// Ceres Solver - A fast non-linear least squares minimizer // Copyright 2010, 2011, 2012 Google Inc. All rights reserved. // http://code.google.com/p/ceres-solver/ // // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions are met: // // * Redistributions of source code must retain the above copyright notice, // this list of conditions and the following disclaimer. // * Redistributions in binary form must reproduce the above copyright notice, // this list of conditions and the following disclaimer in the documentation // and/or other materials provided with the distribution. // * Neither the name of Google Inc. nor the names of its contributors may be // used to endorse or promote products derived from this software without // specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE // POSSIBILITY OF SUCH DAMAGE. // // Author: keir@google.com (Keir Mierle) // // Based on the tests in numeric_diff_cost_function.cc. // // TODO(keir): See about code duplication. #include "ceres/runtime_numeric_diff_cost_function.h" #include <algorithm> #include <cmath> #include <string> #include <vector> #include "ceres/cost_function.h" #include "ceres/internal/macros.h" #include "ceres/internal/scoped_ptr.h" #include "ceres/stringprintf.h" #include "ceres/test_util.h" #include "glog/logging.h" #include "gtest/gtest.h" namespace ceres { namespace internal { const double kRelativeEps = 1e-6; // y1 = x1'x2 -> dy1/dx1 = x2, dy1/dx2 = x1 // y2 = (x1'x2)^2 -> dy2/dx1 = 2 * x2 * (x1'x2), dy2/dx2 = 2 * x1 * (x1'x2) // y3 = x2'x2 -> dy3/dx1 = 0, dy3/dx2 = 2 * x2 class TestCostFunction : public CostFunction { public: TestCostFunction() { set_num_residuals(3); mutable_parameter_block_sizes()->push_back(5); // x1. mutable_parameter_block_sizes()->push_back(5); // x2. } virtual bool Evaluate(double const* const* parameters, double* residuals, double** jacobians) const { (void) jacobians; // Ignored. residuals[0] = residuals[1] = residuals[2] = 0; for (int i = 0; i < 5; ++i) { residuals[0] += parameters[0][i] * parameters[1][i]; residuals[2] += parameters[1][i] * parameters[1][i]; } residuals[1] = residuals[0] * residuals[0]; return true; } }; TEST(NumericDiffCostFunction, EasyCase) { // Try both central and forward difference. TestCostFunction term; scoped_ptr<CostFunction> cfs[2]; cfs[0].reset( CreateRuntimeNumericDiffCostFunction(&term, CENTRAL, kRelativeEps)); cfs[1].reset( CreateRuntimeNumericDiffCostFunction(&term, FORWARD, kRelativeEps)); for (int c = 0; c < 2; ++c) { CostFunction *cost_function = cfs[c].get(); double x1[] = { 1.0, 2.0, 3.0, 4.0, 5.0 }; double x2[] = { 9.0, 9.0, 5.0, 5.0, 1.0 }; double *parameters[] = { &x1[0], &x2[0] }; double dydx1[15]; // 3 x 5, row major. double dydx2[15]; // 3 x 5, row major. double *jacobians[2] = { &dydx1[0], &dydx2[0] }; double residuals[3] = {-1e-100, -2e-100, -3e-100 }; ASSERT_TRUE(cost_function->Evaluate(¶meters[0], &residuals[0], &jacobians[0])); EXPECT_EQ(residuals[0], 67); EXPECT_EQ(residuals[1], 4489); EXPECT_EQ(residuals[2], 213); for (int i = 