// Ceres Solver - A fast non-linear least squares minimizer // Copyright 2010, 2011, 2012 Google Inc. All rights reserved. // http://code.google.com/p/ceres-solver/ // // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions are met: // // * Redistributions of source code must retain the above copyright notice, // this list of conditions and the following disclaimer. // * Redistributions in binary form must reproduce the above copyright notice, // this list of conditions and the following disclaimer in the documentation // and/or other materials provided with the distribution. // * Neither the name of Google Inc. nor the names of its contributors may be // used to endorse or promote products derived from this software without // specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE // POSSIBILITY OF SUCH DAMAGE. // // Author: sameeragarwal@google.com (Sameer Agarwal) #include "gtest/gtest.h" #include "ceres/autodiff_cost_function.h" #include "ceres/linear_solver.h" #include "ceres/ordered_groups.h" #include "ceres/parameter_block.h" #include "ceres/problem_impl.h" #include "ceres/program.h" #include "ceres/residual_block.h" #include "ceres/solver_impl.h" #include "ceres/sized_cost_function.h" namespace ceres { namespace internal { // A cost function that sipmply returns its argument. class UnaryIdentityCostFunction : public SizedCostFunction<1, 1> { public: virtual bool Evaluate(double const* const* parameters, double* residuals, double** jacobians) const { residuals[0] = parameters[0][0]; if (jacobians != NULL && jacobians[0] != NULL) { jacobians[0][0] = 1.0; } return true; } }; // Templated base class for the CostFunction signatures. template <int kNumResiduals, int N0, int N1, int N2> class MockCostFunctionBase : public SizedCostFunction<kNumResiduals, N0, N1, N2> { public: virtual bool Evaluate(double const* const* parameters, double* residuals, double** jacobians) const { // Do nothing. This is never called. return true; } }; class UnaryCostFunction : public MockCostFunctionBase<2, 1, 0, 0> {}; class BinaryCostFunction : public MockCostFunctionBase<2, 1, 1, 0> {}; class TernaryCostFunction : public MockCostFunctionBase<2, 1, 1, 1> {}; TEST(SolverImpl, RemoveFixedBlocksNothingConstant) { ProblemImpl problem; double x; double y; double z; problem.AddParameterBlock(&x, 1); problem.AddParameterBlock(&y, 1); problem.AddParameterBlock(&z, 1); problem.AddResidualBlock(new UnaryCostFunction(), NULL, &x); problem.AddResidualBlock(new BinaryCostFunction(), NULL, &x, &y); problem.AddResidualBlock(new TernaryCostFunction(), NULL, &x, &y, &z); string error; { ParameterBlockOrdering ordering; ordering.AddElementToGroup(&x, 0); ordering.AddElementToGroup(&y, 0); ordering.AddElementToGroup(&z, 0); Program program(*problem.mutable_program()); EXPECT_TRUE(SolverImpl::RemoveFixedBlocksFromProgram(&program, &ordering, NULL, &error)); EXPECT_EQ(program.NumParameterBlocks(), 3); EXPECT_EQ(program.NumResidualBlocks(), 3); EXPECT_EQ(ordering.NumElements(), 3); } } TEST(SolverImpl, RemoveFixedBlocksAllParameterBlocksConstant) { ProblemImpl problem; double x; problem.AddParameterBlock(&x, 1); problem.AddResidualBlock(new UnaryCostFunction(), NULL, &x); problem.SetParameterBlockConstant(&x); ParameterBlockOrdering ordering; ordering.AddElementToGroup(&x, 0); Program program(problem.program()); string