// Ceres Solver - A fast non-linear least squares minimizer // Copyright 2012 Google Inc. All rights reserved. // http://code.google.com/p/ceres-solver/ // // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions are met: // // * Redistributions of source code must retain the above copyright notice, // this list of conditions and the following disclaimer. // * Redistributions in binary form must reproduce the above copyright notice, // this list of conditions and the following disclaimer in the documentation // and/or other materials provided with the distribution. // * Neither the name of Google Inc. nor the names of its contributors may be // used to endorse or promote products derived from this software without // specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE // POSSIBILITY OF SUCH DAMAGE. // // Author: sameeragarwal@google.com (Sameer Agarwal) #include "ceres/levenberg_marquardt_strategy.h" #include <cmath> #include "Eigen/Core" #include "ceres/array_utils.h" #include "ceres/internal/eigen.h" #include "ceres/linear_solver.h" #include "ceres/sparse_matrix.h" #include "ceres/trust_region_strategy.h" #include "ceres/types.h" #include "glog/logging.h" namespace ceres { namespace internal { LevenbergMarquardtStrategy::LevenbergMarquardtStrategy( const TrustRegionStrategy::Options& options) : linear_solver_(options.linear_solver), radius_(options.initial_radius), max_radius_(options.max_radius), min_diagonal_(options.lm_min_diagonal), max_diagonal_(options.lm_max_diagonal), decrease_factor_(2.0), reuse_diagonal_(false) { CHECK_NOTNULL(linear_solver_); CHECK_GT(min_diagonal_, 0.0); CHECK_LE(min_diagonal_, max_diagonal_); CHECK_GT(max_radius_, 0.0); } LevenbergMarquardtStrategy::~LevenbergMarquardtStrategy() { } TrustRegionStrategy::Summary LevenbergMarquardtStrategy::ComputeStep( const TrustRegionStrategy::PerSolveOptions& per_solve_options, SparseMatrix* jacobian, const double* residuals, double* step) { CHECK_NOTNULL(jacobian); CHECK_NOTNULL(residuals); CHECK_NOTNULL(step); const int num_parameters = jacobian->num_cols(); if (!reuse_diagonal_) { if (diagonal_.rows() != num_parameters) { diagonal_.resize(num_parameters, 1); } jacobian->SquaredColumnNorm(diagonal_.data()); for (int i = 0; i < num_parameters; ++i) { diagonal_[i] = min(max(diagonal_[i], min_diagonal_), max_diagonal_); } } lm_diagonal_ = (diagonal_ / radius_).array().sqrt(); LinearSolver::PerSolveOptions solve_options; solve_options.D = lm_diagonal_.data(); solve_options.q_tolerance = per_solve_options.eta; // Disable r_tolerance checking. Since we only care about // termination via the q_tolerance. As Nash and Sofer show, // r_tolerance based termination is essentially useless in // Truncated Newton methods. solve_options.r_tolerance = -1.0; // Invalidate the output array lm_step, so that we can detect if // the linear solver generated numerical garbage. This is known // to happen for the DENSE_QR and then DENSE_SCHUR solver when // the Jacobin is severly rank deficient and mu is too small. InvalidateArray(num_parameters, step); // Instead of solving Jx = -r, solve Jy = r. // Then x can be found as x = -y, but the inputs jacobian and residuals // do not need to be modified. LinearSolver::Summary linear_solver_summary = linear_solver_->Solve(jacobian, residuals, solve_options, step); if (linear_solver_summary.termination_type == FAILURE || !IsArrayValid(num_parameters, step)) { LOG(WARNING) << "Linear solver failure. Failed to compute a finite step."; linear_solver_summary.termination_type = FAILURE; } else { VectorRef(step, num_parameters) *= -1.0; } reuse_diagonal_ = true; TrustRegionStrategy::Summary summary; summary.residual_norm = linear_solver_summary.residual_norm; summary.num_iterations = linear_solver_summary.num_iterations; summary.termination_type = linear_solver_summary.termination_type; return summary; } void LevenbergMarquardtStrategy::StepAccepted(double step_quality) { CHECK_GT(step_quality, 0.0); radius_ = radius_ / std::max(1.0 / 3.0, 1.0 - pow(2.0 * step_quality - 1.0, 3)); radius_ = std::min(max_radius_, radius_); decrease_factor_ = 2.0; reuse_diagonal_ = false; } void LevenbergMarquardtStrategy::StepRejected(double step_quality) { radius_ = radius_ / decrease_factor_; decrease_factor_ *= 2.0; reuse_diagonal_ = true; } double LevenbergMarquardtStrategy::Radius() const { return radius_; } } // namespace internal } // namespace ceres