_(ElementsAreMatcher1); }; template <typename T1, typename T2> class ElementsAreMatcher2 { public: ElementsAreMatcher2(const T1& e1, const T2& e2) : e1_(e1), e2_(e2) {} template <typename Container> operator Matcher<Container>() const { typedef GTEST_REMOVE_REFERENCE_AND_CONST_(Container) RawContainer; typedef typename internal::StlContainerView<RawContainer>::type::value_type Element; const Matcher<const Element&> matchers[] = { MatcherCast<const Element&>(e1_), MatcherCast<const Element&>(e2_), }; return MakeMatcher(new ElementsAreMatcherImpl<Container>(matchers, 2)); } private: const T1& e1_; const T2& e2_; GTEST_DISALLOW_ASSIGN_(ElementsAreMatcher2); }; template <typename T1, typename T2, typename T3> class ElementsAreMatcher3 { public: ElementsAreMatcher3(const T1& e1, const T2& e2, const T3& e3) : e1_(e1), e2_(e2), e3_(e3) {} template <typename Container> operator Matcher<Container>() const { typedef GTEST_REMOVE_REFERENCE_AND_CONST_(Container) RawContainer; typedef typename internal::StlContainerView<RawContainer>::type::value_type Element; const Matcher<const Element&> matchers[] = { MatcherCast<const Element&>(e1_), MatcherCast<const Element&>(e2_), MatcherCast<const Element&>(e3_), }; return MakeMatcher(new ElementsAreMatcherImpl<Container>(matchers, 3)); } private: const T1& e1_; const T2& e2_; const T3& e3_; GTEST_DISALLOW_ASSIGN_(ElementsAreMatcher3); }; template <typename T1, typename T2, typename T3, typename T4> class ElementsAreMatcher4 { public: ElementsAreMatcher4(const T1& e1, const T2& e2, const T3& e3, const T4& e4) : e1_(e1), e2_(e2), e3_(e3), e4_(e4) {} template <typename Container> operator Matcher<Container>() const { typedef GTEST_REMOVE_REFERENCE_AND_CONST_(Container) RawContainer; typedef typename internal::StlContainerView<RawContainer>::type::value_type Element; const Matcher<const Element&> matchers[] = { MatcherCast<const Element&>(e1_), MatcherCast<const Element&>(e2_), MatcherCast<const Element&>(e3_), MatcherCast<const Element&>(e4_), }; return MakeMatcher(new ElementsAreMatcherImpl<Container>(matchers, 4)); } private: const T1& e1_; const T2& e2_; const T3& e3_; const T4& e4_; GTEST_DISALLOW_ASSIGN_(ElementsAreMatcher4); }; template <typename T1, typename T2, typename T3, typename T4, typename T5> class ElementsAreMatcher5 { public: ElementsAreMatcher5(const T1& e1, const T2& e2, const T3& e3, const T4& e4, const T5& e5) : e1_(e1), e2_(e2), e3_(e3), e4_(e4), e5_(e5) {} template <typename Container> operator Matcher<Container>() const { typedef GTEST_REMOVE_REFERENCE_AND_CONST_(Container) RawContainer; typedef typename internal::StlContainerView<RawContainer>::type::value_type Element; const Matcher<const Element&> matchers[] = { MatcherCast<const Element&>(e1_), MatcherCast<const Element&>(e2_), MatcherCast<const Element&>(e3_), MatcherCast<const Element&>(e4_), MatcherCast<const Element&>(e5_), }; return MakeMatcher(new ElementsAreMatcherImpl<Container>(matchers, 5)); } private: const T1& e1_; const T2& e2_; const T3& e3_; const T4& e4_; const T5& e5_; GTEST_DISALLOW_ASSIGN_(ElementsAreMatcher5); }; template <typename T1, typename T2, typename T3, typename T4, typename T5, typename T6> class ElementsAreMatcher6 { public: ElementsAreMatcher6(const T1& e1, const T2& e2, const T3& e3, const T4& e4, const T5& e5, const T6& e6) : e1_(e1), e2_(e2), e3_(e3), e4_(e4), e5_(e5), e6_(e6) {} template <typename Container> operator Matcher<Container>() const { typedef GTEST_REMOVE_REFERENCE_AND_CONST_(Container) RawContainer; typedef typename internal::StlContainerView<RawContainer>::type::value_type Element; const Matcher<const Element&> matchers[] = { MatcherCast<const Element&>(e1_), MatcherCast<const Element&>(e2_), MatcherCast<const Element&>(e3_), MatcherCast<const Element&>(e4_), MatcherCast<const Element&>(e5_), MatcherCast<const Element&>(e6_), }; return MakeMatcher(new ElementsAreMatcherImpl<Container>(matchers, 6)); } private: const T1& e1_; const T2& e2_; const T3& e3_; const T4& e4_; const T5& e5_; const T6& e6_; GTEST_DISALLOW_ASSIGN_(ElementsAreMatcher6); }; template <typename T1, typename T2, typename T3, typename T4, typename T5, typename T6, typename T7> class ElementsAreMatcher7 { public: ElementsAreMatcher7(const T1& e1, const T2& e2, const T3& e3, const T4& e4, const T5& e5, const T6& e6, const T7& e7) : e1_(e1), e2_(e2), e3_(e3), e4_(e4), e5_(e5), e6_(e6), e7_(e7) {} template <typename Container> operator Matcher<Container>() const { typedef GTEST_REMOVE_REFERENCE_AND_CONST_(Container) RawContainer; typedef typename internal::StlContainerView<RawContainer>::type::value_type Element; const Matcher<const Element&> matchers[] = { MatcherCast<const Element&>(e1_), MatcherCast<const Element&>(e2_), MatcherCast<const Element&>(e3_), MatcherCast<const Element&>(e4_), MatcherCast<const Element&>(e5_), MatcherCast<const Element&>(e6_), MatcherCast<const Element&>(e7_), }; return MakeMatcher(new ElementsAreMatcherImpl<Container>(matchers, 7)); } private: const T1& e1_; const T2& e2_; const T3& e3_; const T4& e4_; const T5& e5_; const T6& e6_; const T7& e7_; GTEST_DISALLOW_ASSIGN_(ElementsAreMatcher7); }; template <typename T1, typename T2, typename T3, typename T4, typename T5, typename T6, typename T7, typename T8> class ElementsAreMatcher8 { public: ElementsAreMatcher8(const T1& e1, const T2& e2, const T3& e3, const T4& e4, const T5& e5, const T6& e6, const T7& e7, const T8& e8) : e1_(e1), e2_(e2), e3_(e3), e4_(e4), e5_(e5), e6_(e6), e7_(e7), e8_(e8) {} template <typename Container> operator Matcher<Container>() const { typedef GTEST_REMOVE_REFERENCE_AND_CONST_(Container) RawContainer; typedef typename internal::StlContainerView<RawContainer>::type::value_type Element; const Matcher<const Element&> matchers[] = { MatcherCast<const Element&>(e1_), MatcherCast<const Element&>(e2_), MatcherCast<const Element&>(e3_), MatcherCast<const Element&>(e4_), MatcherCast<const Element&>(e5_), MatcherCast<const Element&>(e6_), MatcherCast<const Element&>(e7_), MatcherCast<const Element&>(e8_), }; return MakeMatcher(new ElementsAreMatcherImpl<Container>(matchers, 8)); } private: const T1& e1_; const T2& e2_; const T3& e3_; const T4& e4_; const T5& e5_; const T6& e6_; const T7& e7_; const T8& e8_; GTEST_DISALLOW_ASSIGN_(ElementsAreMatcher8); }; template <typename T1, typename T2, typename T3, typename T4, typename T5, typename T6, typename T7, typename T8, typename T9> class ElementsAreMatcher9 { public: ElementsAreMatcher9(const T1& e1, const T2& e2, const T3& e3, const T4& e4, const T5& e5, const T6& e6, const T7& e7, const T8& e8, const T9& e9) : e1_(e1), e2_(e2), e3_(e3), e4_(e4), e5_(e5), e6_(e6), e7_(e7), e8_(e8), e9_(e9) {} template <typename Container> operator Matcher<Container>() const { typedef GTEST_REMOVE_REFERENCE_AND_CONST_(Container) RawContainer; typedef typename internal::StlContainerView<RawContainer>::type::value_type Element; const Matcher<const Element&> matchers[] = { MatcherCast<const Element&>(e1_), MatcherCast<const Element&>(e2_), MatcherCast<const Element&>(e3_), MatcherCast<const Element&>(e4_), MatcherCast<const Element&>(e5_), MatcherCast<const Element&>(e6_), MatcherCast<const Element&>(e7_), MatcherCast<const Element&>(e8_), MatcherCast<const Element&>(e9_), }; return MakeMatcher(new ElementsAreMatcherImpl<Container>(matchers, 9)); } private: const T1& e1_; const T2& e2_; const T3& e3_; const T4& e4_; const T5& e5_; const T6& e6_; const T7& e7_; const T8& e8_; const T9& e9_; GTEST_DISALLOW_ASSIGN_(ElementsAreMatcher9); }; template <typename T1, typename T2, typename T3, typename T4, typename T5, typename T6, typename T7, typename T8, typename T9, typename T10> class ElementsAreMatcher10 { public: ElementsAreMatcher10(const T1& e1, const T2& e2, const T3& e3, const T4& e4, const T5& e5, const T6& e6, const T7& e7, const T8& e8, const T9& e9, const T10& e10) : e1_(e1), e2_(e2), e3_(e3), e4_(e4), e5_(e5), e6_(e6), e7_(e7), e8_(e8), e9_(e9), e10_(e10) {} template <typename Container> operator Matcher<Container>() const { typedef GTEST_REMOVE_REFERENCE_AND_CONST_(Container) RawContainer; typedef typename internal::StlContainerView<RawContainer>::type::value_type Element; const Matcher<const Element&> matchers[] = { MatcherCast<const Element&>(e1_), MatcherCast<const Element&>(e2_), MatcherCast<const Element&>(e3_), MatcherCast<const Element&>(e4_), MatcherCast<const Element&>(e5_), MatcherCast<const Element&>(e6_), MatcherCast<const Element&>(e7_), MatcherCast<const Element&>(e8_), MatcherCast<const Element&>(e9_), MatcherCast<const Element&>(e10_), }; return MakeMatcher(new ElementsAreMatcherImpl<Container>(matchers, 10)); } private: const T1& e1_; const T2& e2_; const T3& e3_; const T4& e4_; const T5& e5_; const T6& e6_; const T7& e7_; const T8& e8_; const T9& e9_; const T10& e10_; GTEST_DISALLOW_ASSIGN_(ElementsAreMatcher10); }; } // namespace internal // Args<N1, N2, ..., Nk>(a_matcher) matches a tuple if the selected // fields of it matches a_matcher. C++ doesn't support default // arguments for function templates, so we have to overload it. template <typename InnerMatcher> inline internal::ArgsMatcher<InnerMatcher> Args(const InnerMatcher& matcher) { return internal::ArgsMatcher<InnerMatcher>(matcher); } template <int k1, typename InnerMatcher> inline internal::ArgsMatcher<InnerMatcher, k1> Args(const InnerMatcher& matcher) { return internal::ArgsMatcher<InnerMatcher, k1>(matcher); } template <int k1, int k2, typename InnerMatcher> inline internal::ArgsMatcher<InnerMatcher, k1, k2> Args(const InnerMatcher& matcher) { return internal::ArgsMatcher<InnerMatcher, k1, k2>(matcher); } template <int k1, int k2, int k3, typename InnerMatcher> inline internal::ArgsMatcher<InnerMatcher, k1, k2, k3> Args(const InnerMatcher& matcher) { return internal::ArgsMatcher<InnerMatcher, k1, k2, k3>(matcher); } template <int k1, int k2, int k3, int k4, typename InnerMatcher> inline internal::ArgsMatcher<InnerMatcher, k1, k2, k3, k4> Args(const