error; EXPECT_TRUE(SolverImpl::RemoveFixedBlocksFromProgram(&program, &ordering, NULL, &error)); EXPECT_EQ(program.NumParameterBlocks(), 0); EXPECT_EQ(program.NumResidualBlocks(), 0); EXPECT_EQ(ordering.NumElements(), 0); } TEST(SolverImpl, RemoveFixedBlocksNoResidualBlocks) { ProblemImpl problem; double x; double y; double z; problem.AddParameterBlock(&x, 1); problem.AddParameterBlock(&y, 1); problem.AddParameterBlock(&z, 1); ParameterBlockOrdering ordering; ordering.AddElementToGroup(&x, 0); ordering.AddElementToGroup(&y, 0); ordering.AddElementToGroup(&z, 0); Program program(problem.program()); string error; EXPECT_TRUE(SolverImpl::RemoveFixedBlocksFromProgram(&program, &ordering, NULL, &error)); EXPECT_EQ(program.NumParameterBlocks(), 0); EXPECT_EQ(program.NumResidualBlocks(), 0); EXPECT_EQ(ordering.NumElements(), 0); } TEST(SolverImpl, RemoveFixedBlocksOneParameterBlockConstant) { ProblemImpl problem; double x; double y; double z; problem.AddParameterBlock(&x, 1); problem.AddParameterBlock(&y, 1); problem.AddParameterBlock(&z, 1); ParameterBlockOrdering ordering; ordering.AddElementToGroup(&x, 0); ordering.AddElementToGroup(&y, 0); ordering.AddElementToGroup(&z, 0); problem.AddResidualBlock(new UnaryCostFunction(), NULL, &x); problem.AddResidualBlock(new BinaryCostFunction(), NULL, &x, &y); problem.SetParameterBlockConstant(&x); Program program(problem.program()); string error; EXPECT_TRUE(SolverImpl::RemoveFixedBlocksFromProgram(&program, &ordering, NULL, &error)); EXPECT_EQ(program.NumParameterBlocks(), 1); EXPECT_EQ(program.NumResidualBlocks(), 1); EXPECT_EQ(ordering.NumElements(), 1); } TEST(SolverImpl, RemoveFixedBlocksNumEliminateBlocks) { ProblemImpl problem; double x; double y; double z; problem.AddParameterBlock(&x, 1); problem.AddParameterBlock(&y, 1); problem.AddParameterBlock(&z, 1); problem.AddResidualBlock(new UnaryCostFunction(), NULL, &x); problem.AddResidualBlock(new TernaryCostFunction(), NULL, &x, &y, &z); problem.AddResidualBlock(new BinaryCostFunction(), NULL, &x, &y); problem.SetParameterBlockConstant(&x); ParameterBlockOrdering ordering; ordering.AddElementToGroup(&x, 0); ordering.AddElementToGroup(&y, 0); ordering.AddElementToGroup(&z, 1); Program program(problem.program()); string error; EXPECT_TRUE(SolverImpl::RemoveFixedBlocksFromProgram(&program, &ordering, NULL, &error)); EXPECT_EQ(program.NumParameterBlocks(), 2); EXPECT_EQ(program.NumResidualBlocks(), 2); EXPECT_EQ(ordering.NumElements(), 2); EXPECT_EQ(ordering.GroupId(&y), 0); EXPECT_EQ(ordering.GroupId(&z), 1); } TEST(SolverImpl, RemoveFixedBlocksFixedCost) { ProblemImpl problem; double x = 1.23; double y = 4.56; double z = 7.89; problem.AddParameterBlock(&x, 1); problem.AddParameterBlock(&y, 1); problem.AddParameterBlock(&z, 1); problem.AddResidualBlock(new UnaryIdentityCostFunction(), NULL, &x); problem.AddResidualBlock(new TernaryCostFunction(), NULL, &x, &y, &z); problem.AddResidualBlock(new BinaryCostFunction(), NULL, &x, &y); problem.SetParameterBlockConstant(&x); ParameterBlockOrdering ordering; ordering.AddElementToGroup(&x, 0); ordering.AddElementToGroup(&y, 0); ordering.AddElementToGroup(&z, 1); double fixed_cost = 0.0; Program program(problem.program()); double expected_fixed_cost; ResidualBlock *expected_removed_block = program.residual_blocks()[0]; scoped_array<double> scratch(new double[expected_removed_block->NumScratchDoublesForEvaluate()]); expected_removed_block->Evaluate(&expected_fixed_cost, NULL, NULL, scratch.get()); string