// Ceres Solver - A fast non-linear least squares minimizer // Copyright 2010, 2011, 2012 Google Inc. All rights reserved. // http://code.google.com/p/ceres-solver/ // // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions are met: // // * Redistributions of source code must retain the above copyright notice, // this list of conditions and the following disclaimer. // * Redistributions in binary form must reproduce the above copyright notice, // this list of conditions and the following disclaimer in the documentation // and/or other materials provided with the distribution. // * Neither the name of Google Inc. nor the names of its contributors may be // used to endorse or promote products derived from this software without // specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE // POSSIBILITY OF SUCH DAMAGE. // // Author: sameeragarwal@google.com (Sameer Agarwal) // keir@google.com (Keir Mierle) // // Purpose : Class and struct definitions for parameter and residual blocks. #ifndef CERES_INTERNAL_RESIDUAL_BLOCK_H_ #define CERES_INTERNAL_RESIDUAL_BLOCK_H_ #include <vector> #include "ceres/cost_function.h" #include "ceres/internal/port.h" #include "ceres/internal/scoped_ptr.h" #include "ceres/types.h" namespace ceres { class LossFunction; namespace internal { class ParameterBlock; // A term in the least squares problem. The mathematical form of each term in // the overall least-squares cost function is: // // 1 // --- loss_function( || cost_function(block1, block2, ...) ||^2 ), // 2 // // Storing the cost function and the loss function separately permits optimizing // the problem with standard non-linear least techniques, without requiring a // more general non-linear solver. // // The residual block stores pointers to but does not own the cost functions, // loss functions, and parameter blocks. class ResidualBlock { public: ResidualBlock(const CostFunction* cost_function, const LossFunction* loss_function, const vector<ParameterBlock*>& parameter_blocks); // Evaluates the residual term, storing the scalar cost in *cost, the residual // components in *residuals, and the jacobians between the parameters and // residuals in jacobians[i], in row-major order. If residuals is NULL, the // residuals are not computed. If jacobians is NULL, no jacobians are // computed. If jacobians[i] is NULL, then the jacobian for that parameter is // not computed. // // Evaluate needs scratch space which must be supplied by the caller via // scratch. The array should have at least NumScratchDoublesForEvaluate() // space available. // // The return value indicates the success or failure. If the function returns // false, the caller should expect the the output memory locations to have // been modified. // // The returned cost and jacobians have had robustification and local // parameterizations applied already; for example, the jacobian for a // 4-dimensional quaternion parameter using the "QuaternionParameterization" // is num_residuals by 3 instead of num_residuals by 4. bool Evaluate(double* cost, double* residuals, double** jacobians, double* scratch) const; const CostFunction* cost_function() const { return cost_function_; } const LossFunction* loss_function() const { return loss_function_; } // Access the parameter blocks for this residual. The array has size // NumParameterBlocks(). ParameterBlock* const* parameter_blocks() const { return parameter_blocks_.get(); } // Number of variable blocks that this residual term depends on. int NumParameterBlocks() const { return cost_function_->parameter_block_sizes().size(); } // The size of the residual vector returned by this residual function. int NumResiduals() const { return cost_function_->num_residuals(); } // The minimum amount of scratch space needed to pass to Evaluate(). int NumScratchDoublesForEvaluate() const; private: const CostFunction* cost_function_; const LossFunction* loss_function_; scoped_array<ParameterBlock*> parameter_blocks_; }; } // namespace internal } // namespace ceres #endif // CERES_INTERNAL_RESIDUAL_BLOCK_H_