InnerMatcher& matcher) { return internal::ArgsMatcher<InnerMatcher, k1, k2, k3, k4>(matcher); } template <int k1, int k2, int k3, int k4, int k5, typename InnerMatcher> inline internal::ArgsMatcher<InnerMatcher, k1, k2, k3, k4, k5> Args(const InnerMatcher& matcher) { return internal::ArgsMatcher<InnerMatcher, k1, k2, k3, k4, k5>(matcher); } template <int k1, int k2, int k3, int k4, int k5, int k6, typename InnerMatcher> inline internal::ArgsMatcher<InnerMatcher, k1, k2, k3, k4, k5, k6> Args(const InnerMatcher& matcher) { return internal::ArgsMatcher<InnerMatcher, k1, k2, k3, k4, k5, k6>(matcher); } template <int k1, int k2, int k3, int k4, int k5, int k6, int k7, typename InnerMatcher> inline internal::ArgsMatcher<InnerMatcher, k1, k2, k3, k4, k5, k6, k7> Args(const InnerMatcher& matcher) { return internal::ArgsMatcher<InnerMatcher, k1, k2, k3, k4, k5, k6, k7>(matcher); } template <int k1, int k2, int k3, int k4, int k5, int k6, int k7, int k8, typename InnerMatcher> inline internal::ArgsMatcher<InnerMatcher, k1, k2, k3, k4, k5, k6, k7, k8> Args(const InnerMatcher& matcher) { return internal::ArgsMatcher<InnerMatcher, k1, k2, k3, k4, k5, k6, k7, k8>(matcher); } template <int k1, int k2, int k3, int k4, int k5, int k6, int k7, int k8, int k9, typename InnerMatcher> inline internal::ArgsMatcher<InnerMatcher, k1, k2, k3, k4, k5, k6, k7, k8, k9> Args(const InnerMatcher& matcher) { return internal::ArgsMatcher<InnerMatcher, k1, k2, k3, k4, k5, k6, k7, k8, k9>(matcher); } template <int k1, int k2, int k3, int k4, int k5, int k6, int k7, int k8, int k9, int k10, typename InnerMatcher> inline internal::ArgsMatcher<InnerMatcher, k1, k2, k3, k4, k5, k6, k7, k8, k9, k10> Args(const InnerMatcher& matcher) { return internal::ArgsMatcher<InnerMatcher, k1, k2, k3, k4, k5, k6, k7, k8, k9, k10>(matcher); } // ElementsAre(e0, e1, ..., e_n) matches an STL-style container with // (n + 1) elements, where the i-th element in the container must // match the i-th argument in the list. Each argument of // ElementsAre() can be either a value or a matcher. We support up to // 10 arguments. // // NOTE: Since ElementsAre() cares about the order of the elements, it // must not be used with containers whose elements's order is // undefined (e.g. hash_map). inline internal::ElementsAreMatcher0 ElementsAre() { return internal::ElementsAreMatcher0(); } template <typename T1> inline internal::ElementsAreMatcher1<T1> ElementsAre(const T1& e1) { return internal::ElementsAreMatcher1<T1>(e1); } template <typename T1, typename T2> inline internal::ElementsAreMatcher2<T1, T2> ElementsAre(const T1& e1, const T2& e2) { return internal::ElementsAreMatcher2<T1, T2>(e1, e2); } template <typename T1, typename T2, typename T3> inline internal::ElementsAreMatcher3<T1, T2, T3> ElementsAre(const T1& e1, const T2& e2, const T3& e3) { return internal::ElementsAreMatcher3<T1, T2, T3>(e1, e2, e3); } template <typename T1, typename T2, typename T3, typename T4> inline internal::ElementsAreMatcher4<T1, T2, T3, T4> ElementsAre(const T1& e1, const T2& e2, const T3& e3, const T4& e4) { return internal::ElementsAreMatcher4<T1, T2, T3, T4>(e1, e2, e3, e4); } template <typename T1, typename T2, typename T3, typename T4, typename T5> inline internal::ElementsAreMatcher5<T1, T2, T3, T4, T5> ElementsAre(const T1& e1, const T2& e2, const T3& e3, const T4& e4, const T5& e5) { return internal::ElementsAreMatcher5<T1, T2, T3, T4, T5>(e1, e2, e3, e4, e5); } template <typename T1, typename T2, typename T3, typename T4, typename T5, typename T6> inline internal::ElementsAreMatcher6<T1, T2, T3, T4, T5, T6> ElementsAre(const T1& e1, const T2& e2, const T3& e3, const T4& e4, const T5& e5, const T6& e6) { return internal::ElementsAreMatcher6<T1, T2, T3, T4, T5, T6>(e1, e2, e3, e4, e5, e6); } template <typename T1, typename T2, typename T3, typename T4, typename T5, typename T6, typename T7> inline internal::ElementsAreMatcher7<T1, T2, T3, T4, T5, T6, T7> ElementsAre(const T1& e1, const T2& e2, const T3& e3, const T4& e4, const T5& e5, const T6& e6, const T7& e7) { return internal::ElementsAreMatcher7<T1, T2, T3, T4, T5, T6, T7>(e1, e2, e3, e4, e5, e6, e7); } template <typename T1, typename T2, typename T3, typename T4, typename T5, typename T6, typename T7, typename T8> inline internal::ElementsAreMatcher8<T1, T2, T3, T4, T5, T6, T7, T8> ElementsAre(const T1& e1, const T2& e2, const T3& e3, const T4& e4, const T5& e5, const T6& e6, const T7& e7, const T8& e8) { return internal::ElementsAreMatcher8<T1, T2, T3, T4, T5, T6, T7, T8>(e1, e2, e3, e4, e5, e6, e7, e8); } template <typename T1, typename T2, typename T3, typename T4, typename T5, typename T6, typename T7, typename T8, typename T9> inline internal::ElementsAreMatcher9<T1, T2, T3, T4, T5, T6, T7, T8, T9> ElementsAre(const T1& e1, const T2& e2, const T3& e3, const T4& e4, const T5& e5, const T6& e6, const T7& e7, const T8& e8, const T9& e9) { return internal::ElementsAreMatcher9<T1, T2, T3, T4, T5, T6, T7, T8, T9>(e1, e2, e3, e4, e5, e6, e7, e8, e9); } template <typename T1, typename T2, typename T3, typename T4, typename T5, typename T6, typename T7, typename T8, typename T9, typename T10> inline internal::ElementsAreMatcher10<T1, T2, T3, T4, T5, T6, T7, T8, T9, T10> ElementsAre(const T1& e1, const T2& e2, const T3& e3, const T4& e4, const T5& e5, const T6& e6, const T7& e7, const T8& e8, const T9& e9, const T10& e10) { return internal::ElementsAreMatcher10<T1, T2, T3, T4, T5, T6, T7, T8, T9, T10>(e1, e2, e3, e4, e5, e6, e7, e8, e9, e10); } // ElementsAreArray(array) and ElementAreArray(array, count) are like // ElementsAre(), except that they take an array of values or // matchers. The former form infers the size of 'array', which must // be a static C-style array. In the latter form, 'array' can either // be a static array or a pointer to a dynamically created array. template <typename T> inline internal::ElementsAreArrayMatcher<T> ElementsAreArray( const T* first, size_t count) { return internal::ElementsAreArrayMatcher<T>(first, count); } template <typename T, size_t N> inline internal::ElementsAreArrayMatcher<T> ElementsAreArray(const T (&array)[N]) { return internal::ElementsAreArrayMatcher<T>(array, N); } // AllOf(m1, m2, ..., mk) matches any value that matches all of the given // sub-matchers. AllOf is called fully qualified to prevent ADL from firing. template <typename Matcher1, typename Matcher2> inline internal::BothOfMatcher<Matcher1, Matcher2> AllOf(Matcher1 m1, Matcher2 m2) { return internal::BothOfMatcher<Matcher1, Matcher2>(m1, m2); } template <typename Matcher1, typename Matcher2, typename Matcher3> inline internal::BothOfMatcher<Matcher1, internal::BothOfMatcher<Matcher2, Matcher3> > AllOf(Matcher1 m1, Matcher2 m2, Matcher3 m3) { return ::testing::AllOf(m1, ::testing::AllOf(m2, m3)); } template <typename Matcher1, typename Matcher2, typename Matcher3, typename Matcher4> inline internal::BothOfMatcher<Matcher1, internal::BothOfMatcher<Matcher2, internal::BothOfMatcher<Matcher3, Matcher4> > > AllOf(Matcher1 m1, Matcher2 m2, Matcher3 m3, Matcher4 m4) { return ::testing::AllOf(m1, ::testing::AllOf(m2, m3, m4)); } template <typename Matcher1, typename Matcher2, typename Matcher3, typename Matcher4, typename Matcher5> inline internal::BothOfMatcher<Matcher1, internal::BothOfMatcher<Matcher2, internal::BothOfMatcher<Matcher3, internal::BothOfMatcher<Matcher4, Matcher5> > > > AllOf(Matcher1 m1, Matcher2 m2, Matcher3 m3, Matcher4 m4, Matcher5 m5) { return ::testing::AllOf(m1, ::testing::AllOf(m2, m3, m4, m5)); } template <typename Matcher1, typename Matcher2, typename Matcher3, typename Matcher4, typename Matcher5, typename Matcher6> inline internal::BothOfMatcher<Matcher1, internal::BothOfMatcher<Matcher2, internal::BothOfMatcher<Matcher3, internal::BothOfMatcher<Matcher4, internal::BothOfMatcher<Matcher5, Matcher6> > > > > AllOf(Matcher1 m1, Matcher2 m2, Matcher3 m3, Matcher4 m4, Matcher5 m5, Matcher6 m6) { return ::testing::AllOf(m1, ::testing::AllOf(m2, m3, m4, m5, m6)); } template <typename Matcher1, typename Matcher2, typename Matcher3, typename Matcher4, typename Matcher5, typename Matcher6, typename Matcher7> inline internal::BothOfMatcher<Matcher1, internal::BothOfMatcher<Matcher2, internal::BothOfMatcher<Matcher3, internal::BothOfMatcher<Matcher4, internal::BothOfMatcher<Matcher5, internal::BothOfMatcher<Matcher6, Matcher7> > > > > > AllOf(Matcher1 m1, Matcher2 m2, Matcher3 m3, Matcher4 m4, Matcher5 m5, Matcher6 m6, Matcher7 m7) { return ::testing::AllOf(m1, ::testing::AllOf(m2, m3, m4, m5, m6, m7)); } template <typename Matcher1, typename Matcher2, typename Matcher3, typename Matcher4, typename Matcher5, typename Matcher6, typename Matcher7, typename Matcher8> inline internal::BothOfMatcher<Matcher1, internal::BothOfMatcher<Matcher2, internal::BothOfMatcher<Matcher3, internal::BothOfMatcher<Matcher4, internal::BothOfMatcher<Matcher5, internal::BothOfMatcher<Matcher6, internal::BothOfMatcher<Matcher7, Matcher8> > > > > > > AllOf(Matcher1 m1, Matcher2 m2, Matcher3 m3, Matcher4 m4, Matcher5 m5, Matcher6 m6, Matcher7 m7, Matcher8 m8) { return ::testing::AllOf(m1, ::testing::AllOf(m2, m3, m4, m5, m6, m7, m8)); } template <typename Matcher1, typename Matcher2, typename Matcher3, typename Matcher4, typename Matcher5, typename Matcher6, typename Matcher7, typename Matcher8, typename Matcher9> inline internal::BothOfMatcher<Matcher1, internal::BothOfMatcher<Matcher2, internal::BothOfMatcher<Matcher3, internal::BothOfMatcher<Matcher4, internal::BothOfMatcher<Matcher5, internal::BothOfMatcher<Matcher6, internal::BothOfMatcher<Matcher7, internal::BothOfMatcher<Matcher8, Matcher9> > > > > > > > AllOf(Matcher1 m1, Matcher2 m2, Matcher3 m3, Matcher4 m4, Matcher5 m5, Matcher6 m6, Matcher7 m7, Matcher8 m8, Matcher9 m9) { return ::testing::AllOf(m1, ::testing::AllOf(m2, m3, m4, m5, m6, m7, m8, m9)); } template <typename Matcher1, typename Matcher2, typename Matcher3, typename