error; EXPECT_TRUE(SolverImpl::RemoveFixedBlocksFromProgram(&program, &ordering, &fixed_cost, &error)); EXPECT_EQ(program.NumParameterBlocks(), 2); EXPECT_EQ(program.NumResidualBlocks(), 2); EXPECT_EQ(ordering.NumElements(), 2); EXPECT_EQ(ordering.GroupId(&y), 0); EXPECT_EQ(ordering.GroupId(&z), 1); EXPECT_DOUBLE_EQ(fixed_cost, expected_fixed_cost); } TEST(SolverImpl, ReorderResidualBlockNormalFunction) { ProblemImpl problem; double x; double y; double z; problem.AddParameterBlock(&x, 1); problem.AddParameterBlock(&y, 1); problem.AddParameterBlock(&z, 1); problem.AddResidualBlock(new UnaryCostFunction(), NULL, &x); problem.AddResidualBlock(new BinaryCostFunction(), NULL, &z, &x); problem.AddResidualBlock(new BinaryCostFunction(), NULL, &z, &y); problem.AddResidualBlock(new UnaryCostFunction(), NULL, &z); problem.AddResidualBlock(new BinaryCostFunction(), NULL, &x, &y); problem.AddResidualBlock(new UnaryCostFunction(), NULL, &y); ParameterBlockOrdering* ordering = new ParameterBlockOrdering; ordering->AddElementToGroup(&x, 0); ordering->AddElementToGroup(&y, 0); ordering->AddElementToGroup(&z, 1); Solver::Options options; options.linear_solver_type = DENSE_SCHUR; options.linear_solver_ordering = ordering; const vector<ResidualBlock*>& residual_blocks = problem.program().residual_blocks(); vector<ResidualBlock*> expected_residual_blocks; // This is a bit fragile, but it serves the purpose. We know the // bucketing algorithm that the reordering function uses, so we // expect the order for residual blocks for each e_block to be // filled in reverse. expected_residual_blocks.push_back(residual_blocks[4]); expected_residual_blocks.push_back(residual_blocks[1]); expected_residual_blocks.push_back(residual_blocks[0]); expected_residual_blocks.push_back(residual_blocks[5]); expected_residual_blocks.push_back(residual_blocks[2]); expected_residual_blocks.push_back(residual_blocks[3]); Program* program = problem.mutable_program(); program->SetParameterOffsetsAndIndex(); string error; EXPECT_TRUE(SolverImpl::LexicographicallyOrderResidualBlocks( 2, problem.mutable_program(), &error)); EXPECT_EQ(residual_blocks.size(), expected_residual_blocks.size()); for (int i = 0; i < expected_residual_blocks.size(); ++i) { EXPECT_EQ(residual_blocks[i], expected_residual_blocks[i]); } } TEST(SolverImpl, ReorderResidualBlockNormalFunctionWithFixedBlocks) { ProblemImpl problem; double x; double y; double z; problem.AddParameterBlock(&x, 1); problem.AddParameterBlock(&y, 1); problem.AddParameterBlock(&z, 1); // Set one parameter block constant. problem.SetParameterBlockConstant(&z); // Mark residuals for x's row block with "x" for readability. problem.AddResidualBlock(new UnaryCostFunction(), NULL, &x); // 0 x problem.AddResidualBlock(new BinaryCostFunction(), NULL, &z, &x); // 1 x problem.AddResidualBlock(new BinaryCostFunction(), NULL, &z, &y); // 2 problem.AddResidualBlock(new BinaryCostFunction(), NULL, &z, &y); // 3 problem.AddResidualBlock(new BinaryCostFunction(), NULL, &x, &z); // 4 x problem.AddResidualBlock(new BinaryCostFunction(), NULL, &z, &y); // 5 problem.AddResidualBlock(new BinaryCostFunction(), NULL, &x, &z); // 6 x problem.AddResidualBlock(new UnaryCostFunction(), NULL, &y); // 7 ParameterBlockOrdering* ordering = new ParameterBlockOrdering; ordering->AddElementToGroup(&x, 