// Ceres Solver - A fast non-linear least squares minimizer // Copyright 2010, 2011, 2012 Google Inc. All rights reserved. // http://code.google.com/p/ceres-solver/ // // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions are met: // // * Redistributions of source code must retain the above copyright notice, // this list of conditions and the following disclaimer. // * Redistributions in binary form must reproduce the above copyright notice, // this list of conditions and the following disclaimer in the documentation // and/or other materials provided with the distribution. // * Neither the name of Google Inc. nor the names of its contributors may be // used to endorse or promote products derived from this software without // specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE // POSSIBILITY OF SUCH DAMAGE. // // Author: keir@google.com (Keir Mierle) #include "ceres/gradient_checking_cost_function.h" #include <algorithm> #include <cmath> #include <numeric> #include <string> #include <vector> #include "ceres/cost_function.h" #include "ceres/internal/eigen.h" #include "ceres/internal/scoped_ptr.h" #include "ceres/parameter_block.h" #include "ceres/problem.h" #include "ceres/problem_impl.h" #include "ceres/program.h" #include "ceres/residual_block.h" #include "ceres/runtime_numeric_diff_cost_function.h" #include "ceres/stringprintf.h" #include "ceres/types.h" #include "glog/logging.h" namespace ceres { namespace internal { namespace { // True if x and y have an absolute relative difference less than // relative_precision and false otherwise. Stores the relative and absolute // difference in relative/absolute_error if non-NULL. bool IsClose(double x, double y, double relative_precision, double *relative_error, double *absolute_error) { double local_absolute_error; double local_relative_error; if (!absolute_error) { absolute_error = &local_absolute_error; } if (!relative_error) { relative_error = &local_relative_error; } *absolute_error = fabs(x - y); *relative_error = *absolute_error / max(fabs(x), fabs(y)); if (x == 0 || y == 0) { // If x or y is exactly zero, then relative difference doesn't have any // meaning. Take the absolute difference instead. *relative_error = *absolute_error; } return fabs(*relative_error) < fabs(relative_precision); } class GradientCheckingCostFunction : public CostFunction { public: GradientCheckingCostFunction(const CostFunction* function, double relative_step_size, double relative_precision, const string& extra_info) : function_(function), finite_diff_cost_function_( CreateRuntimeNumericDiffCostFunction(function, CENTRAL, relative_step_size)), relative_precision_(relative_precision), extra_info_(extra_info) { *mutable_parameter_block_sizes() = function->parameter_block_sizes(); set_num_residuals(function->num_residuals()); } virtual ~GradientCheckingCostFunction() { } virtual bool Evaluate(double const* const* parameters, double* residuals, double** jacobians) const { if (!jacobians) { // Nothing to check in this case; just forward. return function_->Evaluate(parameters, residuals, NULL); } int num_residuals = function_->num_residuals(); // Make space for the jacobians of the two methods. const vector<int16>& block_sizes = function_->parameter_block_sizes(); vector<Matrix> term_jacobians(block_sizes.size()); vector<Matrix> finite_difference_jacobians(block_sizes.size()); vector<double*> term_jacobian_pointers(block_sizes.size()); vector<double*> finite_difference_jacobian_pointers(block_sizes.size()); for (int i = 0; i < block_sizes.size(); i++) { term_jacobians[i].resize(num_residuals, block_sizes[i]); term_jacobian_pointers[i] = term_jacobians[i].data(); finite_difference_jacobians[i].resize(num_residuals, block_sizes[i]); finite_difference_jacobian_pointers[i] = finite_difference_jacobians[i].data(); } // Evaluate the derivative using the user supplied code. if (!function_->Evaluate(parameters, residuals, &term_jacobian_pointers[0])) { LOG(WARNING) << "Function evaluation failed."; return false; } // Evaluate the derivative using numeric derivatives. finite_diff_cost_function_->Evaluate( parameters, residuals, &finite_difference_jacobian_pointers[0]); // See if any elements have relative error larger than the threshold. int num_bad_jacobian_components = 0; double worst_relative_error = 0; // Accumulate the error message for all the jacobians, since it won't get // output if there are no bad jacobian components. string m; for (int k = 0; k < block_sizes.size(); k++) { // Copy the original jacobian blocks into the jacobians array. if (jacobians[k] != NULL) { MatrixRef(jacobians[k], term_jacobians[k].rows(), term_jacobians[k].cols()) = term_jacobians[k]; } StringAppendF(&m, "========== " "Jacobian for " "block %d: (%ld by %ld)) " "==========\n", k, static_cast<long>(term_jacobians[k].rows()), static_cast<long>(term_jacobians[k].cols())); // The funny spacing creates appropriately aligned column headers. m += " block row col user