// Copyright (c) 2010 The Chromium Authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #include "base/threading/worker_pool_posix.h" #include <set> #include "base/synchronization/condition_variable.h" #include "base/synchronization/lock.h" #include "base/task.h" #include "base/threading/platform_thread.h" #include "base/synchronization/waitable_event.h" #include "testing/gtest/include/gtest/gtest.h" namespace base { // Peer class to provide passthrough access to PosixDynamicThreadPool internals. class PosixDynamicThreadPool::PosixDynamicThreadPoolPeer { public: explicit PosixDynamicThreadPoolPeer(PosixDynamicThreadPool* pool) : pool_(pool) {} Lock* lock() { return &pool_->lock_; } ConditionVariable* tasks_available_cv() { return &pool_->tasks_available_cv_; } const std::queue<Task*>& tasks() const { return pool_->tasks_; } int num_idle_threads() const { return pool_->num_idle_threads_; } ConditionVariable* num_idle_threads_cv() { return pool_->num_idle_threads_cv_.get(); } void set_num_idle_threads_cv(ConditionVariable* cv) { pool_->num_idle_threads_cv_.reset(cv); } private: PosixDynamicThreadPool* pool_; DISALLOW_COPY_AND_ASSIGN(PosixDynamicThreadPoolPeer); }; namespace { // IncrementingTask's main purpose is to increment a counter. It also updates a // set of unique thread ids, and signals a ConditionVariable on completion. // Note that since it does not block, there is no way to control the number of // threads used if more than one IncrementingTask is consecutively posted to the // thread pool, since the first one might finish executing before the subsequent // PostTask() calls get invoked. class IncrementingTask : public Task { public: IncrementingTask(Lock* counter_lock, int* counter, Lock* unique_threads_lock, std::set<PlatformThreadId>* unique_threads) : counter_lock_(counter_lock), unique_threads_lock_(unique_threads_lock), unique_threads_(unique_threads), counter_(counter) {} virtual void Run() { AddSelfToUniqueThreadSet(); base::AutoLock locked(*counter_lock_); (*counter_)++; } void AddSelfToUniqueThreadSet() { base::AutoLock locked(*unique_threads_lock_); unique_threads_->insert(PlatformThread::CurrentId()); } private: Lock* counter_lock_; Lock* unique_threads_lock_; std::set<PlatformThreadId>* unique_threads_; int* counter_; DISALLOW_COPY_AND_ASSIGN(IncrementingTask); }; // BlockingIncrementingTask is a simple wrapper around IncrementingTask that // allows for waiting at the start of Run() for a WaitableEvent to be signalled. class BlockingIncrementingTask : public Task { public: BlockingIncrementingTask(Lock* counter_lock, int* counter, Lock* unique_threads_lock, std::set<PlatformThreadId>* unique_threads, Lock* num_waiting_to_start_lock, int* num_waiting_to_start, ConditionVariable* num_waiting_to_start_cv, base::WaitableEvent* start) : incrementer_( counter_lock, counter, unique_threads_lock, unique_threads), num_waiting_to_start_lock_(num_waiting_to_start_lock), num_waiting_to_start_(num_waiting_to_start), num_waiting_to_start_cv_(num_waiting_to_start_cv), start_(start) {} virtual void Run() { { base::AutoLock num_waiting_to_start_locked(*num_waiting_to_start_lock_); (*num_waiting_to_start_)++; } num_waiting_to_start_cv_->Signal(); CHECK(start_->Wait()); incrementer_.Run(); } private: IncrementingTask incrementer_; Lock* num_waiting_to_start_lock_; int* num_waiting_to_start_; ConditionVariable* num_waiting_to_start_cv_; base::WaitableEvent* start_; DISALLOW_COPY_AND_ASSIGN(BlockingIncrementingTask); }; class PosixDynamicThreadPoolTest : public testing::Test { protected: PosixDynamicThreadPoolTest() : pool_(new base::PosixDynamicThreadPool("dynamic_pool", 60*60)), peer_(pool_.get()), counter_(0), num_waiting_to_start_(0), num_waiting_to_start_cv_(&num_waiting_to_start_lock_), start_(true, false) {} virtual