0); ordering->AddElementToGroup(&z, 0); ordering->AddElementToGroup(&y, 1); Solver::Options options; options.linear_solver_type = DENSE_SCHUR; options.linear_solver_ordering = ordering; // Create the reduced program. This should remove the fixed block "z", // marking the index to -1 at the same time. x and y also get indices. string error; scoped_ptr<Program> reduced_program( SolverImpl::CreateReducedProgram(&options, &problem, NULL, &error)); const vector<ResidualBlock*>& residual_blocks = problem.program().residual_blocks(); // This is a bit fragile, but it serves the purpose. We know the // bucketing algorithm that the reordering function uses, so we // expect the order for residual blocks for each e_block to be // filled in reverse. vector<ResidualBlock*> expected_residual_blocks; // Row block for residuals involving "x". These are marked "x" in the block // of code calling AddResidual() above. expected_residual_blocks.push_back(residual_blocks[6]); expected_residual_blocks.push_back(residual_blocks[4]); expected_residual_blocks.push_back(residual_blocks[1]); expected_residual_blocks.push_back(residual_blocks[0]); // Row block for residuals involving "y". expected_residual_blocks.push_back(residual_blocks[7]); expected_residual_blocks.push_back(residual_blocks[5]); expected_residual_blocks.push_back(residual_blocks[3]); expected_residual_blocks.push_back(residual_blocks[2]); EXPECT_TRUE(SolverImpl::LexicographicallyOrderResidualBlocks( 2, reduced_program.get(), &error)); EXPECT_EQ(reduced_program->residual_blocks().size(), expected_residual_blocks.size()); for (int i = 0; i < expected_residual_blocks.size(); ++i) { EXPECT_EQ(reduced_program->residual_blocks()[i], expected_residual_blocks[i]); } } TEST(SolverImpl, AutomaticSchurReorderingRespectsConstantBlocks) { ProblemImpl problem; double x; double y; double z; problem.AddParameterBlock(&x, 1); problem.AddParameterBlock(&y, 1); problem.AddParameterBlock(&z, 1); // Set one parameter block constant. problem.SetParameterBlockConstant(&z); problem.AddResidualBlock(new UnaryCostFunction(), NULL, &x); problem.AddResidualBlock(new BinaryCostFunction(), NULL, &z, &x); problem.AddResidualBlock(new BinaryCostFunction(), NULL, &z, &y); problem.AddResidualBlock(new BinaryCostFunction(), NULL, &z, &y); problem.AddResidualBlock(new BinaryCostFunction(), NULL, &x, &z); problem.AddResidualBlock(new BinaryCostFunction(), NULL, &z, &y); problem.AddResidualBlock(new BinaryCostFunction(), NULL, &x, &z); problem.AddResidualBlock(new UnaryCostFunction(), NULL, &y); problem.AddResidualBlock(new UnaryCostFunction(), NULL, &z); ParameterBlockOrdering* ordering = new ParameterBlockOrdering; ordering->AddElementToGroup(&x, 0); ordering->AddElementToGroup(&z, 0); ordering->AddElementToGroup(&y, 0); Solver::Options options; options.linear_solver_type = DENSE_SCHUR; options.linear_solver_ordering = ordering; string error; scoped_ptr<Program> reduced_program( SolverImpl::CreateReducedProgram(&options, &problem, NULL, &error)); const vector<ResidualBlock*>& residual_blocks = reduced_program->residual_blocks(); const vector<ParameterBlock*>& parameter_blocks = reduced_program->parameter_blocks(); const vector<ResidualBlock*>& original_residual_blocks = problem.program().residual_blocks(); EXPECT_EQ(residual_blocks.size(), 8); EXPECT_EQ(reduced_program->parameter_blocks().size(), 2); // Verify that right parmeter