Matcher4, typename Matcher5, typename Matcher6, typename Matcher7, typename Matcher8, typename Matcher9, typename Matcher10> inline internal::BothOfMatcher<Matcher1, internal::BothOfMatcher<Matcher2, internal::BothOfMatcher<Matcher3, internal::BothOfMatcher<Matcher4, internal::BothOfMatcher<Matcher5, internal::BothOfMatcher<Matcher6, internal::BothOfMatcher<Matcher7, internal::BothOfMatcher<Matcher8, internal::BothOfMatcher<Matcher9, Matcher10> > > > > > > > > AllOf(Matcher1 m1, Matcher2 m2, Matcher3 m3, Matcher4 m4, Matcher5 m5, Matcher6 m6, Matcher7 m7, Matcher8 m8, Matcher9 m9, Matcher10 m10) { return ::testing::AllOf(m1, ::testing::AllOf(m2, m3, m4, m5, m6, m7, m8, m9, m10)); } // AnyOf(m1, m2, ..., mk) matches any value that matches any of the given // sub-matchers. AnyOf is called fully qualified to prevent ADL from firing. template <typename Matcher1, typename Matcher2> inline internal::EitherOfMatcher<Matcher1, Matcher2> AnyOf(Matcher1 m1, Matcher2 m2) { return internal::EitherOfMatcher<Matcher1, Matcher2>(m1, m2); } template <typename Matcher1, typename Matcher2, typename Matcher3> inline internal::EitherOfMatcher<Matcher1, internal::EitherOfMatcher<Matcher2, Matcher3> > AnyOf(Matcher1 m1, Matcher2 m2, Matcher3 m3) { return ::testing::AnyOf(m1, ::testing::AnyOf(m2, m3)); } template <typename Matcher1, typename Matcher2, typename Matcher3, typename Matcher4> inline internal::EitherOfMatcher<Matcher1, internal::EitherOfMatcher<Matcher2, internal::EitherOfMatcher<Matcher3, Matcher4> > > AnyOf(Matcher1 m1, Matcher2 m2, Matcher3 m3, Matcher4 m4) { return ::testing::AnyOf(m1, ::testing::AnyOf(m2, m3, m4)); } template <typename Matcher1, typename Matcher2, typename Matcher3, typename Matcher4, typename Matcher5> inline internal::EitherOfMatcher<Matcher1, internal::EitherOfMatcher<Matcher2, internal::EitherOfMatcher<Matcher3, internal::EitherOfMatcher<Matcher4, Matcher5> > > > AnyOf(Matcher1 m1, Matcher2 m2, Matcher3 m3, Matcher4 m4, Matcher5 m5) { return ::testing::AnyOf(m1, ::testing::AnyOf(m2, m3, m4, m5)); } template <typename Matcher1, typename Matcher2, typename Matcher3, typename Matcher4, typename Matcher5, typename Matcher6> inline internal::EitherOfMatcher<Matcher1, internal::EitherOfMatcher<Matcher2, internal::EitherOfMatcher<Matcher3, internal::EitherOfMatcher<Matcher4, internal::EitherOfMatcher<Matcher5, Matcher6> > > > > AnyOf(Matcher1 m1, Matcher2 m2, Matcher3 m3, Matcher4 m4, Matcher5 m5, Matcher6 m6) { return ::testing::AnyOf(m1, ::testing::AnyOf(m2, m3, m4, m5, m6)); } template <typename Matcher1, typename Matcher2, typename Matcher3, typename Matcher4, typename Matcher5, typename Matcher6, typename Matcher7> inline internal::EitherOfMatcher<Matcher1, internal::EitherOfMatcher<Matcher2, internal::EitherOfMatcher<Matcher3, internal::EitherOfMatcher<Matcher4, internal::EitherOfMatcher<Matcher5, internal::EitherOfMatcher<Matcher6, Matcher7> > > > > > AnyOf(Matcher1 m1, Matcher2 m2, Matcher3 m3, Matcher4 m4, Matcher5 m5, Matcher6 m6, Matcher7 m7) { return ::testing::AnyOf(m1, ::testing::AnyOf(m2, m3, m4, m5, m6, m7)); } template <typename Matcher1, typename Matcher2, typename Matcher3, typename Matcher4, typename Matcher5, typename Matcher6, typename Matcher7, typename Matcher8> inline internal::EitherOfMatcher<Matcher1, internal::EitherOfMatcher<Matcher2, internal::EitherOfMatcher<Matcher3, internal::EitherOfMatcher<Matcher4, internal::EitherOfMatcher<Matcher5, internal::EitherOfMatcher<Matcher6, internal::EitherOfMatcher<Matcher7, Matcher8> > > > > > > AnyOf(Matcher1 m1, Matcher2 m2, Matcher3 m3, Matcher4 m4, Matcher5 m5, Matcher6 m6, Matcher7 m7, Matcher8 m8) { return ::testing::AnyOf(m1, ::testing::AnyOf(m2, m3, m4, m5, m6, m7, m8)); } template <typename Matcher1, typename Matcher2, typename Matcher3, typename Matcher4, typename Matcher5, typename Matcher6, typename Matcher7, typename Matcher8, typename Matcher9> inline internal::EitherOfMatcher<Matcher1, internal::EitherOfMatcher<Matcher2, internal::EitherOfMatcher<Matcher3, internal::EitherOfMatcher<Matcher4, internal::EitherOfMatcher<Matcher5, internal::EitherOfMatcher<Matcher6, internal::EitherOfMatcher<Matcher7, internal::EitherOfMatcher<Matcher8, Matcher9> > > > > > > > AnyOf(Matcher1 m1, Matcher2 m2, Matcher3 m3, Matcher4 m4, Matcher5 m5, Matcher6 m6, Matcher7 m7, Matcher8 m8, Matcher9 m9) { return ::testing::AnyOf(m1, ::testing::AnyOf(m2, m3, m4, m5, m6, m7, m8, m9)); } template <typename Matcher1, typename Matcher2, typename Matcher3, typename Matcher4, typename Matcher5, typename Matcher6, typename Matcher7, typename Matcher8, typename Matcher9, typename Matcher10> inline internal::EitherOfMatcher<Matcher1, internal::EitherOfMatcher<Matcher2, internal::EitherOfMatcher<Matcher3, internal::EitherOfMatcher<Matcher4, internal::EitherOfMatcher<Matcher5, internal::EitherOfMatcher<Matcher6, internal::EitherOfMatcher<Matcher7, internal::EitherOfMatcher<Matcher8, internal::EitherOfMatcher<Matcher9, Matcher10> > > > > > > > > AnyOf(Matcher1 m1, Matcher2 m2, Matcher3 m3, Matcher4 m4, Matcher5 m5, Matcher6 m6, Matcher7 m7, Matcher8 m8, Matcher9 m9, Matcher10 m10) { return ::testing::AnyOf(m1, ::testing::AnyOf(m2, m3, m4, m5, m6, m7, m8, m9, m10)); } } // namespace testing // The MATCHER* family of macros can be used in a namespace scope to // define custom matchers easily. // // Basic Usage // =========== // // The syntax // // MATCHER(name, description_string) { statements; } // // defines a matcher with the given name that executes the statements, // which must return a bool to indicate if the match succeeds. Inside // the statements, you can refer to the value being matched by 'arg', // and refer to its type by 'arg_type'. // // The description string documents what the matcher does, and is used // to generate the failure message when the match fails. Since a // MATCHER() is usually defined in a header file shared by multiple // C++ source files, we require the description to be a C-string // literal to avoid possible side effects. It can be empty, in which // case we'll use the sequence of words in the matcher name as the // description. // // For example: // // MATCHER(IsEven, "") { return (arg % 2) == 0; } // // allows you to write // // // Expects mock_foo.Bar(n) to be called where n is even. // EXPECT_CALL(mock_foo, Bar(IsEven())); // // or, // // // Verifies that the value of some_expression is even. // EXPECT_THAT(some_expression, IsEven()); // // If the above assertion fails, it will print something like: // // Value of: some_expression // Expected: is even // Actual: 7 // // where the description "is even" is automatically calculated from the // matcher name IsEven. // // Argument Type // ============= // // Note that the type of the value being matched (arg_type) is // determined by the context in which you use the matcher and is // supplied to you by the compiler, so you don't need to worry about // declaring it (nor can you). This allows the matcher to be // polymorphic. For example, IsEven() can be used to match any type // where the value of "(arg % 2) == 0" can be implicitly converted to // a bool. In the "Bar(IsEven())" example above, if method Bar() // takes an int, 'arg_type' will be int; if it takes an unsigned long, // 'arg_type' will be unsigned long; and so on. // // Parameterizing Matchers // ======================= // // Sometimes you'll want to parameterize the matcher. For that you // can use another macro: // // MATCHER_P(name, param_name, description_string) { statements; } // // For example: // // MATCHER_P(HasAbsoluteValue, value, "") { return abs(arg) == value; } // // will allow you to write: // // EXPECT_THAT(Blah("a"), HasAbsoluteValue(n)); // // which may lead to this message (assuming n is 10): // // Value of: Blah("a") // Expected: has absolute value 10 // Actual: -9 // // Note that both the matcher description and its parameter are // printed, making the message human-friendly. // // In the matcher definition body, you can write 'foo_type' to // reference the type of a parameter named 'foo'. For example, in the // body of MATCHER_P(HasAbsoluteValue, value) above, you can write // 'value_type' to refer to the type of 'value'. // // We also provide MATCHER_P2, MATCHER_P3, ..., up to MATCHER_P10 to // support multi-parameter matchers. // // Describing Parameterized Matchers // ================================= // // The last argument to MATCHER*() is a string-typed expression. The // expression can reference all of the matcher's parameters and a // special bool-typed variable named 'negation'. When 'negation' is // false, the expression should evaluate to the matcher's description; // otherwise it should evaluate to the description of the negation of // the matcher. For example, // // using testing::PrintToString; // // MATCHER_P2(InClosedRange, low, hi, // string(negation ? "is not" : "is") + " in range [" + // PrintToString(low) + ", " + PrintToString(hi) + "]") { // return low <= arg && arg <= hi; // } // ... // EXPECT_THAT(3, InClosedRange(4, 6)); // EXPECT_THAT(3, Not(InClosedRange(2, 4))); // // would generate two failures that contain the text: // // Expected: is in range [4, 6] // ... // Expected: is not in range [2, 4] // // If you specify "" as the description, the failure message will // contain the sequence of words in the matcher name followed by the // parameter values printed as a tuple. For example, // // MATCHER_P2(InClosedRange, low, hi, "") { ... } // ... // EXPECT_THAT(3, InClosedRange(4, 6)); // EXPECT_THAT(3, Not(InClosedRange(2, 4))); // // would generate two failures that contain the text: // // Expected: in closed range (4, 6) // ... // Expected: not (in closed range (2, 4)) // // Types of Matcher Parameters // =========================== // // For the purpose of typing, you can view // // MATCHER_Pk(Foo, p1, ..., pk, description_string) { ... } // // as shorthand for // // template <typename p1_type, ..., typename