void SetUp() { peer_.set_num_idle_threads_cv(new ConditionVariable(peer_.lock())); } virtual void TearDown() { // Wake up the idle threads so they can terminate. if (pool_.get()) pool_->Terminate(); } void WaitForTasksToStart(int num_tasks) { base::AutoLock num_waiting_to_start_locked(num_waiting_to_start_lock_); while (num_waiting_to_start_ < num_tasks) { num_waiting_to_start_cv_.Wait(); } } void WaitForIdleThreads(int num_idle_threads) { base::AutoLock pool_locked(*peer_.lock()); while (peer_.num_idle_threads() < num_idle_threads) { peer_.num_idle_threads_cv()->Wait(); } } Task* CreateNewIncrementingTask() { return new IncrementingTask(&counter_lock_, &counter_, &unique_threads_lock_, &unique_threads_); } Task* CreateNewBlockingIncrementingTask() { return new BlockingIncrementingTask( &counter_lock_, &counter_, &unique_threads_lock_, &unique_threads_, &num_waiting_to_start_lock_, &num_waiting_to_start_, &num_waiting_to_start_cv_, &start_); } scoped_refptr<base::PosixDynamicThreadPool> pool_; base::PosixDynamicThreadPool::PosixDynamicThreadPoolPeer peer_; Lock counter_lock_; int counter_; Lock unique_threads_lock_; std::set<PlatformThreadId> unique_threads_; Lock num_waiting_to_start_lock_; int num_waiting_to_start_; ConditionVariable num_waiting_to_start_cv_; base::WaitableEvent start_; }; } // namespace TEST_F(PosixDynamicThreadPoolTest, Basic) { EXPECT_EQ(0, peer_.num_idle_threads()); EXPECT_EQ(0U, unique_threads_.size()); EXPECT_EQ(0U, peer_.tasks().size()); // Add one task and wait for it to be completed. pool_->PostTask(CreateNewIncrementingTask()); WaitForIdleThreads(1); EXPECT_EQ(1U, unique_threads_.size()) << "There should be only one thread allocated for one task."; EXPECT_EQ(1, peer_.num_idle_threads()); EXPECT_EQ(1, counter_); } TEST_F(PosixDynamicThreadPoolTest, ReuseIdle) { // Add one task and wait for it to be completed. pool_->PostTask(CreateNewIncrementingTask()); WaitForIdleThreads(1); // Add another 2 tasks. One should reuse the existing worker thread. pool_->PostTask(CreateNewBlockingIncrementingTask()); pool_->PostTask(CreateNewBlockingIncrementingTask()); WaitForTasksToStart(2); start_.Signal(); WaitForIdleThreads(2); EXPECT_EQ(2U, unique_threads_.size()); EXPECT_EQ(2, peer_.num_idle_threads()); EXPECT_EQ(3, counter_); } TEST_F(PosixDynamicThreadPoolTest, TwoActiveTasks) { // Add two blocking tasks. pool_->PostTask(CreateNewBlockingIncrementingTask()); pool_->PostTask(CreateNewBlockingIncrementingTask()); EXPECT_EQ(0, counter_) << "Blocking tasks should not have started yet."; WaitForTasksToStart(2); start_.Signal(); WaitForIdleThreads(2); EXPECT_EQ(2U, unique_threads_.size()); EXPECT_EQ(2, peer_.num_idle_threads()) << "Existing threads are now idle."; EXPECT_EQ(2, counter_); } TEST_F(PosixDynamicThreadPoolTest, Complex) { // Add two non blocking tasks and wait for them to finish. pool_->PostTask(CreateNewIncrementingTask()); WaitForIdleThreads(1); // Add two blocking tasks, start them simultaneously, and wait for them to // finish. pool_->PostTask(CreateNewBlockingIncrementingTask()); pool_->PostTask(CreateNewBlockingIncrementingTask()); WaitForTasksToStart(2); start_.Signal(); WaitForIdleThreads(2); EXPECT_EQ(3, counter_); EXPECT_EQ(2, peer_.num_idle_threads()); EXPECT_EQ(2U, unique_threads_.size()); // Wake up all idle threads so they can exit. { base::AutoLock locked(*peer_.lock()); while (peer_.num_idle_threads() > 0) { peer_.tasks_available_cv()->Signal(); peer_.num_idle_threads_cv()->Wait(); } } // Add another non blocking task. There are no threads to reuse. pool_->PostTask(CreateNewIncrementingTask()); WaitForIdleThreads(1); EXPECT_EQ(3U, unique_threads_.size()); EXPECT_EQ(1, peer_.num_idle_threads()); EXPECT_EQ(4, counter_); } } // namespace base