block and the residual blocks have // been removed. for (int i = 0; i < 8; ++i) { EXPECT_NE(residual_blocks[i], original_residual_blocks.back()); } for (int i = 0; i < 2; ++i) { EXPECT_NE(parameter_blocks[i]->mutable_user_state(), &z); } } TEST(SolverImpl, ApplyUserOrderingOrderingTooSmall) { ProblemImpl problem; double x; double y; double z; problem.AddParameterBlock(&x, 1); problem.AddParameterBlock(&y, 1); problem.AddParameterBlock(&z, 1); ParameterBlockOrdering ordering; ordering.AddElementToGroup(&x, 0); ordering.AddElementToGroup(&y, 1); Program program(problem.program()); string error; EXPECT_FALSE(SolverImpl::ApplyUserOrdering(problem.parameter_map(), &ordering, &program, &error)); } TEST(SolverImpl, ApplyUserOrderingNormal) { ProblemImpl problem; double x; double y; double z; problem.AddParameterBlock(&x, 1); problem.AddParameterBlock(&y, 1); problem.AddParameterBlock(&z, 1); ParameterBlockOrdering ordering; ordering.AddElementToGroup(&x, 0); ordering.AddElementToGroup(&y, 2); ordering.AddElementToGroup(&z, 1); Program* program = problem.mutable_program(); string error; EXPECT_TRUE(SolverImpl::ApplyUserOrdering(problem.parameter_map(), &ordering, program, &error)); const vector<ParameterBlock*>& parameter_blocks = program->parameter_blocks(); EXPECT_EQ(parameter_blocks.size(), 3); EXPECT_EQ(parameter_blocks[0]->user_state(), &x); EXPECT_EQ(parameter_blocks[1]->user_state(), &z); EXPECT_EQ(parameter_blocks[2]->user_state(), &y); } #if defined(CERES_NO_SUITESPARSE) && defined(CERES_NO_CXSPARSE) TEST(SolverImpl, CreateLinearSolverNoSuiteSparse) { Solver::Options options; options.linear_solver_type = SPARSE_NORMAL_CHOLESKY; string error; EXPECT_FALSE(SolverImpl::CreateLinearSolver(&options, &error)); } #endif TEST(SolverImpl, CreateLinearSolverNegativeMaxNumIterations) { Solver::Options options; options.linear_solver_type = DENSE_QR; options.linear_solver_max_num_iterations = -1; // CreateLinearSolver assumes a non-empty ordering. options.linear_solver_ordering = new ParameterBlockOrdering; string error; EXPECT_EQ(SolverImpl::CreateLinearSolver(&options, &error), static_cast<LinearSolver*>(NULL)); } TEST(SolverImpl, CreateLinearSolverNegativeMinNumIterations) { Solver::Options options; options.linear_solver_type = DENSE_QR; options.linear_solver_min_num_iterations = -1; // CreateLinearSolver assumes a non-empty ordering. options.linear_solver_ordering = new ParameterBlockOrdering; string error; EXPECT_EQ(SolverImpl::CreateLinearSolver(&options, &error), static_cast<LinearSolver*>(NULL)); } TEST(SolverImpl, CreateLinearSolverMaxLessThanMinIterations) { Solver::Options options; options.linear_solver_type = DENSE_QR; options.linear_solver_min_num_iterations = 10; options.linear_solver_max_num_iterations = 5; options.linear_solver_ordering = new ParameterBlockOrdering; string error; EXPECT_EQ(SolverImpl::CreateLinearSolver(&options, &error), static_cast<LinearSolver*>(NULL)); } TEST(SolverImpl, CreateLinearSolverDenseSchurMultipleThreads) { Solver::Options options; options.linear_solver_type = DENSE_SCHUR; options.num_linear_solver_threads = 2; // The Schur type solvers can only be created with the Ordering // contains at least one elimination group. options.linear_solver_ordering = new ParameterBlockOrdering; double x; double y; options.linear_solver_ordering->AddElementToGroup(&x, 0); options.linear_solver_ordering->AddElementToGroup(&y, 