// Ceres Solver - A fast non-linear least squares minimizer // Copyright 2010, 2011, 2012 Google Inc. All rights reserved. // http://code.google.com/p/ceres-solver/ // // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions are met: // // * Redistributions of source code must retain the above copyright notice, // this list of conditions and the following disclaimer. // * Redistributions in binary form must reproduce the above copyright notice, // this list of conditions and the following disclaimer in the documentation // and/or other materials provided with the distribution. // * Neither the name of Google Inc. nor the names of its contributors may be // used to endorse or promote products derived from this software without // specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE // POSSIBILITY OF SUCH DAMAGE. // // Author: Craig Silverstein. // // A simple mutex wrapper, supporting locks and read-write locks. // You should assume the locks are *not* re-entrant. // // This class is meant to be internal-only and should be wrapped by an // internal namespace. Before you use this module, please give the // name of your internal namespace for this module. Or, if you want // to expose it, you'll want to move it to the Google namespace. We // cannot put this class in global namespace because there can be some // problems when we have multiple versions of Mutex in each shared object. // // NOTE: by default, we have #ifdef'ed out the TryLock() method. // This is for two reasons: // 1) TryLock() under Windows is a bit annoying (it requires a // #define to be defined very early). // 2) TryLock() is broken for NO_THREADS mode, at least in NDEBUG // mode. // If you need TryLock(), and either these two caveats are not a // problem for you, or you're willing to work around them, then // feel free to #define GMUTEX_TRYLOCK, or to remove the #ifdefs // in the code below. // // CYGWIN NOTE: Cygwin support for rwlock seems to be buggy: // http://www.cygwin.com/ml/cygwin/2008-12/msg00017.html // Because of that, we might as well use windows locks for // cygwin. They seem to be more reliable than the cygwin pthreads layer. // // TRICKY IMPLEMENTATION NOTE: // This class is designed to be safe to use during // dynamic-initialization -- that is, by global constructors that are // run before main() starts. The issue in this case is that // dynamic-initialization happens in an unpredictable order, and it // could be that someone else's dynamic initializer could call a // function that tries to acquire this mutex -- but that all happens // before this mutex's constructor has run. (This can happen even if // the mutex and the function that uses the mutex are in the same .cc // file.) Basically, because Mutex does non-trivial work in its // constructor, it's not, in the naive implementation, safe to use // before dynamic initialization has run on it. // // The solution used here is to pair the actual mutex primitive with a // bool that is set to true when the mutex is dynamically initialized. // (Before that it's false.) Then we modify all mutex routines to // look at the bool, and not try to lock/unlock until the bool makes // it to true (which happens after the Mutex constructor has run.) // // This works because before main() starts -- particularly, during // dynamic initialization -- there are no threads, so a) it's ok that // the mutex operations are a no-op, since we don't need locking then // anyway; and b) we can be quite confident our bool won't change // state between a call to Lock() and a call to Unlock() (that would // require a global constructor in one translation unit to call Lock() // and another global constructor in another translation unit to call // Unlock() later, which is pretty perverse). // // That said, it's tricky, and can conceivably fail; it's safest to // avoid trying to acquire a mutex in a global constructor, if you // can. One way it can fail is that a really smart compiler might // initialize the bool to true at static-initialization time (too // early) rather than at dynamic-initialization time. To discourage // that, we set is_safe_ to true in code (not the constructor // colon-initializer) and set it to true via a