pk_type> // FooMatcherPk<p1_type, ..., pk_type> // Foo(p1_type p1, ..., pk_type pk) { ... } // // When you write Foo(v1, ..., vk), the compiler infers the types of // the parameters v1, ..., and vk for you. If you are not happy with // the result of the type inference, you can specify the types by // explicitly instantiating the template, as in Foo<long, bool>(5, // false). As said earlier, you don't get to (or need to) specify // 'arg_type' as that's determined by the context in which the matcher // is used. You can assign the result of expression Foo(p1, ..., pk) // to a variable of type FooMatcherPk<p1_type, ..., pk_type>. This // can be useful when composing matchers. // // While you can instantiate a matcher template with reference types, // passing the parameters by pointer usually makes your code more // readable. If, however, you still want to pass a parameter by // reference, be aware that in the failure message generated by the // matcher you will see the value of the referenced object but not its // address. // // Explaining Match Results // ======================== // // Sometimes the matcher description alone isn't enough to explain why // the match has failed or succeeded. For example, when expecting a // long string, it can be very helpful to also print the diff between // the expected string and the actual one. To achieve that, you can // optionally stream additional information to a special variable // named result_listener, whose type is a pointer to class // MatchResultListener: // // MATCHER_P(EqualsLongString, str, "") { // if (arg == str) return true; // // *result_listener << "the difference: " /// << DiffStrings(str, arg); // return false; // } // // Overloading Matchers // ==================== // // You can overload matchers with different numbers of parameters: // // MATCHER_P(Blah, a, description_string1) { ... } // MATCHER_P2(Blah, a, b, description_string2) { ... } // // Caveats // ======= // // When defining a new matcher, you should also consider implementing // MatcherInterface or using MakePolymorphicMatcher(). These // approaches require more work than the MATCHER* macros, but also // give you more control on the types of the value being matched and // the matcher parameters, which may leads to better compiler error // messages when the matcher is used wrong. They also allow // overloading matchers based on parameter types (as opposed to just // based on the number of parameters). // // MATCHER*() can only be used in a namespace scope. The reason is // that C++ doesn't yet allow function-local types to be used to // instantiate templates. The up-coming C++0x standard will fix this. // Once that's done, we'll consider supporting using MATCHER*() inside // a function. // // More Information // ================ // // To learn more about using these macros, please search for 'MATCHER' // on http://code.google.com/p/googlemock/wiki/CookBook. #define MATCHER(name, description)\ class name##Matcher {\ public:\ template <typename arg_type>\ class gmock_Impl : public ::testing::MatcherInterface<arg_type> {\ public:\ gmock_Impl()\ {}\ virtual bool MatchAndExplain(\ arg_type arg, ::testing::MatchResultListener* result_listener) const;\ virtual void DescribeTo(::std::ostream* gmock_os) const {\ *gmock_os << FormatDescription(false);\ }\ virtual void DescribeNegationTo(::std::ostream* gmock_os) const {\ *gmock_os << FormatDescription(true);\ }\ private:\ ::testing::internal::string FormatDescription(bool negation) const {\ const ::testing::internal::string gmock_description = (description);\ if (!gmock_description.empty())\ return gmock_description;\ return ::testing::internal::FormatMatcherDescription(\ negation, #name,\ ::testing::internal::UniversalTersePrintTupleFieldsToStrings(\ ::std::tr1::tuple<>()));\ }\ GTEST_DISALLOW_ASSIGN_(gmock_Impl);\ };\ template <typename arg_type>\ operator ::testing::Matcher<arg_type>() const {\ return ::testing::Matcher<arg_type>(\ new gmock_Impl<arg_type>());\ }\ name##Matcher() {\ }\ private:\ GTEST_DISALLOW_ASSIGN_(name##Matcher);\ };\ inline name##Matcher name() {\ return name##Matcher();\ }\ template <typename arg_type>\ bool name##Matcher::gmock_Impl<arg_type>::MatchAndExplain(\ arg_type arg,\ ::testing::MatchResultListener* result_listener GTEST_ATTRIBUTE_UNUSED_)\ const #define MATCHER_P(name, p0, description)\ template <typename p0##_type>\ class name##MatcherP {\ public:\ template <typename arg_type>\ class gmock_Impl : public ::testing::MatcherInterface<arg_type> {\ public:\ explicit gmock_Impl(p0##_type gmock_p0)\ : p0(gmock_p0) {}\ virtual bool MatchAndExplain(\ arg_type arg, ::testing::MatchResultListener* result_listener) const;\ virtual void DescribeTo(::std::ostream* gmock_os) const {\ *gmock_os << FormatDescription(false);\ }\ virtual void DescribeNegationTo(::std::ostream* gmock_os) const {\ *gmock_os << FormatDescription(true);\ }\ p0##_type p0;\ private:\ ::testing::internal::string FormatDescription(bool negation) const {\ const ::testing::internal::string gmock_description = (description);\ if (!gmock_description.empty())\ return gmock_description;\ return ::testing::internal::FormatMatcherDescription(\ negation, #name,\ ::testing::internal::UniversalTersePrintTupleFieldsToStrings(\ ::std::tr1::tuple<p0##_type>(p0)));\ }\ GTEST_DISALLOW_ASSIGN_(gmock_Impl);\ };\ template <typename arg_type>\ operator ::testing::Matcher<arg_type>() const {\ return ::testing::Matcher<arg_type>(\ new gmock_Impl<arg_type>(p0));\ }\ name##MatcherP(p0##_type gmock_p0) : p0(gmock_p0) {\ }\ p0##_type p0;\ private:\ GTEST_DISALLOW_ASSIGN_(name##MatcherP);\ };\ template <typename p0##_type>\ inline name##MatcherP<p0##_type> name(p0##_type p0) {\ return name##MatcherP<p0##_type>(p0);\ }\ template <typename p0##_type>\ template <typename arg_type>\ bool name##MatcherP<p0##_type>::gmock_Impl<arg_type>::MatchAndExplain(\ arg_type arg,\ ::testing::MatchResultListener* result_listener GTEST_ATTRIBUTE_UNUSED_)\ const #define MATCHER_P2(name, p0, p1, description)\ template <typename p0##_type, typename p1##_type>\ class name##MatcherP2 {\ public:\ template <typename arg_type>\ class gmock_Impl : public ::testing::MatcherInterface<arg_type> {\ public:\ gmock_Impl(p0##_type gmock_p0, p1##_type gmock_p1)\ : p0(gmock_p0), p1(gmock_p1) {}\ virtual bool MatchAndExplain(\ arg_type arg, ::testing::MatchResultListener* result_listener) const;\ virtual void DescribeTo(::std::ostream* gmock_os) const {\ *gmock_os << FormatDescription(false);\ }\ virtual void DescribeNegationTo(::std::ostream* gmock_os) const {\ *gmock_os << FormatDescription(true);\ }\ p0##_type p0;\ p1##_type p1;\ private:\ ::testing::internal::string FormatDescription(bool negation) const {\ const ::testing::internal::string gmock_description = (description);\ if (!gmock_description.empty())\ return gmock_description;\ return ::testing::internal::FormatMatcherDescription(\ negation, #name,\ ::testing::internal::UniversalTersePrintTupleFieldsToStrings(\ ::std::tr1::tuple<p0##_type, p1##_type>(p0, p1)));\ }\ GTEST_DISALLOW_ASSIGN_(gmock_Impl);\ };\ template <typename arg_type>\ operator ::testing::Matcher<arg_type>() const {\ return ::testing::Matcher<arg_type>(\ new gmock_Impl<arg_type>(p0, p1));\ }\ name##MatcherP2(p0##_type gmock_p0, p1##_type gmock_p1) : p0(gmock_p0), \ p1(gmock_p1) {\ }\ p0##_type p0;\ p1##_type p1;\ private:\ GTEST_DISALLOW_ASSIGN_(name##MatcherP2);\ };\ template <typename p0##_type, typename p1##_type>\ inline name##MatcherP2<p0##_type, p1##_type> name(p0##_type p0, \ p1##_type p1) {\ return name##MatcherP2<p0##_type, p1##_type>(p0, p1);\ }\ template <typename p0##_type, typename p1##_type>\ template <typename arg_type>\ bool name##MatcherP2<p0##_type, \ p1##_type>::gmock_Impl<arg_type>::MatchAndExplain(\ arg_type arg,\ ::testing::MatchResultListener* result_listener GTEST_ATTRIBUTE_UNUSED_)\ const #define MATCHER_P3(name, p0, p1, p2, description)\ template <typename p0##_type, typename p1##_type, typename p2##_type>\ class name##MatcherP3 {\ public:\ template <typename arg_type>\ class gmock_Impl : public ::testing::MatcherInterface<arg_type> {\ public:\ gmock_Impl(p0##_type gmock_p0, p1##_type gmock_p1, p2##_type gmock_p2)\ : p0(gmock_p0), p1(gmock_p1), p2(gmock_p2) {}\ virtual bool MatchAndExplain(\ arg_type arg, ::testing::MatchResultListener* result_listener) const;\ virtual void DescribeTo(::std::ostream* gmock_os) const {\ *gmock_os << FormatDescription(false);\ }\ virtual void DescribeNegationTo(::std::ostream* gmock_os) const {\ *gmock_os << FormatDescription(true);\ }\ p0##_type p0;\ p1##_type p1;\ p2##_type p2;\ private:\ ::testing::internal::string FormatDescription(bool negation) const {\ const ::testing::internal::string gmock_description = (description);\ if (!gmock_description.empty())\ return gmock_description;\ return ::testing::internal::FormatMatcherDescription(\ negation, #name,\ ::testing::internal::UniversalTersePrintTupleFieldsToStrings(\ ::std::tr1::tuple<p0##_type, p1##_type, p2##_type>(p0, p1, \ p2)));\ }\ GTEST_DISALLOW_ASSIGN_(gmock_Impl);\ };\ template <typename arg_type>\ operator ::testing::Matcher<arg_type>() const {\ return ::testing::Matcher<arg_type>(\ new gmock_Impl<arg_type>(p0, p1, p2));\ }\ name##MatcherP3(p0##_type gmock_p0, p1##_type gmock_p1, \ p2##_type gmock_p2) : p0(gmock_p0), p1(gmock_p1), p2(gmock_p2) {\ }\ p0##_type p0;\ p1##_type p1;\ p2##_type p2;\ private:\ GTEST_DISALLOW_ASSIGN_(name##MatcherP3);\ };\ template <typename p0##_type, typename p1##_type, typename p2##_type>\ inline name##MatcherP3<p0##_type, p1##_type, p2##_type> name(p0##_type p0, \ p1##_type p1, p2##_type p2) {\ return name##MatcherP3<p0##_type, p1##_type, p2##_type>(p0, p1, p2);\ }\ template <typename p0##_type, typename p1##_type, typename p2##_type>\ template <typename arg_type>\ bool name##MatcherP3<p0##_type, p1##_type, \ p2##_type>::gmock_Impl<arg_type>::MatchAndExplain(\ arg_type arg,\ ::testing::MatchResultListener* result_listener GTEST_ATTRIBUTE_UNUSED_)\ const #define MATCHER_P4(name, p0, p1, p2, p3, description)\ template <typename p0##_type, typename p1##_type, typename p2##_type, \ typename p3##_type>\ class name##MatcherP4 {\ public:\ template <typename arg_type>\ class gmock_Impl : public ::testing::MatcherInterface<arg_type> {\ public:\ gmock_Impl(p0##_type gmock_p0, p1##_type gmock_p1, p2##_type gmock_p2, \ p3##_type gmock_p3)\ : p0(gmock_p0), p1(gmock_p1), p2(gmock_p2), p3(gmock_p3) {}\ virtual bool MatchAndExplain(\ arg_type arg, ::testing::MatchResultListener* result_listener) const;\ virtual void DescribeTo(::std::ostream* gmock_os) const {\ *gmock_os << FormatDescription(false);\ }\ virtual void DescribeNegationTo(::std::ostream* gmock_os) const {\ *gmock_os << FormatDescription(true);\ }\ p0##_type p0;\ p1##_type p1;\ p2##_type p2;\ p3##_type p3;\ private:\ ::testing::internal::string FormatDescription(bool negation) const {\ const ::testing::internal::string gmock_description = (description);\ if (!gmock_description.empty())\ return gmock_description;\ return ::testing::internal::FormatMatcherDescription(\ negation, #name,\ ::testing::internal::UniversalTersePrintTupleFieldsToStrings(\ ::std::tr1::tuple<p0##_type, p1##_type, p2##_type, \ p3##_type>(p0, p1, p2, p3)));\ }\ GTEST_DISALLOW_ASSIGN_(gmock_Impl);\ };\ template <typename arg_type>\ operator ::testing::Matcher<arg_type>() const {\ return ::testing::Matcher<arg_type>(\ new gmock_Impl<arg_type>(p0, p1, p2, p3));\ }\ name##MatcherP4(p0##_type gmock_p0, p1##_type gmock_p1, \ p2##_type gmock_p2, p3##_type gmock_p3) : p0(gmock_p0), p1(gmock_p1), \ p2(gmock_p2), p3(gmock_p3) {\ }\ p0##_type p0;\ p1##_type p1;\ p2##_type p2;\ p3##_type p3;\ private:\ GTEST_DISALLOW_ASSIGN_(name##MatcherP4);\ };\ template <typename p0##_type, typename p1##_type, typename p2##_type, \ typename p3##_type>\ inline name##MatcherP4<p0##_type, p1##_type, p2##_type, \ p3##_type> name(p0##_type p0, p1##_type p1, p2##_type p2, \ p3##_type p3) {\ return name##MatcherP4<p0##_type, p1##_type, p2##_type, p3##_type>(p0, \ p1, p2, p3);\ }\ template <typename p0##_type, typename p1##_type, typename p2##_type, \ typename p3##_type>\ template <typename arg_type>\ bool name##MatcherP4<p0##_type, p1##_type, p2##_type, \ p3##_type>::gmock_Impl<arg_type>::MatchAndExplain(\ arg_type arg,\ ::testing::MatchResultListener* result_listener GTEST_ATTRIBUTE_UNUSED_)\ const #define MATCHER_P5(name, p0, p1, p2, p3, p4, description)\ template <typename p0##_type, typename p1##_type, typename p2##_type, \ typename p3##_type, typename p4##_type>\ class name##MatcherP5 {\ public:\ template <typename arg_type>\ class gmock_Impl : public ::testing::MatcherInterface<arg_type> {\ public:\ gmock_Impl(p0##_type gmock_p0, p1##_type gmock_p1, p2##_type gmock_p2, \ p3##_type gmock_p3, p4##_type gmock_p4)\ : p0(gmock_p0), p1(gmock_p1), p2(gmock_p2), p3(gmock_p3), \ p4(gmock_p4) {}\ virtual bool MatchAndExplain(\ arg_type arg, ::testing::MatchResultListener* result_listener) const;\ virtual void DescribeTo(::std::ostream* gmock_os) const {\ *gmock_os << FormatDescription(false);\ }\ virtual void DescribeNegationTo(::std::ostream* gmock_os) const {\ *gmock_os << FormatDescription(true);\ }\ p0##_type p0;\ p1##_type p1;\ p2##_type p2;\ p3##_type p3;\ p4##_type p4;\ private:\ ::testing::internal::string FormatDescription(bool negation) const {\ const ::testing::internal::string gmock_description = (description);\ if (!gmock_description.empty())\ return gmock_description;\ return ::testing::internal::FormatMatcherDescription(\ negation, #name,\ ::testing::internal::UniversalTersePrintTupleFieldsToStrings(\ ::std::tr1::tuple<p0##_type, p1##_type, p2##_type, p3##_type, \ p4##_type>(p0, p1, p2, p3, p4)));\ }\ GTEST_DISALLOW_ASSIGN_(gmock_Impl);\ };\ template <typename arg_type>\ operator ::testing::Matcher<arg_type>() const {\ return ::testing::Matcher<arg_type>(\ new gmock_Impl<arg_type>(p0, p1, p2, p3, p4));\ }\ name##MatcherP5(p0##_type gmock_p0, p1##_type gmock_p1, \ p2##_type gmock_p2, p3##_type gmock_p3, \ p4##_type gmock_p4) : p0(gmock_p0), p1(gmock_p1), p2(gmock_p2), \ p3(gmock_p3), p4(gmock_p4) {\ }\ p0##_type p0;\ p1##_type p1;\ p2##_type p2;\ p3##_type p3;\ p4##_type p4;\ private:\ GTEST_DISALLOW_ASSIGN_(name##MatcherP5);\ };\ template <typename p0##_type, typename p1##_type, typename p2##_type, \ typename p3##_type, typename p4##_type>\ inline name##MatcherP5<p0##_type, p1##_type, p2##_type, p3##_type, \ p4##_type> name(p0##_type p0, p1##_type p1, p2##_type p2, p3##_type p3, \ p4##_type p4) {\ return name##MatcherP5<p0##_type, p1##_type, p2##_type, p3##_type, \ p4##_type>(p0, p1, p2, p3, p4);\ }\ template <typename p0##_type, typename p1##_type, typename p2##_type, \ typename p3##_type, typename p4##_type>\ template <typename arg_type>\ bool name##MatcherP5<p0##_type, p1##_type, p2##_type, p3##_type, \ p4##_type>::gmock_Impl<arg_type>::MatchAndExplain(\ arg_type arg,\ ::testing::MatchResultListener* result_listener GTEST_ATTRIBUTE_UNUSED_)\ const #define MATCHER_P6(name, p0, p1, p2, p3, p4, p5, description)\ template <typename p0##_type, typename p1##_type, typename p2##_type, \ typename p3##_type, typename p4##_type, typename p5##_type>\ class name##MatcherP6 {\ public:\ template <typename arg_type>\ class gmock_Impl : public ::testing::MatcherInterface<arg_type> {\ public:\ gmock_Impl(p0##_type gmock_p0, p1##_type gmock_p1, p2##_type gmock_p2, \ p3##_type gmock_p3, p4##_type gmock_p4, p5##_type gmock_p5)\ : p0(gmock_p0), p1(gmock_p1), p2(gmock_p2), p3(gmock_p3), \ p4(gmock_p4), p5(gmock_p5) {}\ virtual bool MatchAndExplain(\ arg_type arg, ::testing::MatchResultListener* result_listener) const;\ virtual void DescribeTo(::std::ostream* gmock_os) const {\ *gmock_os << FormatDescription(false);\ }\ virtual void DescribeNegationTo(::std::ostream* gmock_os) const {\ *gmock_os << FormatDescription(true);\ }\ p0##_type p0;\ p1##_type p1;\ p2##_type p2;\ p3##_type p3;\ p4##_type p4;\ p5##_type p5;\ private:\ ::testing::internal::string FormatDescription(bool negation) const {\ const ::testing::internal::string gmock_description = (description);\ if (!gmock_description.empty())\ return gmock_description;\ return ::testing::internal::FormatMatcherDescription(\ negation, #name,\ ::testing::internal::UniversalTersePrintTupleFieldsToStrings(\ ::std::tr1::tuple<p0##_type, p1##_type, p2##_type, p3##_type, \ p4##_type, p5##_type>(p0, p1, p2, p3, p4, p5)));\ }\ GTEST_DISALLOW_ASSIGN_(gmock_Impl);\ };\ template <typename arg_type>\ operator ::testing::Matcher<arg_type>() const {\ return ::testing::Matcher<arg_type>(\ new gmock_Impl<arg_type>(p0, p1, p2, p3, p4, p5));\ }\ name##MatcherP6(p0##_type gmock_p0, p1##_type gmock_p1, \ p2##_type gmock_p2, p3##_type gmock_p3, p4##_type gmock_p4, \ p5##_type gmock_p5) : p0(gmock_p0), p1(gmock_p1), p2(gmock_p2), \ p3(gmock_p3), p4(gmock_p4), p5(gmock_p5) {\ }\ p0##_type p0;\ p1##_type p1;\ p2##_type p2;\ p3##_type p3;\ p4##_type p4;\ p5##_type p5;\ private:\ GTEST_DISALLOW_ASSIGN_(name##MatcherP6);\ };\ template <typename p0##_type, typename p1##_type, typename p2##_type, \ typename p3##_type, typename p4##_type, typename p5##_type>\ inline name##MatcherP6<p0##_type, p1##_type, p2##_type, p3##_type, \ p4##_type, p5##_type> name(p0##_type p0, p1##_type p1, p2##_type p2, \ p3##_type p3, p4##_type p4, p5##_type p5) {\ return name##MatcherP6<p0##_type, p1##_type, p2##_type, p3##_type, \ p4##_type, p5##_type>(p0, p1, p2, p3, p4, p5);\ }\ template <typename p0##_type, typename p1##_type, typename p2##_type, \ typename p3##_type, typename p4##_type, typename p5##_type>\ template <typename arg_type>\ bool name##MatcherP6<p0##_type, p1##_type, p2##_type, p3##_type, p4##_type, \ p5##_type>::gmock_Impl<arg_type>::MatchAndExplain(\ arg_type arg,\ ::testing::MatchResultListener* result_listener GTEST_ATTRIBUTE_UNUSED_)\ const #define MATCHER_P7(name, p0, p1, p2, p3, p4, p5, p6, description)\ template <typename p0##_type, typename p1##_type, typename p2##_type, \ typename p3##_type, typename p4##_type, typename p5##_type, \ typename p6##_type>\ class name##MatcherP7 {\ public:\ template <typename arg_type>\ class gmock_Impl : public ::testing::MatcherInterface<arg_type> {\ public:\ gmock_Impl(p0##_type gmock_p0, p1##_type gmock_p1, p2##_type gmock_p2, \ p3##_type gmock_p3, p4##_type gmock_p4, p5##_type gmock_p5, \ p6##_type gmock_p6)\ : p0(gmock_p0), p1(gmock_p1), p2(gmock_p2), p3(gmock_p3), \ p4(gmock_p4), p5(gmock_p5), p6(gmock_p6) {}\ virtual bool MatchAndExplain(\ arg_type arg, ::testing::MatchResultListener* result_listener) const;\ virtual void DescribeTo(::std::ostream* gmock_os) const {\ *gmock_os << FormatDescription(false);\ }\ virtual void DescribeNegationTo(::std::ostream* gmock_os) const {\ *gmock_os << FormatDescription(true);\ }\ p0##_type p0;\ p1##_type p1;\ p2##_type p2;\ p3##_type p3;\ p4##_type p4;\ p5##_type p5;\ p6##_type p6;\ private:\ ::testing::internal::string FormatDescription(bool negation) const {\ const ::testing::internal::string gmock_description = (description);\ if (!gmock_description.empty())\ return gmock_description;\ return ::testing::internal::FormatMatcherDescription(\ negation, #name,\ ::testing::internal::UniversalTersePrintTupleFieldsToStrings(\ ::std::tr1::tuple<p0##_type, p1##_type, p2##_type, p3##_type, \ p4##_type, p5##_type, p6##_type>(p0, p1, p2, p3, p4, p5, \ p6)));\ }\ GTEST_DISALLOW_ASSIGN_(gmock_Impl);\ };\ template <typename arg_type>\ operator ::testing::Matcher<arg_type>() const {\ return ::testing::Matcher<arg_type>(\ new gmock_Impl<arg_type>(p0, p1, p2, p3, p4, p5, p6));\ }\ name##MatcherP7(p0##_type gmock_p0, p1##_type gmock_p1, \ p2##_type gmock_p2, p3##_type gmock_p3, p4##_type gmock_p4, \ p5##_type gmock_p5, p6##_type gmock_p6) : p0(gmock_p0), p1(gmock_p1), \ p2(gmock_p2), p3(gmock_p3), p4(gmock_p4), p5(gmock_p5), \ p6(gmock_p6) {\ }\ p0##_type p0;\ p1##_type p1;\ p2##_type p2;\ p3##_type p3;\ p4##_type p4;\ p5##_type p5;\ p6##_type p6;\ private:\ GTEST_DISALLOW_ASSIGN_(name##MatcherP7);\ };\ template <typename p0##_type, typename p1##_type, typename p2##_type, \ typename p3##_type, typename p4##_type, typename p5##_type, \ typename p6##_type>\ inline name##MatcherP7<p0##_type, p1##_type, p2##_type, p3##_type, \ p4##_type, p5##_type, p6##_type> name(p0##_type p0, p1##_type p1, \ p2##_type p2, p3##_type p3, p4##_type p4, p5##_type p5, \ p6##_type p6) {\ return name##MatcherP7<p0##_type, p1##_type, p2##_type, p3##_type, \ p4##_type, p5##_type, p6##_type>(p0, p1, p2, p3, p4, p5, p6);\ }\ template <typename p0##_type, typename p1##_type, typename p2##_type, \ typename p3##_type, typename p4##_type, typename p5##_type, \ typename p6##_type>\ template <typename arg_type>\ bool name##MatcherP7<p0##_type, p1##_type, p2##_type, p3##_type, p4##_type, \ p5##_type, p6##_type>::gmock_Impl<arg_type>::MatchAndExplain(\ arg_type arg,\ ::testing::MatchResultListener* result_listener GTEST_ATTRIBUTE_UNUSED_)\ const #define MATCHER_P8(name, p0, p1, p2, p3, p4, p5, p6, p7, description)\ template <typename p0##_type, typename p1##_type, typename p2##_type, \ typename p3##_type, typename p4##_type, typename p5##_type, \ typename p6##_type, typename p7##_type>\ class name##MatcherP8 {\ public:\ template <typename arg_type>\ class gmock_Impl : public ::testing::MatcherInterface<arg_type> {\ public:\ gmock_Impl(p0##_type gmock_p0, p1##_type gmock_p1, p2##_type gmock_p2, \ p3##_type gmock_p3, p4##_type gmock_p4, p5##_type gmock_p5, \ p6##_type gmock_p6, p7##_type gmock_p7)\ : p0(gmock_p0), p1(gmock_p1), p2(gmock_p2), p3(gmock_p3), \ p4(gmock_p4), p5(gmock_p5), p6(gmock_p6), p7(gmock_p7) {}\ virtual bool MatchAndExplain(\ arg_type arg, ::testing::MatchResultListener* result_listener) const;\ virtual void DescribeTo(::std::ostream* gmock_os) const {\ *gmock_os << FormatDescription(false);\ }\ virtual void DescribeNegationTo(::std::ostream* gmock_os) const {\ *gmock_os << FormatDescription(true);\ }\ p0##_type p0;\ p1##_type p1;\ p2##_type p2;\ p3##_type p3;\ p4##_type p4;\ p5##_type p5;\ p6##_type p6;\ p7##_type p7;\ private:\ ::testing::internal::string FormatDescription(bool negation) const {\ const ::testing::internal::string gmock_description = (description);\ if (!gmock_description.empty())\ return gmock_description;\ return ::testing::internal::FormatMatcherDescription(\ negation, #name,\ ::testing::internal::UniversalTersePrintTupleFieldsToStrings(\ ::std::tr1::tuple<p0##_type, p1##_type, p2##_type, p3##_type, \ p4##_type, p5##_type, p6##_type, p7##_type>(p0, p1, p2, \ p3, p4, p5, p6, p7)));\ }\ GTEST_DISALLOW_ASSIGN_(gmock_Impl);\ };\ template <typename arg_type>\ operator ::testing::Matcher<arg_type>() const {\ return ::testing::Matcher<arg_type>(\ new gmock_Impl<arg_type>(p0, p1, p2, p3, p4, p5, p6, p7));\ }\ name##MatcherP8(p0##_type gmock_p0, p1##_type gmock_p1, \ p2##_type gmock_p2, p3##_type gmock_p3, p4##_type gmock_p4, \ p5##_type gmock_p5, p6##_type gmock_p6, \ p7##_type gmock_p7) : p0(gmock_p0), p1(gmock_p1), p2(gmock_p2), \ p3(gmock_p3), p4(gmock_p4), p5(gmock_p5), p6(gmock_p6), \ p7(gmock_p7) {\ }\ p0##_type p0;\ p1##_type p1;\ p2##_type p2;\ p3##_type p3;\ p4##_type p4;\ p5##_type p5;\ p6##_type p6;\ p7##_type p7;\ private:\ GTEST_DISALLOW_ASSIGN_(name##MatcherP8);\ };\ template <typename p0##_type, typename p1##_type, typename p2##_type, \ typename p3##_type, typename p4##_type, typename p5##_type, \ typename p6##_type, typename p7##_type>\ inline name##MatcherP8<p0##_type, p1##_type, p2##_type, p3##_type, \ p4##_type, p5##_type, p6##_type, p7##_type> name(p0##_type p0, \ p1##_type p1, p2##_type p2, p3##_type p3, p4##_type p4, p5##_type p5, \ p6##_type p6, p7##_type p7) {\ return name##MatcherP8<p0##_type, p1##_type, p2##_type, p3##_type, \ p4##_type, p5##_type, p6##_type, p7##_type>(p0, p1, p2, p3, p4, p5, \ p6, p7);\ }\ template <typename p0##_type, typename p1##_type, typename p2##_type, \ typename p3##_type, typename p4##_type, typename p5##_type, \ typename p6##_type, typename p7##_type>\ template <typename arg_type>\ bool name##MatcherP8<p0##_type, p1##_type, p2##_type, p3##_type, p4##_type, \ p5##_type, p6##_type, \ p7##_type>::gmock_Impl<arg_type>::MatchAndExplain(\ arg_type arg,\ ::testing::MatchResultListener* result_listener GTEST_ATTRIBUTE_UNUSED_)\ const #define MATCHER_P9(name, p0, p1, p2, p3, p4, p5, p6, p7, p8, description)\ template <typename p0##_type, typename p1##_type, typename p2##_type, \ typename p3##_type, typename p4##_type, typename p5##_type, \ typename p6##_type, typename p7##_type, typename p8##_type>\ class name##MatcherP9 {\ public:\ template <typename arg_type>\ class gmock_Impl : public ::testing::MatcherInterface<arg_type> {\ public:\ gmock_Impl(p0##_type gmock_p0, p1##_type gmock_p1, p2##_type gmock_p2, \ p3##_type gmock_p3, p4##_type gmock_p4, p5##_type gmock_p5, \ p6##_type gmock_p6, p7##_type gmock_p7, p8##_type gmock_p8)\ : p0(gmock_p0), p1(gmock_p1), p2(gmock_p2), p3(gmock_p3), \ p4(gmock_p4), p5(gmock_p5), p6(gmock_p6), p7(gmock_p7), \ p8(gmock_p8) {}\ virtual bool MatchAndExplain(\ arg_type arg, ::testing::MatchResultListener* result_listener) const;\ virtual void DescribeTo(::std::ostream* gmock_os) const {\ *gmock_os << FormatDescription(false);\ }\ virtual void DescribeNegationTo(::std::ostream* gmock_os) const {\ *gmock_os << FormatDescription(true);\ }\ p0##_type p0;\ p1##_type p1;\ p2##_type p2;\ p3##_type p3;\ p4##_type p4;\ p5##_type p5;\ p6##_type p6;\ p7##_type p7;\ p8##_type p8;\ private:\ ::testing::internal::string FormatDescription(bool negation) const {\ const ::testing::internal::string gmock_description = (description);\ if (!gmock_description.empty())\ return gmock_description;\ return ::testing::internal::FormatMatcherDescription(\ negation, #name,\ ::testing::internal::UniversalTersePrintTupleFieldsToStrings(\ ::std::tr1::tuple<p0##_type, p1##_type, p2##_type, p3##_type, \ p4##_type, p5##_type, p6##_type, p7##_type, \ p8##_type>(p0, p1, p2, p3, p4, p5, p6, p7, p8)));\ }\ GTEST_DISALLOW_ASSIGN_(gmock_Impl);\ };\ template <typename arg_type>\ operator ::testing::Matcher<arg_type>() const {\ return ::testing::Matcher<arg_type>(\ new gmock_Impl<arg_type>(p0, p1, p2, p3, p4, p5, p6, p7, p8));\ }\ name##MatcherP9(p0##_type gmock_p0, p1##_type gmock_p1, \ p2##_type gmock_p2, p3##_type gmock_p3, p4##_type gmock_p4, \ p5##_type gmock_p5, p6##_type gmock_p6, p7##_type gmock_p7, \ p8##_type gmock_p8) : p0(gmock_p0), p1(gmock_p1), p2(gmock_p2), \ p3(gmock_p3), p4(gmock_p4), p5(gmock_p5), p6(gmock_p6), p7(gmock_p7), \ p8(gmock_p8) {\ }\ p0##_type p0;\ p1##_type p1;\ p2##_type p2;\ p3##_type p3;\ p4##_type p4;\ p5##_type p5;\ p6##_type p6;\ p7##_type p7;\ p8##_type p8;\ private:\ GTEST_DISALLOW_ASSIGN_(name##MatcherP9);\ };\ template <typename p0##_type, typename p1##_type, typename p2##_type, \ typename p3##_type, typename p4##_type, typename p5##_type, \ typename p6##_type, typename p7##_type, typename p8##_type>\ inline name##MatcherP9<p0##_type, p1##_type, p2##_type, p3##_type, \ p4##_type, p5##_type, p6##_type, p7##_type, \ p8##_type> name(p0##_type p0, p1##_type p1, p2##_type p2, p3##_type p3, \ p4##_type p4, p5##_type p5, p6##_type p6, p7##_type p7, \ p8##_type p8) {\ return name##MatcherP9<p0##_type, p1##_type, p2##_type, p3##_type, \ p4##_type, p5##_type, p6##_type, p7##_type, p8##_type>(p0, p1, p2, \ p3, p4, p5, p6, p7, p8);\ }\ template <typename p0##_type, typename p1##_type, typename p2##_type, \ typename p3##_type, typename p4##_type, typename p5##_type, \ typename p6##_type, typename p7##_type, typename p8##_type>\ template <typename arg_type>\ bool name##MatcherP9<p0##_type, p1##_type, p2##_type, p3##_type, p4##_type, \ p5##_type, p6##_type, p7##_type, \ p8##_type>::gmock_Impl<arg_type>::MatchAndExplain(\ arg_type arg,\ ::testing::MatchResultListener* result_listener GTEST_ATTRIBUTE_UNUSED_)\ const #define MATCHER_P10(name, p0, p1, p2, p3, p4, p5, p6, p7, p8, p9, description)\ template <typename p0##_type, typename p1##_type, typename p2##_type, \ typename p3##_type, typename p4##_type, typename p5##_type, \ typename p6##_type, typename p7##_type, typename p8##_type, \ typename p9##_type>\ class name##MatcherP10 {\ public:\ template <typename arg_type>\ class gmock_Impl : public ::testing::MatcherInterface<arg_type> {\ public:\ gmock_Impl(p0##_type gmock_p0, p1##_type gmock_p1, p2##_type gmock_p2, \ p3##_type gmock_p3, p4##_type gmock_p4, p5##_type gmock_p5, \ p6##_type gmock_p6, p7##_type gmock_p7, p8##_type gmock_p8, \ p9##_type gmock_p9)\ : p0(gmock_p0), p1(gmock_p1), p2(gmock_p2), p3(gmock_p3), \ p4(gmock_p4), p5(gmock_p5), p6(gmock_p6), p7(gmock_p7), \ p8(gmock_p8), p9(gmock_p9) {}\ virtual bool MatchAndExplain(\ arg_type arg, ::testing::MatchResultListener* result_listener) const;\ virtual void DescribeTo(::std::ostream* gmock_os) const {\ *gmock_os << FormatDescription(false);\ }\ virtual void DescribeNegationTo(::std::ostream* gmock_os) const {\ *gmock_os << FormatDescription(true);\ }\ p0##_type p0;\ p1##_type p1;\ p2##_type p2;\ p3##_type p3;\ p4##_type p4;\ p5##_type p5;\ p6##_type p6;\ p7##_type p7;\ p8##_type p8;\ p9##_type p9;\ private:\ ::testing::internal::string FormatDescription(bool negation) const {\ const ::testing::internal::string gmock_description = (description);\ if (!gmock_description.empty())\ return gmock_description;\ return ::testing::internal::FormatMatcherDescription(\ negation, #name,\ ::testing::internal::UniversalTersePrintTupleFieldsToStrings(\ ::std::tr1::tuple<p0##_type, p1##_type, p2##_type, p3##_type, \ p4##_type, p5##_type, p6##_type, p7##_type, p8##_type, \ p9##_type>(p0, p1, p2, p3, p4, p5, p6, p7, p8, p9)));\ }\ GTEST_DISALLOW_ASSIGN_(gmock_Impl);\ };\ template <typename arg_type>\ operator ::testing::Matcher<arg_type>() const {\ return ::testing::Matcher<arg_type>(\ new gmock_Impl<arg_type>(p0, p1, p2, p3, p4, p5, p6, p7, p8, p9));\ }\ name##MatcherP10(p0##_type gmock_p0, p1##_type gmock_p1, \ p2##_type