/* * libjingle * Copyright 2004--2005, Google Inc. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are met: * * 1. Redistributions of source code must retain the above copyright notice, * this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright notice, * this list of conditions and the following disclaimer in the documentation * and/or other materials provided with the distribution. * 3. The name of the author may not be used to endorse or promote products * derived from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR * OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF * ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ // Copyright 2005 Google Inc. All Rights Reserved. // #ifdef WIN32 #include "talk/base/win32.h" #else // !WIN32 #define SEC_E_CERT_EXPIRED (-2146893016) #endif // !WIN32 #include "talk/base/common.h" #include "talk/base/httpbase.h" #include "talk/base/logging.h" #include "talk/base/socket.h" #include "talk/base/stringutils.h" #include "talk/base/thread.h" namespace talk_base { ////////////////////////////////////////////////////////////////////// // Helpers ////////////////////////////////////////////////////////////////////// bool MatchHeader(const char* str, size_t len, HttpHeader header) { const char* const header_str = ToString(header); const size_t header_len = strlen(header_str); return (len == header_len) && (_strnicmp(str, header_str, header_len) == 0); } enum { MSG_READ }; ////////////////////////////////////////////////////////////////////// // HttpParser ////////////////////////////////////////////////////////////////////// HttpParser::HttpParser() { reset(); } HttpParser::~HttpParser() { } void HttpParser::reset() { state_ = ST_LEADER; chunked_ = false; data_size_ = SIZE_UNKNOWN; } HttpParser::ProcessResult HttpParser::Process(const char* buffer, size_t len, size_t* processed, HttpError* error) { *processed = 0; *error = HE_NONE; if (state_ >= ST_COMPLETE) { ASSERT(false); return PR_COMPLETE; } while (true) { if (state_ < ST_DATA) { size_t pos = *processed; while ((pos < len) && (buffer[pos] != '\n')) { pos += 1; } if (pos >= len) { break; // don't have a full header } const char* line = buffer + *processed; size_t len = (pos - *processed); *processed = pos + 1; while ((len > 0) && isspace(static_cast<unsigned char>(line[len-1]))) { len -= 1; } ProcessResult result = ProcessLine(line, len, error); LOG(LS_VERBOSE) << "Processed line, result=" << result; if (PR_CONTINUE != result) { return result; } } else if (data_size_ == 0) { if (chunked_) { state_ = ST_CHUNKTERM; } else { return PR_COMPLETE; } } else { size_t available = len - *processed; if (available <= 0) { break; // no more data } if ((data_size_ != SIZE_UNKNOWN) && (available > data_size_)) { available = data_size_; } size_t read = 0; ProcessResult result = ProcessData(buffer + *processed, available, read, error); LOG(LS_VERBOSE) << "Processed data, result: " << result << " read: " << read << " err: " << error; if (PR_CONTINUE != result) { return result; } *processed += read; if (data_size_ != SIZE_UNKNOWN) { data_size_ -= read; } } } return PR_CONTINUE; } HttpParser::ProcessResult HttpParser::ProcessLine(const char* line, size_t len, HttpError* error) { LOG_F(LS_VERBOSE) << " state: " << state_ << " line: " << std::string(line, len) << " len: " << len << " err: " << error; switch (state_) { case ST_LEADER: state_ = ST_HEADERS; return ProcessLeader(line, len, error); case ST_HEADERS: if (len > 0) { const char* value = strchrn(line, len, ':'); if (!value) { *error = HE_PROTOCOL; return PR_COMPLETE; } size_t nlen = (value - line); const char* eol = line + len; do { value += 1; } while ((value < eol) && isspace(static_cast<unsigned char>(*value))); size_t vlen = eol - value; if (MatchHeader(line, nlen, HH_CONTENT_LENGTH)) { unsigned int temp_size; if (sscanf(value, "%u", &temp_size) != 1) { *error = HE_PROTOCOL; return PR_COMPLETE; } data_size_ = static_cast<size_t>(temp_size); } else if (MatchHeader(line, nlen, HH_TRANSFER_ENCODING)) { if ((vlen == 7) && (_strnicmp(value, "chunked", 7) == 0)) { chunked_ = true; } else if ((vlen == 8) && (_strnicmp(value, "identity", 8) == 0)) { chunked_ = false; } else { *error = HE_PROTOCOL; return PR_COMPLETE; } } return ProcessHeader(line, nlen, value, vlen, error); } else { state_ = chunked_ ? ST_CHUNKSIZE : ST_DATA; return ProcessHeaderComplete(chunked_, data_size_, error); } break; case ST_CHUNKSIZE: if (len > 0) { char* ptr = NULL; data_size_ = strtoul(line, &ptr, 16); if (ptr != line + len) { *error = HE_PROTOCOL; return PR_COMPLETE; } state_ = (data_size_ == 0) ? ST_TRAILERS : ST_DATA; } else { *error = HE_PROTOCOL; return PR_COMPLETE; } break; case ST_CHUNKTERM: if (len > 0) { *error = HE_PROTOCOL; return PR_COMPLETE; } else { state_ = chunked_ ? ST_CHUNKSIZE : ST_DATA; } break; case ST_TRAILERS: if (len == 0) { return PR_COMPLETE; } // *error = onHttpRecvTrailer(); break; default: ASSERT(false); break; } return PR_CONTINUE; } bool HttpParser::is_valid_end_of_input() const { return (state_ == ST_DATA) && (data_size_ == SIZE_UNKNOWN); } void HttpParser::complete(HttpError error) { if (state_ < ST_COMPLETE) { state_ = ST_COMPLETE; OnComplete(error); } } ////////////////////////////////////////////////////////////////////// // HttpBase::DocumentStream ////////////////////////////////////////////////////////////////////// class BlockingMemoryStream : public ExternalMemoryStream { public: BlockingMemoryStream(char* buffer, size_t size) : ExternalMemoryStream(buffer, size) { } virtual StreamResult DoReserve(size_t size, int* error) { return (buffer_length_ >= size) ? SR_SUCCESS : SR_BLOCK; } }; class HttpBase::DocumentStream : public StreamInterface { public: DocumentStream(HttpBase* base) : base_(base), error_(HE_DEFAULT) { } virtual StreamState GetState() const { if (NULL == base_) return SS_CLOSED; if (HM_RECV == base_->mode_) return SS_OPEN; return SS_OPENING; } virtual StreamResult Read(void* buffer, size_t buffer_len, size_t* read, int* error) { if (!base_) { if (error) *error = error_; return (HE_NONE == error_) ? SR_EOS : SR_ERROR; } if (HM_RECV != base_->mode_) { return SR_BLOCK; } // DoReceiveLoop writes http document data to the StreamInterface* document // member of HttpData. In this case, we want this data to be written // directly to our buffer. To accomplish this, we wrap our buffer with a // StreamInterface, and replace the existing document with our wrapper. // When the method returns, we restore the old document. Ideally, we would // pass our StreamInterface* to DoReceiveLoop, but due to the callbacks // of HttpParser, we would still need to store the pointer temporarily. scoped_ptr<StreamInterface> stream(new BlockingMemoryStream(reinterpret_cast<char*>(buffer), buffer_len)); // Replace the existing document with our wrapped buffer. base_->data_->document.swap(stream); // Pump the I/O loop. DoReceiveLoop is guaranteed not to attempt to // complete the I/O process, which means that our wrapper is not in danger // of being deleted. To ensure this, DoReceiveLoop returns true when it // wants complete to be called. We make sure to uninstall our wrapper // before calling complete(). HttpError http_error; bool complete = base_->DoReceiveLoop(&http_error); // Reinstall the original output