function that always // evaluates to true, but that the compiler can't know always // evaluates to true. This should be good enough. #ifndef CERES_INTERNAL_MUTEX_H_ #define CERES_INTERNAL_MUTEX_H_ #if defined(CERES_NO_THREADS) typedef int MutexType; // to keep a lock-count #elif defined(_WIN32) || defined(__CYGWIN32__) || defined(__CYGWIN64__) # define CERES_WIN32_LEAN_AND_MEAN // We only need minimal includes # ifdef CERES_GMUTEX_TRYLOCK // We need Windows NT or later for TryEnterCriticalSection(). If you // don't need that functionality, you can remove these _WIN32_WINNT // lines, and change TryLock() to assert(0) or something. # ifndef _WIN32_WINNT # define _WIN32_WINNT 0x0400 # endif # endif // To avoid macro definition of ERROR. # define CERES_NOGDI // To avoid macro definition of min/max. # define CERES_NOMINMAX # include <windows.h> typedef CRITICAL_SECTION MutexType; #elif defined(CERES_HAVE_PTHREAD) && defined(CERES_HAVE_RWLOCK) // Needed for pthread_rwlock_*. If it causes problems, you could take it // out, but then you'd have to unset CERES_HAVE_RWLOCK (at least on linux -- // it *does* cause problems for FreeBSD, or MacOSX, but isn't needed for // locking there.) # if defined(__linux__) && !defined(_XOPEN_SOURCE) # define _XOPEN_SOURCE 500 // may be needed to get the rwlock calls # endif # include <pthread.h> typedef pthread_rwlock_t MutexType; #elif defined(CERES_HAVE_PTHREAD) # include <pthread.h> typedef pthread_mutex_t MutexType; #else # error Need to implement mutex.h for your architecture, or #define NO_THREADS #endif // We need to include these header files after defining _XOPEN_SOURCE // as they may define the _XOPEN_SOURCE macro. #include <assert.h> #include <stdlib.h> // for abort() namespace ceres { namespace internal { class Mutex { public: // Create a Mutex that is not held by anybody. This constructor is // typically used for Mutexes allocated on the heap or the stack. // See below for a recommendation for constructing global Mutex // objects. inline Mutex(); // Destructor inline ~Mutex(); inline void Lock(); // Block if needed until free then acquire exclusively inline void Unlock(); // Release a lock acquired via Lock() #ifdef CERES_GMUTEX_TRYLOCK inline bool TryLock(); // If free, Lock() and return true, else return false #endif // Note that on systems that don't support read-write locks, these may // be implemented as synonyms to Lock() and Unlock(). So you can use // these for efficiency, but don't use them anyplace where being able // to do shared reads is necessary to avoid deadlock. inline void ReaderLock(); // Block until free or shared then acquire a share inline void ReaderUnlock(); // Release a read share of this Mutex inline void WriterLock() { Lock(); } // Acquire an exclusive lock inline void WriterUnlock() { Unlock(); } // Release a lock from WriterLock() // TODO(hamaji): Do nothing, implement correctly. inline void AssertHeld() {} private: MutexType mutex_; // We want to make sure that the compiler sets is_safe_ to true only // when we tell it to, and never makes assumptions is_safe_ is // always true. volatile is the most reliable way to do that. volatile bool is_safe_; inline void SetIsSafe() { is_safe_ = true; } // Catch the error of writing Mutex when intending MutexLock. Mutex(Mutex* /*ignored*/) {} // Disallow "evil" constructors Mutex(const Mutex&); void operator=(const Mutex&); }; // Now the implementation of Mutex for various systems #if defined(CERES_NO_THREADS) // When we don't have threads, we can be either reading or writing, // but not both. We can have lots of readers at once (in no-threads // mode, that's most likely to happen in recursive function calls), // but only one writer. We represent this by having mutex_ be -1 when // writing and a number > 0 when reading (and 0 when no lock is held). // // In debug mode, we assert these invariants, while in non-debug mode // we do nothing, for efficiency. That's why everything is in an // assert. Mutex::Mutex() : mutex_(0) { } Mutex::~Mutex() { assert(mutex_ == 0); } void Mutex::Lock() { assert(--mutex_ == -1); } void Mutex::Unlock() { assert(mutex_++ == -1); } #ifdef CERES_GMUTEX_TRYLOCK bool Mutex::TryLock() { if (mutex_) return