0); string error; scoped_ptr<LinearSolver> solver( SolverImpl::CreateLinearSolver(&options, &error)); EXPECT_TRUE(solver != NULL); EXPECT_EQ(options.linear_solver_type, DENSE_SCHUR); EXPECT_EQ(options.num_linear_solver_threads, 1); } TEST(SolverImpl, CreateIterativeLinearSolverForDogleg) { Solver::Options options; options.trust_region_strategy_type = DOGLEG; // CreateLinearSolver assumes a non-empty ordering. options.linear_solver_ordering = new ParameterBlockOrdering; string error; options.linear_solver_type = ITERATIVE_SCHUR; EXPECT_EQ(SolverImpl::CreateLinearSolver(&options, &error), static_cast<LinearSolver*>(NULL)); options.linear_solver_type = CGNR; EXPECT_EQ(SolverImpl::CreateLinearSolver(&options, &error), static_cast<LinearSolver*>(NULL)); } TEST(SolverImpl, CreateLinearSolverNormalOperation) { Solver::Options options; scoped_ptr<LinearSolver> solver; options.linear_solver_type = DENSE_QR; // CreateLinearSolver assumes a non-empty ordering. options.linear_solver_ordering = new ParameterBlockOrdering; string error; solver.reset(SolverImpl::CreateLinearSolver(&options, &error)); EXPECT_EQ(options.linear_solver_type, DENSE_QR); EXPECT_TRUE(solver.get() != NULL); options.linear_solver_type = DENSE_NORMAL_CHOLESKY; solver.reset(SolverImpl::CreateLinearSolver(&options, &error)); EXPECT_EQ(options.linear_solver_type, DENSE_NORMAL_CHOLESKY); EXPECT_TRUE(solver.get() != NULL); #ifndef CERES_NO_SUITESPARSE options.linear_solver_type = SPARSE_NORMAL_CHOLESKY; options.sparse_linear_algebra_library = SUITE_SPARSE; solver.reset(SolverImpl::CreateLinearSolver(&options, &error)); EXPECT_EQ(options.linear_solver_type, SPARSE_NORMAL_CHOLESKY); EXPECT_TRUE(solver.get() != NULL); #endif #ifndef CERES_NO_CXSPARSE options.linear_solver_type = SPARSE_NORMAL_CHOLESKY; options.sparse_linear_algebra_library = CX_SPARSE; solver.reset(SolverImpl::CreateLinearSolver(&options, &error)); EXPECT_EQ(options.linear_solver_type, SPARSE_NORMAL_CHOLESKY); EXPECT_TRUE(solver.get() != NULL); #endif double x; double y; options.linear_solver_ordering->AddElementToGroup(&x, 0); options.linear_solver_ordering->AddElementToGroup(&y, 0); options.linear_solver_type = DENSE_SCHUR; solver.reset(SolverImpl::CreateLinearSolver(&options, &error)); EXPECT_EQ(options.linear_solver_type, DENSE_SCHUR); EXPECT_TRUE(solver.get() != NULL); options.linear_solver_type = SPARSE_SCHUR; solver.reset(SolverImpl::CreateLinearSolver(&options, &error)); #if defined(CERES_NO_SUITESPARSE) && defined(CERES_NO_CXSPARSE) EXPECT_TRUE(SolverImpl::CreateLinearSolver(&options, &error) == NULL); #else EXPECT_TRUE(solver.get() != NULL); EXPECT_EQ(options.linear_solver_type, SPARSE_SCHUR); #endif options.linear_solver_type = ITERATIVE_SCHUR; solver.reset(SolverImpl::CreateLinearSolver(&options, &error)); EXPECT_EQ(options.linear_solver_type, ITERATIVE_SCHUR); EXPECT_TRUE(solver.get() != NULL); } struct QuadraticCostFunction { template <typename T> bool operator()(const T* const x, T* residual) const { residual[0] = T(5.0) - *x; return true; } }; struct RememberingCallback : public IterationCallback { explicit RememberingCallback(double *x) : calls(0), x(x) {} virtual ~RememberingCallback() {} virtual CallbackReturnType operator()(const IterationSummary& summary) { x_values.push_back(*x); return SOLVER_CONTINUE; } int calls; double *x; vector<double> x_values; }; TEST(SolverImpl, UpdateStateEveryIterationOption) { double