// Ceres Solver - A fast non-linear least squares minimizer // Copyright 2010, 2011, 2012 Google Inc. All rights reserved. // http://code.google.com/p/ceres-solver/ // // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions are met: // // * Redistributions of source code must retain the above copyright notice, // this list of conditions and the following disclaimer. // * Redistributions in binary form must reproduce the above copyright notice, // this list of conditions and the following disclaimer in the documentation // and/or other materials provided with the distribution. // * Neither the name of Google Inc. nor the names of its contributors may be // used to endorse or promote products derived from this software without // specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE // POSSIBILITY OF SUCH DAMAGE. // // Author: sameeragarwal@google.com (Sameer Agarwal) // // A simple C++ interface to the SuiteSparse and CHOLMOD libraries. #ifndef CERES_INTERNAL_SUITESPARSE_H_ #define CERES_INTERNAL_SUITESPARSE_H_ #ifndef CERES_NO_SUITESPARSE #include <cstring> #include <string> #include <vector> #include <glog/logging.h> #include "cholmod.h" #include "ceres/internal/port.h" namespace ceres { namespace internal { class CompressedRowSparseMatrix; class TripletSparseMatrix; // The raw CHOLMOD and SuiteSparseQR libraries have a slightly // cumbersome c like calling format. This object abstracts it away and // provides the user with a simpler interface. The methods here cannot // be static as a cholmod_common object serves as a global variable // for all cholmod function calls. class SuiteSparse { public: SuiteSparse() { cholmod_start(&cc_); } ~SuiteSparse() { cholmod_finish(&cc_); } // Functions for building cholmod_sparse objects from sparse // matrices stored in triplet form. The matrix A is not // modifed. Called owns the result. cholmod_sparse* CreateSparseMatrix(TripletSparseMatrix* A); // This function works like CreateSparseMatrix, except that the // return value corresponds to A' rather than A. cholmod_sparse* CreateSparseMatrixTranspose(TripletSparseMatrix* A); // Create a cholmod_sparse wrapper around the contents of A. This is // a shallow object, which refers to the contents of A and does not // use the SuiteSparse machinery to allocate memory, this object // should be disposed off with a delete and not a call to Free as is // the case for objects returned by CreateSparseMatrixTranspose. cholmod_sparse* CreateSparseMatrixTransposeView(CompressedRowSparseMatrix* A); // Given a vector x, build a cholmod_dense vector of size out_size // with the first in_size entries copied from x. If x is NULL, then // an all zeros vector is returned. Caller owns the result. cholmod_dense* CreateDenseVector(const double* x, int in_size, int out_size); // The matrix A is scaled using the matrix whose diagonal is the // vector scale. mode describes how scaling is applied. Possible // values are CHOLMOD_ROW for row scaling - diag(scale) * A, // CHOLMOD_COL for column scaling - A * diag(scale) and CHOLMOD_SYM // for symmetric scaling which scales both the rows and the columns // - diag(scale) * A * diag(scale). void Scale(cholmod_dense* scale, int mode, cholmod_sparse* A) { cholmod_scale(scale, mode, A, &cc_); } // Create and return a matrix m = A * A'. Caller owns the // result. The matrix A is not modified. cholmod_sparse* AATranspose(cholmod_sparse* A) { cholmod_sparse*m = cholmod_aat(A, NULL, A->nrow, 1, &cc_); m->stype = 1; // Pay attention to the upper triangular part. return m; } // y = alpha * A * x + beta * y. Only y is modified. void SparseDenseMultiply(cholmod_sparse* A, double alpha, double beta, cholmod_dense* x, cholmod_dense* y) { double alpha_[2] = {alpha, 0}; double beta_[2] = {beta, 0}; cholmod_sdmult(A, 0, alpha_, beta_, x, y, &cc_); } // Find an ordering of A or AA' (if A is unsymmetric) that minimizes // the fill-in in the Cholesky factorization of the corresponding // matrix. This is done by using the AMD algorithm. // // Using this ordering, the symbolic Cholesky factorization of A (or // AA') is computed and returned. // // A is not modified, only the pattern of non-zeros of A is used, // the actual numerical values in A are of no consequence. // // Caller owns the result. cholmod_factor* AnalyzeCholesky(cholmod_sparse* A); cholmod_factor* BlockAnalyzeCholesky(cholmod_sparse* A, const