// Ceres Solver - A fast non-linear least squares minimizer // Copyright 2012 Google Inc. All rights reserved. // http://code.google.com/p/ceres-solver/ // // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions are met: // // * Redistributions of source code must retain the above copyright notice, // this list of conditions and the following disclaimer. // * Redistributions in binary form must reproduce the above copyright notice, // this list of conditions and the following disclaimer in the documentation // and/or other materials provided with the distribution. // * Neither the name of Google Inc. nor the names of its contributors may be // used to endorse or promote products derived from this software without // specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE // POSSIBILITY OF SUCH DAMAGE. // // Author: moll.markus@arcor.de (Markus Moll) #include "ceres/polynomial_solver.h" #include <cmath> #include <cstddef> #include "Eigen/Dense" #include "ceres/internal/port.h" #include "glog/logging.h" namespace ceres { namespace internal { namespace { // Balancing function as described by B. N. Parlett and C. Reinsch, // "Balancing a Matrix for Calculation of Eigenvalues and Eigenvectors". // In: Numerische Mathematik, Volume 13, Number 4 (1969), 293-304, // Springer Berlin / Heidelberg. DOI: 10.1007/BF02165404 void BalanceCompanionMatrix(Matrix* companion_matrix_ptr) { CHECK_NOTNULL(companion_matrix_ptr); Matrix& companion_matrix = *companion_matrix_ptr; Matrix companion_matrix_offdiagonal = companion_matrix; companion_matrix_offdiagonal.diagonal().setZero(); const int degree = companion_matrix.rows(); // gamma <= 1 controls how much a change in the scaling has to // lower the 1-norm of the companion matrix to be accepted. // // gamma = 1 seems to lead to cycles (numerical issues?), so // we set it slightly lower. const double gamma = 0.9; // Greedily scale row/column pairs until there is no change. bool scaling_has_changed; do { scaling_has_changed = false; for (int i = 0; i < degree; ++i) { const double row_norm = companion_matrix_offdiagonal.row(i).lpNorm<1>(); const double col_norm = companion_matrix_offdiagonal.col(i).lpNorm<1>(); // Decompose row_norm/col_norm into mantissa * 2^exponent, // where 0.5 <= mantissa < 1. Discard mantissa (return value // of frexp), as only the exponent is needed. int exponent = 0; std::frexp(row_norm / col_norm, &exponent); exponent /= 2; if (exponent != 0) { const double scaled_col_norm = std::ldexp(col_norm, exponent); const double scaled_row_norm = std::ldexp(row_norm, -exponent); if (scaled_col_norm + scaled_row_norm < gamma * (col_norm + row_norm)) { // Accept the new scaling. (Multiplication by powers of 2 should not // introduce rounding errors (ignoring non-normalized numbers and // over- or underflow)) scaling_has_changed = true; companion_matrix_offdiagonal.row(i) *= std::ldexp(1.0, -exponent); companion_matrix_offdiagonal.col(i) *= std::ldexp(1.0, exponent); } } } } while (scaling_has_changed); companion_matrix_offdiagonal.diagonal() = companion_matrix.diagonal(); companion_matrix = companion_matrix_offdiagonal; VLOG(3) << "Balanced companion matrix is\n" << companion_matrix; } void BuildCompanionMatrix(const Vector& polynomial, Matrix* companion_matrix_ptr) { CHECK_NOTNULL(companion_matrix_ptr); Matrix& companion_matrix = *companion_matrix_ptr; const int degree = polynomial.size() - 1; companion_matrix.resize(degree, degree); companion_matrix.setZero(); companion_matrix.diagonal(-1).setOnes(); companion_matrix.col(degree - 1) = -polynomial.reverse().head(degree); } // Remove leading terms with zero coefficients. Vector RemoveLeadingZeros(const Vector& polynomial_in) { int i = 0; while (i < (polynomial_in.size() - 1) && polynomial_in(i) == 0.0) { ++i; } return polynomial_in.tail(polynomial_in.size() - i); } } // namespace bool FindPolynomialRoots(const Vector& polynomial_in, Vector* real, Vector* imaginary) { if (polynomial_in.size() == 0) { LOG(ERROR) << "Invalid polynomial of size 0 passed to FindPolynomialRoots"; return false; } Vector polynomial = RemoveLeadingZeros(polynomial_in); const int degree = polynomial.size() - 1; // Is the polynomial constant? if (degree == 0) { LOG(WARNING) << "Trying to extract roots from a constant " << "polynomial in FindPolynomialRoots"; return true; } // Divide by leading term const double leading_term = polynomial(0); polynomial /= leading_term; // Separately handle linear polynomials. if (degree == 1) { if (real != NULL) { real->resize(1); (*real)(0) = -polynomial(1); } if (imaginary != NULL) { imaginary->resize(1); imaginary->setZero(); } } // The degree is now known to be at least 2. // Build and balance the companion matrix to the polynomial. Matrix companion_matrix(degree, degree); BuildCompanionMatrix(polynomial, &companion_matrix); BalanceCompanionMatrix(&companion_matrix); // Find its (complex) eigenvalues. Eigen::EigenSolver<Matrix> solver(companion_matrix, false); if (solver.info() != Eigen::Success) { LOG(ERROR) << "Failed to extract eigenvalues from companion matrix."; return false; } // Output roots if (real != NULL) { *real = solver.eigenvalues().real(); } else { LOG(WARNING) << "NULL pointer passed as real argument to " << "FindPolynomialRoots. Real parts of the roots will not " << "be returned."; } if (imaginary != NULL) { *imaginary = solver.eigenvalues().imag(); } return true; } } // namespace internal } // namespace ceres