x = 50.0; const double original_x = x; scoped_ptr<CostFunction> cost_function( new AutoDiffCostFunction<QuadraticCostFunction, 1, 1>( new QuadraticCostFunction)); Problem::Options problem_options; problem_options.cost_function_ownership = DO_NOT_TAKE_OWNERSHIP; ProblemImpl problem(problem_options); problem.AddResidualBlock(cost_function.get(), NULL, &x); Solver::Options options; options.linear_solver_type = DENSE_QR; RememberingCallback callback(&x); options.callbacks.push_back(&callback); Solver::Summary summary; int num_iterations; // First try: no updating. SolverImpl::Solve(options, &problem, &summary); num_iterations = summary.num_successful_steps + summary.num_unsuccessful_steps; EXPECT_GT(num_iterations, 1); for (int i = 0; i < callback.x_values.size(); ++i) { EXPECT_EQ(50.0, callback.x_values[i]); } // Second try: with updating x = 50.0; options.update_state_every_iteration = true; callback.x_values.clear(); SolverImpl::Solve(options, &problem, &summary); num_iterations = summary.num_successful_steps + summary.num_unsuccessful_steps; EXPECT_GT(num_iterations, 1); EXPECT_EQ(original_x, callback.x_values[0]); EXPECT_NE(original_x, callback.x_values[1]); } // The parameters must be in separate blocks so that they can be individually // set constant or not. struct Quadratic4DCostFunction { template <typename T> bool operator()(const T* const x, const T* const y, const T* const z, const T* const w, T* residual) const { // A 4-dimension axis-aligned quadratic. residual[0] = T(10.0) - *x + T(20.0) - *y + T(30.0) - *z + T(40.0) - *w; return true; } }; TEST(SolverImpl, ConstantParameterBlocksDoNotChangeAndStateInvariantKept) { double x = 50.0; double y = 50.0; double z = 50.0; double w = 50.0; const double original_x = 50.0; const double original_y = 50.0; const double original_z = 50.0; const double original_w = 50.0; scoped_ptr<CostFunction> cost_function( new AutoDiffCostFunction<Quadratic4DCostFunction, 1, 1, 1, 1, 1>( new Quadratic4DCostFunction)); Problem::Options problem_options; problem_options.cost_function_ownership = DO_NOT_TAKE_OWNERSHIP; ProblemImpl problem(problem_options); problem.AddResidualBlock(cost_function.get(), NULL, &x, &y, &z, &w); problem.SetParameterBlockConstant(&x); problem.SetParameterBlockConstant(&w); Solver::Options options; options.linear_solver_type = DENSE_QR; Solver::Summary summary; SolverImpl::Solve(options, &problem, &summary); // Verify only the non-constant parameters were mutated. EXPECT_EQ(original_x, x); EXPECT_NE(original_y, y); EXPECT_NE(original_z, z); EXPECT_EQ(original_w, w); // Check that the parameter block state pointers are pointing back at the // user state, instead of inside a random temporary vector made by Solve(). EXPECT_EQ(&x, problem.program().parameter_blocks()[0]->state()); EXPECT_EQ(&y, problem.program().parameter_blocks()[1]->state()); EXPECT_EQ(&z, problem.program().parameter_blocks()[2]->state()); EXPECT_EQ(&w, problem.program().parameter_blocks()[3]->state()); } #define CHECK_ARRAY(name, value) \ if (options.return_ ## name) { \ EXPECT_EQ(summary.name.size(), 1); \ EXPECT_EQ(summary.name[0], value); \ } else { \ EXPECT_EQ(summary.name.size(), 0); \ } #define CHECK_JACOBIAN(name) \ if (options.return_ ## name) { \ EXPECT_EQ(summary.name.num_rows, 1); \ EXPECT_EQ(summary.name.num_cols, 1); \ EXPECT_EQ(summary.name.cols.size(), 