gmock_p2, p3##_type gmock_p3, p4##_type gmock_p4, \ p5##_type gmock_p5, p6##_type gmock_p6, p7##_type gmock_p7, \ p8##_type gmock_p8, p9##_type gmock_p9) : p0(gmock_p0), p1(gmock_p1), \ p2(gmock_p2), p3(gmock_p3), p4(gmock_p4), p5(gmock_p5), p6(gmock_p6), \ p7(gmock_p7), p8(gmock_p8), p9(gmock_p9) {\ }\ p0##_type p0;\ p1##_type p1;\ p2##_type p2;\ p3##_type p3;\ p4##_type p4;\ p5##_type p5;\ p6##_type p6;\ p7##_type p7;\ p8##_type p8;\ p9##_type p9;\ private:\ GTEST_DISALLOW_ASSIGN_(name##MatcherP10);\ };\ template <typename p0##_type, typename p1##_type, typename p2##_type, \ typename p3##_type, typename p4##_type, typename p5##_type, \ typename p6##_type, typename p7##_type, typename p8##_type, \ typename p9##_type>\ inline name##MatcherP10<p0##_type, p1##_type, p2##_type, p3##_type, \ p4##_type, p5##_type, p6##_type, p7##_type, p8##_type, \ p9##_type> name(p0##_type p0, p1##_type p1, p2##_type p2, p3##_type p3, \ p4##_type p4, p5##_type p5, p6##_type p6, p7##_type p7, p8##_type p8, \ p9##_type p9) {\ return name##MatcherP10<p0##_type, p1##_type, p2##_type, p3##_type, \ p4##_type, p5##_type, p6##_type, p7##_type, p8##_type, p9##_type>(p0, \ p1, p2, p3, p4, p5, p6, p7, p8, p9);\ }\ template <typename p0##_type, typename p1##_type, typename p2##_type, \ typename p3##_type, typename p4##_type, typename p5##_type, \ typename p6##_type, typename p7##_type, typename p8##_type, \ typename p9##_type>\ template <typename arg_type>\ bool name##MatcherP10<p0##_type, p1##_type, p2##_type, p3##_type, \ p4##_type, p5##_type, p6##_type, p7##_type, p8##_type, \ p9##_type>::gmock_Impl<arg_type>::MatchAndExplain(\ arg_type arg,\ ::testing::MatchResultListener* result_listener GTEST_ATTRIBUTE_UNUSED_)\ const #endif // GMOCK_INCLUDE_GMOCK_GMOCK_GENERATED_MATCHERS_H_ // Copyright 2007, Google Inc. // All rights reserved. // // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions are // met: // // * Redistributions of source code must retain the above copyright // notice, this list of conditions and the following disclaimer. // * Redistributions in binary form must reproduce the above // copyright notice, this list of conditions and the following disclaimer // in the documentation and/or other materials provided with the // distribution. // * Neither the name of Google Inc. nor the names of its // contributors may be used to endorse or promote products derived from // this software without specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. // // Author: wan@google.com (Zhanyong Wan) // Google Mock - a framework for writing C++ mock classes. // // This file implements some actions that depend on gmock-generated-actions.h. #ifndef GMOCK_INCLUDE_GMOCK_GMOCK_MORE_ACTIONS_H_ #define GMOCK_INCLUDE_GMOCK_GMOCK_MORE_ACTIONS_H_ #include <algorithm> namespace testing { namespace internal { // Implements the Invoke(f) action. The template argument // FunctionImpl is the implementation type of f, which can be either a // function pointer or a functor. Invoke(f) can be used as an // Action<F> as long as f's type is compatible with F (i.e. f can be // assigned to a tr1::function<F>). template <typename FunctionImpl> class InvokeAction { public: // The c'tor makes a copy of function_impl (either a function // pointer or a functor). explicit InvokeAction(FunctionImpl function_impl) : function_impl_(function_impl) {} template <typename Result, typename ArgumentTuple> Result Perform(const ArgumentTuple& args) { return InvokeHelper<Result, ArgumentTuple>::Invoke(function_impl_, args); } private: FunctionImpl function_impl_; GTEST_DISALLOW_ASSIGN_(InvokeAction); }; // Implements the Invoke(object_ptr, &Class::Method) action. template <class Class, typename MethodPtr> class InvokeMethodAction { public: InvokeMethodAction(Class* obj_ptr, MethodPtr method_ptr) : obj_ptr_(obj_ptr), method_ptr_(method_ptr) {} template <typename Result, typename ArgumentTuple> Result Perform(const ArgumentTuple& args) const { return InvokeHelper<Result, ArgumentTuple>::InvokeMethod( obj_ptr_, method_ptr_, args); } private: Class* const obj_ptr_; const MethodPtr method_ptr_; GTEST_DISALLOW_ASSIGN_(InvokeMethodAction); }; } // namespace internal // Various overloads for Invoke(). // Creates an action that invokes 'function_impl' with the mock // function's arguments. template <typename FunctionImpl> PolymorphicAction<internal::InvokeAction<FunctionImpl> > Invoke( FunctionImpl function_impl) { return MakePolymorphicAction( internal::InvokeAction<FunctionImpl>(function_impl)); } // Creates an action that invokes the given method on the given object // with the mock function's arguments. template <class Class, typename MethodPtr> PolymorphicAction<internal::InvokeMethodAction<Class, MethodPtr> > Invoke( Class* obj_ptr, MethodPtr method_ptr) { return MakePolymorphicAction( internal::InvokeMethodAction<Class, MethodPtr>(obj_ptr, method_ptr)); } // WithoutArgs(inner_action) can be used in a mock function with a // non-empty argument list to perform inner_action, which takes no // argument. In other words, it adapts an action accepting no // argument to one that accepts (and ignores) arguments. template <typename InnerAction> inline internal::WithArgsAction<InnerAction> WithoutArgs(const InnerAction& action) { return internal::WithArgsAction<InnerAction>(action); } // WithArg<k>(an_action) creates an action that passes the k-th // (0-based) argument of the mock function to an_action and performs // it. It adapts an action accepting one argument to one that accepts // multiple arguments. For convenience, we also provide // WithArgs<k>(an_action) (defined below) as a synonym. template <int k, typename InnerAction> inline internal::WithArgsAction<InnerAction, k> WithArg(const InnerAction& action) { return internal::WithArgsAction<InnerAction, k>(action); } // The ACTION*() macros trigger warning C4100 (unreferenced formal // parameter) in MSVC with -W4. Unfortunately they cannot be fixed in // the macro definition, as the warnings are generated when the macro // is expanded and macro expansion cannot contain #pragma. Therefore // we suppress them here. #ifdef _MSC_VER # pragma warning(push) # pragma warning(disable:4100) #endif // Action ReturnArg<k>() returns the k-th argument of the mock function. ACTION_TEMPLATE(ReturnArg, HAS_1_TEMPLATE_PARAMS(int, k), AND_0_VALUE_PARAMS()) { return std::tr1::get<k>(args); } // Action SaveArg<k>(pointer) saves the k-th (0-based) argument of the // mock function to *pointer. ACTION_TEMPLATE(SaveArg, HAS_1_TEMPLATE_PARAMS(int, k), AND_1_VALUE_PARAMS(pointer)) { *pointer = ::std::tr1::get<k>(args); } // Action SaveArgPointee<k>(pointer) saves the value pointed to // by the k-th (0-based) argument of the mock function to *pointer. ACTION_TEMPLATE(SaveArgPointee, HAS_1_TEMPLATE_PARAMS(int, k), AND_1_VALUE_PARAMS(pointer)) { *pointer = *::std::tr1::get<k>(args); } // Action SetArgReferee<k>(value) assigns 'value' to the variable // referenced by the k-th (0-based) argument of the mock function. ACTION_TEMPLATE(SetArgReferee, HAS_1_TEMPLATE_PARAMS(int, k), AND_1_VALUE_PARAMS(value)) { typedef typename ::std::tr1::tuple_element<k, args_type>::type argk_type; // Ensures that argument #k is a reference. If you get a compiler // error on the next line, you are using SetArgReferee<k>(value) in // a mock function whose k-th (0-based) argument is not a reference. GTEST_COMPILE_ASSERT_(internal::is_reference<argk_type>::value, SetArgReferee_must_be_used_with_a_reference_argument); ::std::tr1::get<k>(args) = value; } // Action SetArrayArgument<k>(first, last) copies the elements in // source range [first, last) to the array pointed to by the k-th // (0-based) argument, which can be either a pointer or an // iterator. The action does not take ownership of the elements in the // source range. ACTION_TEMPLATE(SetArrayArgument, HAS_1_TEMPLATE_PARAMS(int, k), AND_2_VALUE_PARAMS(first, last)) { // Microsoft compiler deprecates ::std::copy, so we want to suppress warning // 4996 (Function call with parameters that may be unsafe) there. #ifdef _MSC_VER # pragma warning(push) // Saves the current warning state. # pragma warning(disable:4996) // Temporarily disables warning 4996. #endif ::std::copy(first, last, ::std::tr1::get<k>(args)); #ifdef _MSC_VER # pragma warning(pop) // Restores the warning state. #endif } // Action DeleteArg<k>() deletes the k-th (0-based) argument of the mock // function. ACTION_TEMPLATE(DeleteArg, HAS_1_TEMPLATE_PARAMS(int, k), AND_0_VALUE_PARAMS()) { delete ::std::tr1::get<k>(args); } // This action returns the value pointed to by 'pointer'. ACTION_P(ReturnPointee, pointer) { return *pointer; } // Action Throw(exception) can be used in a mock function of any type // to throw the given exception. Any copyable value can be thrown. #if GTEST_HAS_EXCEPTIONS // Suppresses the 'unreachable code' warning that VC generates in opt modes. # ifdef _MSC_VER # pragma warning(push) // Saves the current warning state. # pragma warning(disable:4702) // Temporarily disables warning 4702. # endif ACTION_P(Throw, exception) { throw exception; } # ifdef _MSC_VER # pragma warning(pop) // Restores the warning state. # endif #endif // GTEST_HAS_EXCEPTIONS #ifdef _MSC_VER # pragma warning(pop) #endif } // namespace testing #endif // GMOCK_INCLUDE_GMOCK_GMOCK_MORE_ACTIONS_H_ // This file was GENERATED by a script. DO NOT EDIT BY HAND!!! // Copyright 2008, Google Inc. // All rights reserved. // // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions are // met: // // * Redistributions of source code must retain the above copyright // notice, this list of conditions and the following disclaimer. // * Redistributions in binary form must reproduce the above // copyright notice, this list of conditions and the following disclaimer // in the documentation and/or other materials provided with the // distribution. // * Neither the name of Google Inc. nor the names of its // contributors may be used to endorse or promote