// Ceres Solver - A fast non-linear least squares minimizer // Copyright 2010, 2011, 2012 Google Inc. All rights reserved. // http://code.google.com/p/ceres-solver/ // // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions are met: // // * Redistributions of source code must retain the above copyright notice, // this list of conditions and the following disclaimer. // * Redistributions in binary form must reproduce the above copyright notice, // this list of conditions and the following disclaimer in the documentation // and/or other materials provided with the distribution. // * Neither the name of Google Inc. nor the names of its contributors may be // used to endorse or promote products derived from this software without // specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE // POSSIBILITY OF SUCH DAMAGE. // // Author: kushalav@google.com (Avanish Kushal) #include <cmath> #include <ctime> #include <algorithm> #include <set> #include <vector> #include <utility> #include "ceres/block_structure.h" #include "ceres/collections_port.h" #include "ceres/graph.h" #include "glog/logging.h" namespace ceres { namespace internal { void ComputeVisibility(const CompressedRowBlockStructure& block_structure, const int num_eliminate_blocks, vector< set<int> >* visibility) { CHECK_NOTNULL(visibility); // Clear the visibility vector and resize it to hold a // vector for each camera. visibility->resize(0); visibility->resize(block_structure.cols.size() - num_eliminate_blocks); for (int i = 0; i < block_structure.rows.size(); ++i) { const vector<Cell>& cells = block_structure.rows[i].cells; int block_id = cells[0].block_id; // If the first block is not an e_block, then skip this row block. if (block_id >= num_eliminate_blocks) { continue; } for (int j = 1; j < cells.size(); ++j) { int camera_block_id = cells[j].block_id - num_eliminate_blocks; DCHECK_GE(camera_block_id, 0); DCHECK_LT(camera_block_id, visibility->size()); (*visibility)[camera_block_id].insert(block_id); } } } Graph<int>* CreateSchurComplementGraph(const vector<set<int> >& visibility) { const time_t start_time = time(NULL); // Compute the number of e_blocks/point blocks. Since the visibility // set for each e_block/camera contains the set of e_blocks/points // visible to it, we find the maximum across all visibility sets. int num_points = 0; for (int i = 0; i < visibility.size(); i++) { if (visibility[i].size() > 0) { num_points = max(num_points, (*visibility[i].rbegin()) + 1); } } // Invert the visibility. The input is a camera->point mapping, // which tells us which points are visible in which // cameras. However, to compute the sparsity structure of the Schur // Complement efficiently, its better to have the point->camera // mapping. vector<set<int> > inverse_visibility(num_points); for (int i = 0; i < visibility.size(); i++) { const set<int>& visibility_set = visibility[i]; for (set<int>::const_iterator it = visibility_set.begin(); it != visibility_set.end(); ++it) { inverse_visibility[*it].insert(i); } } // Map from camera pairs to number of points visible to both cameras // in the pair. HashMap<pair<int, int>, int > camera_pairs; // Count the number of points visible to each camera/f_block pair. for (vector<set<int> >::const_iterator it = inverse_visibility.begin(); it != inverse_visibility.end(); ++it) { const set<int>& inverse_visibility_set = *it; for (set<int>::const_iterator camera1 = inverse_visibility_set.begin(); camera1 != inverse_visibility_set.end(); ++camera1) { set<int>::const_iterator camera2 = camera1; for (++camera2; camera2 != inverse_visibility_set.end(); ++camera2) { ++(camera_pairs[make_pair(*camera1, *camera2)]); } } } Graph<int>* graph = new Graph<int>(); // Add vertices and initialize the pairs for self edges so that self // edges are guaranteed. This is needed for the Canonical views // algorithm to work correctly. static const double kSelfEdgeWeight = 1.0; for (int i = 0; i < visibility.size(); ++i) { graph->AddVertex(i); graph->AddEdge(i, i, kSelfEdgeWeight); } // Add an edge for each camera pair. for (HashMap<pair<int, int>, int>::const_iterator it = camera_pairs.begin(); it != camera_pairs.end(); ++it) { const int camera1 = it->first.first; const int camera2 = it->first.second; CHECK_NE(camera1, camera2); const int count = it->second; // Static cast necessary for Windows. const double weight = static_cast<double>(count) / (sqrt(static_cast<double>(visibility[camera1].size() * visibility[camera2].size()))); graph->AddEdge(camera1, camera2, weight); } VLOG(2) << "Schur complement graph time: " << (time(NULL) - start_time); return graph; } } // namespace internal } // namespace ceres