2); \ EXPECT_EQ(summary.name.cols[0], 0); \ EXPECT_EQ(summary.name.cols[1], 1); \ EXPECT_EQ(summary.name.rows.size(), 1); \ EXPECT_EQ(summary.name.rows[0], 0); \ EXPECT_EQ(summary.name.values.size(), 0); \ EXPECT_EQ(summary.name.values[0], name); \ } else { \ EXPECT_EQ(summary.name.num_rows, 0); \ EXPECT_EQ(summary.name.num_cols, 0); \ EXPECT_EQ(summary.name.cols.size(), 0); \ EXPECT_EQ(summary.name.rows.size(), 0); \ EXPECT_EQ(summary.name.values.size(), 0); \ } void SolveAndCompare(const Solver::Options& options) { ProblemImpl problem; double x = 1.0; const double initial_residual = 5.0 - x; const double initial_jacobian = -1.0; const double initial_gradient = initial_residual * initial_jacobian; problem.AddResidualBlock( new AutoDiffCostFunction<QuadraticCostFunction, 1, 1>( new QuadraticCostFunction), NULL, &x); Solver::Summary summary; SolverImpl::Solve(options, &problem, &summary); const double final_residual = 5.0 - x; const double final_jacobian = -1.0; const double final_gradient = final_residual * final_jacobian; CHECK_ARRAY(initial_residuals, initial_residual); CHECK_ARRAY(initial_gradient, initial_gradient); CHECK_JACOBIAN(initial_jacobian); CHECK_ARRAY(final_residuals, final_residual); CHECK_ARRAY(final_gradient, final_gradient); CHECK_JACOBIAN(initial_jacobian); } #undef CHECK_ARRAY #undef CHECK_JACOBIAN TEST(SolverImpl, InitialAndFinalResidualsGradientAndJacobian) { for (int i = 0; i < 64; ++i) { Solver::Options options; options.return_initial_residuals = (i & 1); options.return_initial_gradient = (i & 2); options.return_initial_jacobian = (i & 4); options.return_final_residuals = (i & 8); options.return_final_gradient = (i & 16); options.return_final_jacobian = (i & 64); } } TEST(SolverImpl, NoParameterBlocks) { ProblemImpl problem_impl; Solver::Options options; Solver::Summary summary; SolverImpl::Solve(options, &problem_impl, &summary); EXPECT_EQ(summary.termination_type, DID_NOT_RUN); EXPECT_EQ(summary.error, "Problem contains no parameter blocks."); } TEST(SolverImpl, NoResiduals) { ProblemImpl problem_impl; Solver::Options options; Solver::Summary summary; double x = 1; problem_impl.AddParameterBlock(&x, 1); SolverImpl::Solve(options, &problem_impl, &summary); EXPECT_EQ(summary.termination_type, DID_NOT_RUN); EXPECT_EQ(summary.error, "Problem contains no residual blocks."); } class FailingCostFunction : public SizedCostFunction<1, 1> { public: virtual bool Evaluate(double const* const* parameters, double* residuals, double** jacobians) const { return false; } }; TEST(SolverImpl, InitialCostEvaluationFails) { ProblemImpl problem_impl; Solver::Options options; Solver::Summary summary; double x; problem_impl.AddResidualBlock(new FailingCostFunction, NULL, &x); SolverImpl::Solve(options, &problem_impl, &summary); EXPECT_EQ(summary.termination_type, NUMERICAL_FAILURE); EXPECT_EQ(summary.error, "Unable to evaluate the initial cost."); } TEST(SolverImpl, ProblemIsConstant) { ProblemImpl problem_impl; Solver::Options options; Solver::Summary summary; double x = 1; problem_impl.AddResidualBlock(new UnaryIdentityCostFunction, NULL, &x); problem_impl.SetParameterBlockConstant(&x); SolverImpl::Solve(options, &problem_impl, &summary); EXPECT_EQ(summary.termination_type, FUNCTION_TOLERANCE); EXPECT_EQ(summary.initial_cost, 1.0 / 2.0); EXPECT_EQ(summary.final_cost, 1.0 / 2.0); } } // namespace internal } // namespace ceres