products derived from // this software without specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. // // Author: wan@google.com (Zhanyong Wan) // Implements class templates NiceMock and StrictMock. // // Given a mock class MockFoo that is created using Google Mock, // NiceMock<MockFoo> is a subclass of MockFoo that allows // uninteresting calls (i.e. calls to mock methods that have no // EXPECT_CALL specs), and StrictMock<MockFoo> is a subclass of // MockFoo that treats all uninteresting calls as errors. // // NiceMock and StrictMock "inherits" the constructors of their // respective base class, with up-to 10 arguments. Therefore you can // write NiceMock<MockFoo>(5, "a") to construct a nice mock where // MockFoo has a constructor that accepts (int, const char*), for // example. // // A known limitation is that NiceMock<MockFoo> and // StrictMock<MockFoo> only works for mock methods defined using the // MOCK_METHOD* family of macros DIRECTLY in the MockFoo class. If a // mock method is defined in a base class of MockFoo, the "nice" or // "strict" modifier may not affect it, depending on the compiler. In // particular, nesting NiceMock and StrictMock is NOT supported. // // Another known limitation is that the constructors of the base mock // cannot have arguments passed by non-const reference, which are // banned by the Google C++ style guide anyway. #ifndef GMOCK_INCLUDE_GMOCK_GMOCK_GENERATED_NICE_STRICT_H_ #define GMOCK_INCLUDE_GMOCK_GMOCK_GENERATED_NICE_STRICT_H_ namespace testing { template <class MockClass> class NiceMock : public MockClass { public: // We don't factor out the constructor body to a common method, as // we have to avoid a possible clash with members of MockClass. NiceMock() { ::testing::Mock::AllowUninterestingCalls( internal::ImplicitCast_<MockClass*>(this)); } // C++ doesn't (yet) allow inheritance of constructors, so we have // to define it for each arity. template <typename A1> explicit NiceMock(const A1& a1) : MockClass(a1) { ::testing::Mock::AllowUninterestingCalls( internal::ImplicitCast_<MockClass*>(this)); } template <typename A1, typename A2> NiceMock(const A1& a1, const A2& a2) : MockClass(a1, a2) { ::testing::Mock::AllowUninterestingCalls( internal::ImplicitCast_<MockClass*>(this)); } template <typename A1, typename A2, typename A3> NiceMock(const A1& a1, const A2& a2, const A3& a3) : MockClass(a1, a2, a3) { ::testing::Mock::AllowUninterestingCalls( internal::ImplicitCast_<MockClass*>(this)); } template <typename A1, typename A2, typename A3, typename A4> NiceMock(const A1& a1, const A2& a2, const A3& a3, const A4& a4) : MockClass(a1, a2, a3, a4) { ::testing::Mock::AllowUninterestingCalls( internal::ImplicitCast_<MockClass*>(this)); } template <typename A1, typename A2, typename A3, typename A4, typename A5> NiceMock(const A1& a1, const A2& a2, const A3& a3, const A4& a4, const A5& a5) : MockClass(a1, a2, a3, a4, a5) { ::testing::Mock::AllowUninterestingCalls( internal::ImplicitCast_<MockClass*>(this)); } template <typename A1, typename A2, typename A3, typename A4, typename A5, typename A6> NiceMock(const A1& a1, const A2& a2, const A3& a3, const A4& a4, const A5& a5, const A6& a6) : MockClass(a1, a2, a3, a4, a5, a6) { ::testing::Mock::AllowUninterestingCalls( internal::ImplicitCast_<MockClass*>(this)); } template <typename A1, typename A2, typename A3, typename A4, typename A5, typename A6, typename A7> NiceMock(const A1& a1, const A2& a2, const A3& a3, const A4& a4, const A5& a5, const A6& a6, const A7& a7) : MockClass(a1, a2, a3, a4, a5, a6, a7) { ::testing::Mock::AllowUninterestingCalls( internal::ImplicitCast_<MockClass*>(this)); } template <typename A1, typename A2, typename A3, typename A4, typename A5, typename A6, typename A7, typename A8> NiceMock(const A1& a1, const A2& a2, const A3& a3, const A4& a4, const A5& a5, const A6& a6, const A7& a7, const A8& a8) : MockClass(a1, a2, a3, a4, a5, a6, a7, a8) { ::testing::Mock::AllowUninterestingCalls( internal::ImplicitCast_<MockClass*>(this)); } template <typename A1, typename A2, typename A3, typename A4, typename A5, typename A6, typename A7, typename A8, typename A9> NiceMock(const A1& a1, const A2& a2, const A3& a3, const A4& a4, const A5& a5, const A6& a6, const A7& a7, const A8& a8, const A9& a9) : MockClass(a1, a2, a3, a4, a5, a6, a7, a8, a9) { ::testing::Mock::AllowUninterestingCalls( internal::ImplicitCast_<MockClass*>(this)); } template <typename A1, typename A2, typename A3, typename A4, typename A5, typename A6, typename A7, typename A8, typename A9, typename A10> NiceMock(const A1& a1, const A2& a2, const A3& a3, const A4& a4, const A5& a5, const A6& a6, const A7& a7, const A8& a8, const A9& a9, const A10& a10) : MockClass(a1, a2, a3, a4, a5, a6, a7, a8, a9, a10) { ::testing::Mock::AllowUninterestingCalls( internal::ImplicitCast_<MockClass*>(this)); } virtual ~NiceMock() { ::testing::Mock::UnregisterCallReaction( internal::ImplicitCast_<MockClass*>(this)); } private: GTEST_DISALLOW_COPY_AND_ASSIGN_(NiceMock); }; template <class MockClass> class StrictMock : public MockClass { public: // We don't factor out the constructor body to a common method, as // we have to avoid a possible clash with members of MockClass. StrictMock() { ::testing::Mock::FailUninterestingCalls( internal::ImplicitCast_<MockClass*>(this)); } template <typename A1> explicit StrictMock(const A1& a1) : MockClass(a1) { ::testing::Mock::FailUninterestingCalls( internal::ImplicitCast_<MockClass*>(this)); } template <typename A1, typename A2> StrictMock(const A1& a1, const A2& a2) : MockClass(a1, a2) { ::testing::Mock::FailUninterestingCalls( internal::ImplicitCast_<MockClass*>(this)); } template <typename A1, typename A2, typename A3> StrictMock(const A1& a1, const A2& a2, const A3& a3) : MockClass(a1, a2, a3) { ::testing::Mock::FailUninterestingCalls( internal::ImplicitCast_<MockClass*>(this)); } template <typename A1, typename A2, typename A3, typename A4> StrictMock(const A1& a1, const A2& a2, const A3& a3, const A4& a4) : MockClass(a1, a2, a3, a4) { ::testing::Mock::FailUninterestingCalls( internal::ImplicitCast_<MockClass*>(this)); } template <typename A1, typename A2, typename A3, typename A4, typename A5> StrictMock(const A1& a1, const A2& a2, const A3& a3, const A4& a4, const A5& a5) : MockClass(a1, a2, a3, a4, a5) { ::testing::Mock::FailUninterestingCalls( internal::ImplicitCast_<MockClass*>(this)); } template <typename A1, typename A2, typename A3, typename A4, typename A5, typename A6> StrictMock(const A1& a1, const A2& a2, const A3& a3, const A4& a4, const A5& a5, const A6& a6) : MockClass(a1, a2, a3, a4, a5, a6) { ::testing::Mock::FailUninterestingCalls( internal::ImplicitCast_<MockClass*>(this)); } template <typename A1, typename A2, typename A3, typename A4, typename A5, typename A6, typename A7> StrictMock(const A1& a1, const A2& a2, const A3& a3, const A4& a4, const A5& a5, const A6& a6, const A7& a7) : MockClass(a1, a2, a3, a4, a5, a6, a7) { ::testing::Mock::FailUninterestingCalls( internal::ImplicitCast_<MockClass*>(this)); } template <typename A1, typename A2, typename A3, typename A4, typename A5, typename A6, typename A7, typename A8> StrictMock(const A1& a1, const A2& a2, const A3& a3, const A4& a4, const A5& a5, const A6& a6, const A7& a7, const A8& a8) : MockClass(a1, a2, a3, a4, a5, a6, a7, a8) { ::testing::Mock::FailUninterestingCalls( internal::ImplicitCast_<MockClass*>(this)); } template <typename A1, typename A2, typename A3, typename A4, typename A5, typename A6, typename A7, typename A8, typename A9> StrictMock(const A1& a1, const A2& a2, const A3& a3, const A4& a4, const A5& a5, const A6& a6, const A7& a7, const A8& a8, const A9& a9) : MockClass(a1, a2, a3, a4, a5, a6, a7, a8, a9) { ::testing::Mock::FailUninterestingCalls( internal::ImplicitCast_<MockClass*>(this)); } template <typename A1, typename A2, typename A3, typename A4, typename A5, typename A6, typename A7, typename A8, typename A9, typename A10> StrictMock(const A1& a1, const A2& a2, const A3& a3, const A4& a4, const A5& a5, const A6& a6, const A7& a7, const A8& a8, const A9& a9, const A10& a10) : MockClass(a1, a2, a3, a4, a5, a6, a7, a8, a9, a10) { ::testing::Mock::FailUninterestingCalls( internal::ImplicitCast_<MockClass*>(this)); } virtual ~StrictMock() { ::testing::Mock::UnregisterCallReaction( internal::ImplicitCast_<MockClass*>(this)); } private: GTEST_DISALLOW_COPY_AND_ASSIGN_(StrictMock); }; // The following specializations catch some (relatively more common) // user errors of nesting nice and strict mocks. They do NOT catch // all possible errors. // These specializations are declared but not defined, as NiceMock and // StrictMock cannot be nested. template <typename MockClass> class NiceMock<NiceMock<MockClass> >; template <typename MockClass> class NiceMock<StrictMock<MockClass> >; template <typename MockClass> class StrictMock<NiceMock<MockClass> >; template <typename MockClass> class StrictMock<StrictMock<MockClass> >; } // namespace testing #endif // GMOCK_INCLUDE_GMOCK_GMOCK_GENERATED_NICE_STRICT_H_ namespace testing { // Declares Google Mock flags that we want a user to use programmatically. GMOCK_DECLARE_bool_(catch_leaked_mocks); GMOCK_DECLARE_string_(verbose); // Initializes Google Mock. This must be called before running the // tests. In particular, it parses the command line for the flags // that Google Mock recognizes. Whenever a Google Mock flag is seen, // it is removed from argv, and *argc is decremented. // // No value is returned. Instead, the Google Mock flag variables are // updated. // // Since Google Test is needed for Google Mock to work, this function // also initializes Google Test and parses its flags, if that hasn't // been done. void InitGoogleMock(int* argc, char** argv); // This overloaded version can be used in Windows programs compiled in // UNICODE mode. void InitGoogleMock(int* argc, wchar_t** argv); } // namespace testing #endif // GMOCK_INCLUDE_GMOCK_GMOCK_H_