false; Lock(); return true; } #endif void Mutex::ReaderLock() { assert(++mutex_ > 0); } void Mutex::ReaderUnlock() { assert(mutex_-- > 0); } #elif defined(_WIN32) || defined(__CYGWIN32__) || defined(__CYGWIN64__) Mutex::Mutex() { InitializeCriticalSection(&mutex_); SetIsSafe(); } Mutex::~Mutex() { DeleteCriticalSection(&mutex_); } void Mutex::Lock() { if (is_safe_) EnterCriticalSection(&mutex_); } void Mutex::Unlock() { if (is_safe_) LeaveCriticalSection(&mutex_); } #ifdef GMUTEX_TRYLOCK bool Mutex::TryLock() { return is_safe_ ? TryEnterCriticalSection(&mutex_) != 0 : true; } #endif void Mutex::ReaderLock() { Lock(); } // we don't have read-write locks void Mutex::ReaderUnlock() { Unlock(); } #elif defined(CERES_HAVE_PTHREAD) && defined(CERES_HAVE_RWLOCK) #define CERES_SAFE_PTHREAD(fncall) do { /* run fncall if is_safe_ is true */ \ if (is_safe_ && fncall(&mutex_) != 0) abort(); \ } while (0) Mutex::Mutex() { SetIsSafe(); if (is_safe_ && pthread_rwlock_init(&mutex_, NULL) != 0) abort(); } Mutex::~Mutex() { CERES_SAFE_PTHREAD(pthread_rwlock_destroy); } void Mutex::Lock() { CERES_SAFE_PTHREAD(pthread_rwlock_wrlock); } void Mutex::Unlock() { CERES_SAFE_PTHREAD(pthread_rwlock_unlock); } #ifdef CERES_GMUTEX_TRYLOCK bool Mutex::TryLock() { return is_safe_ ? pthread_rwlock_trywrlock(&mutex_) == 0 : true; } #endif void Mutex::ReaderLock() { CERES_SAFE_PTHREAD(pthread_rwlock_rdlock); } void Mutex::ReaderUnlock() { CERES_SAFE_PTHREAD(pthread_rwlock_unlock); } #undef CERES_SAFE_PTHREAD #elif defined(CERES_HAVE_PTHREAD) #define CERES_SAFE_PTHREAD(fncall) do { /* run fncall if is_safe_ is true */ \ if (is_safe_ && fncall(&mutex_) != 0) abort(); \ } while (0) Mutex::Mutex() { SetIsSafe(); if (is_safe_ && pthread_mutex_init(&mutex_, NULL) != 0) abort(); } Mutex::~Mutex() { CERES_SAFE_PTHREAD(pthread_mutex_destroy); } void Mutex::Lock() { CERES_SAFE_PTHREAD(pthread_mutex_lock); } void Mutex::Unlock() { CERES_SAFE_PTHREAD(pthread_mutex_unlock); } #ifdef CERES_GMUTEX_TRYLOCK bool Mutex::TryLock() { return is_safe_ ? pthread_mutex_trylock(&mutex_) == 0 : true; } #endif void Mutex::ReaderLock() { Lock(); } void Mutex::ReaderUnlock() { Unlock(); } #undef CERES_SAFE_PTHREAD #endif // -------------------------------------------------------------------------- // Some helper classes // Note: The weird "Ceres" prefix for the class is a workaround for having two // similar mutex.h files included in the same translation unit. This is a // problem because macros do not respect C++ namespaces, and as a result, this // does not work well (e.g. inside Chrome). The offending macros are // "MutexLock(x) COMPILE_ASSERT(false)". To work around this, "Ceres" is // prefixed to the class names; this permits defining the classes. // CeresMutexLock(mu) acquires mu when constructed and releases it when destroyed. class CeresMutexLock { public: explicit CeresMutexLock(Mutex *mu) : mu_(mu) { mu_->Lock(); } ~CeresMutexLock() { mu_->Unlock(); } private: Mutex * const mu_; // Disallow "evil" constructors CeresMutexLock(const CeresMutexLock&); void operator=(const CeresMutexLock&); }; // CeresReaderMutexLock and CeresWriterMutexLock do the same, for rwlocks class CeresReaderMutexLock { public: explicit CeresReaderMutexLock(Mutex *mu) : mu_(mu) { mu_->ReaderLock(); } ~CeresReaderMutexLock() { mu_->ReaderUnlock(); } private: Mutex * const mu_; // Disallow "evil" constructors CeresReaderMutexLock(const CeresReaderMutexLock&); void operator=(const CeresReaderMutexLock&); }; class CeresWriterMutexLock { public: explicit CeresWriterMutexLock(Mutex *mu) : mu_(mu) { mu_->WriterLock(); } ~CeresWriterMutexLock() { mu_->WriterUnlock(); } private: Mutex * const mu_; // Disallow "evil" constructors CeresWriterMutexLock(const CeresWriterMutexLock&); void operator=(const CeresWriterMutexLock&); }; // Catch bug where variable name is omitted, e.g. MutexLock (&mu); #define CeresMutexLock(x) \ COMPILE_ASSERT(0, ceres_mutex_lock_decl_missing_var_name) #define CeresReaderMutexLock(x) \ COMPILE_ASSERT(0, ceres_rmutex_lock_decl_missing_var_name) #define CeresWriterMutexLock(x) \ COMPILE_ASSERT(0, ceres_wmutex_lock_decl_missing_var_name) } // namespace internal } // namespace ceres #endif // CERES_INTERNAL_MUTEX_H_