// Ceres Solver - A fast non-linear least squares minimizer // Copyright 2010, 2011, 2012 Google Inc. All rights reserved. // http://code.google.com/p/ceres-solver/ // // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions are met: // // * Redistributions of source code must retain the above copyright notice, // this list of conditions and the following disclaimer. // * Redistributions in binary form must reproduce the above copyright notice, // this list of conditions and the following disclaimer in the documentation // and/or other materials provided with the distribution. // * Neither the name of Google Inc. nor the names of its contributors may be // used to endorse or promote products derived from this software without // specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE // POSSIBILITY OF SUCH DAMAGE. // // Author: sameeragarwal@google.com (Sameer Agarwal) // // An iterative solver for solving the Schur complement/reduced camera // linear system that arise in SfM problems. #ifndef CERES_INTERNAL_IMPLICIT_SCHUR_COMPLEMENT_H_ #define CERES_INTERNAL_IMPLICIT_SCHUR_COMPLEMENT_H_ #include "ceres/linear_operator.h" #include "ceres/partitioned_matrix_view.h" #include "ceres/internal/eigen.h" #include "ceres/internal/scoped_ptr.h" #include "ceres/types.h" namespace ceres { namespace internal { class BlockSparseMatrix; class BlockSparseMatrixBase; // This class implements various linear algebraic operations related // to the Schur complement without explicitly forming it. // // // Given a reactangular linear system Ax = b, where // // A = [E F] // // The normal equations are given by // // A'Ax = A'b // // |E'E E'F||y| = |E'b| // |F'E F'F||z| |F'b| // // and the Schur complement system is given by // // [F'F - F'E (E'E)^-1 E'F] z = F'b - F'E (E'E)^-1 E'b // // Now if we wish to solve Ax = b in the least squares sense, one way // is to form this Schur complement system and solve it using // Preconditioned Conjugate Gradients. // // The key operation in a conjugate gradient solver is the evaluation of the // matrix vector product with the Schur complement // // S = F'F - F'E (E'E)^-1 E'F // // It is straightforward to see that matrix vector products with S can // be evaluated without storing S in memory. Instead, given (E'E)^-1 // (which for our purposes is an easily inverted block diagonal // matrix), it can be done in terms of matrix vector products with E, // F and (E'E)^-1. This class implements this functionality and other // auxilliary bits needed to implement a CG solver on the Schur // complement using the PartitionedMatrixView object. // // THREAD SAFETY: This class is nqot thread safe. In particular, the // RightMultiply (and the LeftMultiply) methods are not thread safe as // they depend on mutable arrays used for the temporaries needed to // compute the product y += Sx; class ImplicitSchurComplement : public LinearOperator { public: // num_eliminate_blocks is the number of E blocks in the matrix // A. // // preconditioner indicates whether the inverse of the matrix F'F // should be computed or not as a preconditioner for the Schur // Complement. // // TODO(sameeragarwal): Get rid of the two bools below and replace // them with enums. ImplicitSchurComplement(int num_eliminate_blocks, bool preconditioner); virtual ~ImplicitSchurComplement(); // Initialize the Schur complement for a linear least squares // problem of the form // // |A | x = |b| // |diag(D)| |0| // // If D is null, then it is treated as a zero dimensional matrix. It // is important that the matrix A have a BlockStructure object // associated with it and has a block structure that is compatible // with the SchurComplement solver. void Init(const BlockSparseMatrixBase& A, const double* D, const double* b); // y += Sx, where S is the Schur complement. virtual void RightMultiply(const double* x, double* y) const; // The Schur complement is a symmetric positive definite matrix, // thus the left and right multiply operators are the same. virtual void LeftMultiply(const double* x, double* y) const { RightMultiply(x, y); } // y = (E'E)^-1 (E'b - E'F x). Given an estimate of the solution to // the Schur complement system, this method computes the value of // the e_block variables that were eliminated to form the Schur // complement. void BackSubstitute(const double* x, double* y); virtual int num_rows() const { return A_->num_cols_f(); } virtual int num_cols() const { return A_->num_cols_f(); } const Vector& rhs() const { return rhs_; } const BlockSparseMatrix* block_diagonal_EtE_inverse() const { return block_diagonal_EtE_inverse_.get(); } const BlockSparseMatrix* block_diagonal_FtF_inverse() const { return block_diagonal_FtF_inverse_.get(); } private: void AddDiagonalAndInvert(const double* D, BlockSparseMatrix* matrix); void UpdateRhs(); int num_eliminate_blocks_; bool preconditioner_; scoped_ptr<PartitionedMatrixView> A_; const double* D_; const double* b_; scoped_ptr<BlockSparseMatrix> block_diagonal_EtE_inverse_; scoped_ptr<BlockSparseMatrix> block_diagonal_FtF_inverse_; Vector rhs_; // Temporary storage vectors used to implement RightMultiply. mutable Vector tmp_rows_; mutable Vector tmp_e_cols_; mutable Vector tmp_e_cols_2_; mutable Vector tmp_f_cols_; }; } // namespace internal } // namespace ceres #endif // CERES_INTERNAL_IMPLICIT_SCHUR_COMPLEMENT_H_