dx/dy num diff dx/dy " "abs error relative error parameter residual\n"; for (int i = 0; i < term_jacobians[k].rows(); i++) { for (int j = 0; j < term_jacobians[k].cols(); j++) { double term_jacobian = term_jacobians[k](i, j); double finite_jacobian = finite_difference_jacobians[k](i, j); double relative_error, absolute_error; bool bad_jacobian_entry = !IsClose(term_jacobian, finite_jacobian, relative_precision_, &relative_error, &absolute_error); worst_relative_error = std::max(worst_relative_error, relative_error); StringAppendF(&m, "%6d %4d %4d %17g %17g %17g %17g %17g %17g", k, i, j, term_jacobian, finite_jacobian, absolute_error, relative_error, parameters[k][j], residuals[i]); if (bad_jacobian_entry) { num_bad_jacobian_components++; StringAppendF( &m, " ------ (%d,%d,%d) Relative error worse than %g", k, i, j, relative_precision_); } m += "\n"; } } } // Since there were some bad errors, dump comprehensive debug info. if (num_bad_jacobian_components) { string header = StringPrintf("Detected %d bad jacobian component(s). " "Worst relative error was %g.\n", num_bad_jacobian_components, worst_relative_error); if (!extra_info_.empty()) { header += "Extra info for this residual: " + extra_info_ + "\n"; } LOG(WARNING) << "\n" << header << m; } return true; } private: const CostFunction* function_; internal::scoped_ptr<CostFunction> finite_diff_cost_function_; double relative_precision_; string extra_info_; }; } // namespace CostFunction *CreateGradientCheckingCostFunction( const CostFunction *cost_function, double relative_step_size, double relative_precision, const string& extra_info) { return new GradientCheckingCostFunction(cost_function, relative_step_size, relative_precision, extra_info); } ProblemImpl* CreateGradientCheckingProblemImpl(ProblemImpl* problem_impl, double relative_step_size, double relative_precision) { // We create new CostFunctions by wrapping the original CostFunction // in a gradient checking CostFunction. So its okay for the // ProblemImpl to take ownership of it and destroy it. The // LossFunctions and LocalParameterizations are reused and since // they are owned by problem_impl, gradient_checking_problem_impl // should not take ownership of it. Problem::Options gradient_checking_problem_options; gradient_checking_problem_options.cost_function_ownership = TAKE_OWNERSHIP; gradient_checking_problem_options.loss_function_ownership = DO_NOT_TAKE_OWNERSHIP; gradient_checking_problem_options.local_parameterization_ownership = DO_NOT_TAKE_OWNERSHIP; ProblemImpl* gradient_checking_problem_impl = new ProblemImpl( gradient_checking_problem_options); Program* program = problem_impl->mutable_program(); // For every ParameterBlock in problem_impl, create a new parameter // block with the same local parameterization and constancy. const vector<ParameterBlock*>& parameter_blocks = program->parameter_blocks(); for (int i = 0; i < parameter_blocks.size(); ++i) { ParameterBlock* parameter_block = parameter_blocks[i]; gradient_checking_problem_impl->AddParameterBlock( parameter_block->mutable_user_state(), parameter_block->Size(), parameter_block->mutable_local_parameterization()); if (parameter_block->IsConstant()) { gradient_checking_problem_impl->SetParameterBlockConstant( parameter_block->mutable_user_state()); } } // For every ResidualBlock in problem_impl, create a new // ResidualBlock by wrapping its CostFunction inside a // GradientCheckingCostFunction. const vector<ResidualBlock*>& residual_blocks = program->residual_blocks(); for (int i = 0; i < residual_blocks.size(); ++i) { ResidualBlock* residual_block = residual_blocks[i]; // Build a human readable string which identifies the // ResidualBlock. This is used by the GradientCheckingCostFunction // when logging debugging information. string extra_info = StringPrintf( "Residual block id %d; depends on parameters [", i); vector<double*> parameter_blocks; for (int j = 0; j < residual_block->NumParameterBlocks(); ++j) { ParameterBlock* parameter_block = residual_block->parameter_blocks()[j]; parameter_blocks.push_back(parameter_block->mutable_user_state()); StringAppendF(&extra_info, "%p", parameter_block->mutable_user_state()); extra_info += (j < residual_block->NumParameterBlocks() - 1) ? ", " : "]"; } // Wrap the original CostFunction in a GradientCheckingCostFunction. CostFunction* gradient_checking_cost_function = CreateGradientCheckingCostFunction(residual_block->cost_function(), relative_step_size, relative_precision, extra_info); // The const_cast is necessary because // ProblemImpl::AddResidualBlock can potentially take ownership of // the LossFunction, but in this case we are guaranteed that this // will not be the case, so this const_cast is harmless. gradient_checking_problem_impl->AddResidualBlock( gradient_checking_cost_function, const_cast<LossFunction*>(residual_block->loss_function()), parameter_blocks); } return gradient_checking_problem_impl; } } // namespace internal } // namespace ceres