vector<int>& row_blocks, const vector<int>& col_blocks); // If A is symmetric, then compute the symbolic Cholesky // factorization of A(ordering, ordering). If A is unsymmetric, then // compute the symbolic factorization of // A(ordering,:) A(ordering,:)'. // // A is not modified, only the pattern of non-zeros of A is used, // the actual numerical values in A are of no consequence. // // Caller owns the result. cholmod_factor* AnalyzeCholeskyWithUserOrdering(cholmod_sparse* A, const vector<int>& ordering); // Use the symbolic factorization in L, to find the numerical // factorization for the matrix A or AA^T. Return true if // successful, false otherwise. L contains the numeric factorization // on return. bool Cholesky(cholmod_sparse* A, cholmod_factor* L); // Given a Cholesky factorization of a matrix A = LL^T, solve the // linear system Ax = b, and return the result. If the Solve fails // NULL is returned. Caller owns the result. cholmod_dense* Solve(cholmod_factor* L, cholmod_dense* b); // Combine the calls to Cholesky and Solve into a single call. If // the cholesky factorization or the solve fails, return // NULL. Caller owns the result. cholmod_dense* SolveCholesky(cholmod_sparse* A, cholmod_factor* L, cholmod_dense* b); // By virtue of the modeling layer in Ceres being block oriented, // all the matrices used by Ceres are also block oriented. When // doing sparse direct factorization of these matrices the // fill-reducing ordering algorithms (in particular AMD) can either // be run on the block or the scalar form of these matrices. The two // SuiteSparse::AnalyzeCholesky methods allows the the client to // compute the symbolic factorization of a matrix by either using // AMD on the matrix or a user provided ordering of the rows. // // But since the underlying matrices are block oriented, it is worth // running AMD on just the block structre of these matrices and then // lifting these block orderings to a full scalar ordering. This // preserves the block structure of the permuted matrix, and exposes // more of the super-nodal structure of the matrix to the numerical // factorization routines. // // Find the block oriented AMD ordering of a matrix A, whose row and // column blocks are given by row_blocks, and col_blocks // respectively. The matrix may or may not be symmetric. The entries // of col_blocks do not need to sum to the number of columns in // A. If this is the case, only the first sum(col_blocks) are used // to compute the ordering. bool BlockAMDOrdering(const cholmod_sparse* A, const vector<int>& row_blocks, const vector<int>& col_blocks, vector<int>* ordering); // Given a set of blocks and a permutation of these blocks, compute // the corresponding "scalar" ordering, where the scalar ordering of // size sum(blocks). static void BlockOrderingToScalarOrdering(const vector<int>& blocks, const vector<int>& block_ordering, vector<int>* scalar_ordering); // Extract the block sparsity pattern of the scalar sparse matrix // A and return it in compressed column form. The compressed column // form is stored in two vectors block_rows, and block_cols, which // correspond to the row and column arrays in a compressed column sparse // matrix. // // If c_ij is the block in the matrix A corresponding to row block i // and column block j, then it is expected that A contains at least // one non-zero entry corresponding to the top left entry of c_ij, // as that entry is used to detect the presence of a non-zero c_ij. static void ScalarMatrixToBlockMatrix(const cholmod_sparse* A, const vector<int>& row_blocks, const vector<int>& col_blocks, vector<int>* block_rows, vector<int>* block_cols); void Free(cholmod_sparse* m) { cholmod_free_sparse(&m, &cc_); } void Free(cholmod_dense* m) { cholmod_free_dense(&m, &cc_); } void Free(cholmod_factor* m) { cholmod_free_factor(&m, &cc_); } void Print(cholmod_sparse* m, const string& name) { cholmod_print_sparse(m, const_cast<char*>(name.c_str()), &cc_); } void Print(cholmod_dense* m, const string& name) { cholmod_print_dense(m, const_cast<char*>(name.c_str()), &cc_); } void Print(cholmod_triplet* m, const string& name) { cholmod_print_triplet(m, const_cast<char*>(name.c_str()), &cc_); } cholmod_common* mutable_cc() { return &cc_; } private: cholmod_common cc_; }; } // namespace internal } // namespace ceres #endif // CERES_NO_SUITESPARSE #endif // CERES_INTERNAL_SUITESPARSE_H_