0; i < 5; ++i) { LOG(INFO) << "c = " << c << " i = " << i; const double kEps = c == 0 ? /* central */ 3e-9 : /* forward */ 2e-5; ExpectClose(x2[i], dydx1[5 * 0 + i], kEps); // y1 ExpectClose(x1[i], dydx2[5 * 0 + i], kEps); ExpectClose(2 * x2[i] * residuals[0], dydx1[5 * 1 + i], kEps); // y2 ExpectClose(2 * x1[i] * residuals[0], dydx2[5 * 1 + i], kEps); ExpectClose(0.0, dydx1[5 * 2 + i], kEps); // y3 ExpectClose(2 * x2[i], dydx2[5 * 2 + i], kEps); } } } // y1 = sin(x1'x2) // y2 = exp(-x1'x2 / 10) // // dy1/dx1 = x2 * cos(x1'x2), dy1/dx2 = x1 * cos(x1'x2) // dy2/dx1 = -x2 * exp(-x1'x2 / 10) / 10, dy2/dx2 = -x2 * exp(-x1'x2 / 10) / 10 class TranscendentalTestCostFunction : public CostFunction { public: TranscendentalTestCostFunction() { set_num_residuals(2); mutable_parameter_block_sizes()->push_back(5); // x1. mutable_parameter_block_sizes()->push_back(5); // x2. } virtual bool Evaluate(double const* const* parameters, double* residuals, double** jacobians) const { (void) jacobians; // Ignored. double x1x2 = 0; for (int i = 0; i < 5; ++i) { x1x2 += parameters[0][i] * parameters[1][i]; } residuals[0] = sin(x1x2); residuals[1] = exp(-x1x2 / 10); return true; } }; TEST(NumericDiffCostFunction, TransendentalOperationsInCostFunction) { // Try both central and forward difference. TranscendentalTestCostFunction term; scoped_ptr<CostFunction> cfs[2]; cfs[0].reset( CreateRuntimeNumericDiffCostFunction(&term, CENTRAL, kRelativeEps)); cfs[1].reset( CreateRuntimeNumericDiffCostFunction(&term, FORWARD, kRelativeEps)); for (int c = 0; c < 2; ++c) { CostFunction *cost_function = cfs[c].get(); struct { double x1[5]; double x2[5]; } kTests[] = { { { 1.0, 2.0, 3.0, 4.0, 5.0 }, // No zeros. { 9.0, 9.0, 5.0, 5.0, 1.0 }, }, { { 0.0, 2.0, 3.0, 0.0, 5.0 }, // Some zeros x1. { 9.0, 9.0, 5.0, 5.0, 1.0 }, }, { { 1.0, 2.0, 3.0, 1.0, 5.0 }, // Some zeros x2. { 0.0, 9.0, 0.0, 5.0, 0.0 }, }, { { 0.0, 0.0, 0.0, 0.0, 0.0 }, // All zeros x1. { 9.0, 9.0, 5.0, 5.0, 1.0 }, }, { { 1.0, 2.0, 3.0, 4.0, 5.0 }, // All zeros x2. { 0.0, 0.0, 0.0, 0.0, 0.0 }, }, { { 0.0, 0.0, 0.0, 0.0, 0.0 }, // All zeros. { 0.0, 0.0, 0.0, 0.0, 0.0 }, }, }; for (int k = 0; k < CERES_ARRAYSIZE(kTests); ++k) { double *x1 = &(kTests[k].x1[0]); double *x2 = &(kTests[k].x2[0]); double *parameters[] = { x1, x2 }; double dydx1[10]; double dydx2[10]; double *jacobians[2] = { &dydx1[0], &dydx2[0] }; double residuals[2]; ASSERT_TRUE(cost_function->Evaluate(¶meters[0], &residuals[0], &jacobians[0])); LOG(INFO) << "Ran evaluate for test k=" << k << " c=" << c; double x1x2 = 0; for (int i = 0; i < 5; ++i) { x1x2 += x1[i] * x2[i]; } for (int i = 0; i < 5; ++i) { const double kEps = (c == 0 ? /* central */ 3e-9 : /* forward */ 2e-5); ExpectClose( x2[i] * cos(x1x2), dydx1[5 * 0 + i], kEps); // NOLINT ExpectClose( x1[i] * cos(x1x2), dydx2[5 * 0 + i], kEps); // NOLINT ExpectClose(-x2[i] * exp(-x1x2 / 10.) / 10., dydx1[5 * 1 + i], kEps); ExpectClose(-x1[i] * exp(-x1x2 / 10.) / 10., dydx2[5 * 1 + i], kEps); } } } } } // namespace internal } // namespace ceres