document. base_->data_->document.swap(stream); // If we reach the end of the receive stream, we disconnect our stream // adapter from the HttpBase, and further calls to read will either return // EOS or ERROR, appropriately. Finally, we call complete(). StreamResult result = SR_BLOCK; if (complete) { HttpBase* base = Disconnect(http_error); if (error) *error = error_; result = (HE_NONE == error_) ? SR_EOS : SR_ERROR; base->complete(http_error); } // Even if we are complete, if some data was read we must return SUCCESS. // Future Reads will return EOS or ERROR based on the error_ variable. size_t position; stream->GetPosition(&position); if (position > 0) { if (read) *read = position; result = SR_SUCCESS; } return result; } virtual StreamResult Write(const void* data, size_t data_len, size_t* written, int* error) { if (error) *error = -1; return SR_ERROR; } virtual void Close() { if (base_) { HttpBase* base = Disconnect(HE_NONE); if (HM_RECV == base->mode_ && base->http_stream_) { // Read I/O could have been stalled on the user of this DocumentStream, // so restart the I/O process now that we've removed ourselves. base->http_stream_->PostEvent(SE_READ, 0); } } } virtual bool GetAvailable(size_t* size) const { if (!base_ || HM_RECV != base_->mode_) return false; size_t data_size = base_->GetDataRemaining(); if (SIZE_UNKNOWN == data_size) return false; if (size) *size = data_size; return true; } HttpBase* Disconnect(HttpError error) { ASSERT(NULL != base_); ASSERT(NULL != base_->doc_stream_); HttpBase* base = base_; base_->doc_stream_ = NULL; base_ = NULL; error_ = error; return base; } private: HttpBase* base_; HttpError error_; }; ////////////////////////////////////////////////////////////////////// // HttpBase ////////////////////////////////////////////////////////////////////// HttpBase::HttpBase() : mode_(HM_NONE), data_(NULL), notify_(NULL), http_stream_(NULL), doc_stream_(NULL) { } HttpBase::~HttpBase() { ASSERT(HM_NONE == mode_); } bool HttpBase::isConnected() const { return (http_stream_ != NULL) && (http_stream_->GetState() == SS_OPEN); } bool HttpBase::attach(StreamInterface* stream) { if ((mode_ != HM_NONE) || (http_stream_ != NULL) || (stream == NULL)) { ASSERT(false); return false; } http_stream_ = stream; http_stream_->SignalEvent.connect(this, &HttpBase::OnHttpStreamEvent); mode_ = (http_stream_->GetState() == SS_OPENING) ? HM_CONNECT : HM_NONE; return true; } StreamInterface* HttpBase::detach() { ASSERT(HM_NONE == mode_); if (mode_ != HM_NONE) { return NULL; } StreamInterface* stream = http_stream_; http_stream_ = NULL; if (stream) { stream->SignalEvent.disconnect(this); } return stream; } void HttpBase::send(HttpData* data) { ASSERT(HM_NONE == mode_); if (mode_ != HM_NONE) { return; } else if (!isConnected()) { OnHttpStreamEvent(http_stream_, SE_CLOSE, HE_DISCONNECTED); return; } mode_ = HM_SEND; data_ = data; len_ = 0; ignore_data_ = chunk_data_ = false; if (data_->document.get()) { data_->document->SignalEvent.connect(this, &HttpBase::OnDocumentEvent); } std::string encoding; if (data_->hasHeader(HH_TRANSFER_ENCODING, &encoding) && (encoding == "chunked")) { chunk_data_ = true; } len_ = data_->formatLeader(buffer_, sizeof(buffer_)); len_ += strcpyn(buffer_ + len_, sizeof(buffer_) - len_, "\r\n"); header_ = data_->begin(); if (header_ == data_->end()) { // We must call this at least once, in the case where there are no headers. queue_headers(); } flush_data(); } void HttpBase::recv(HttpData* data) { ASSERT(HM_NONE == mode_); if (mode_ != HM_NONE) { return; } else if (!isConnected()) { OnHttpStreamEvent(http_stream_, SE_CLOSE, HE_DISCONNECTED); return; } mode_ = HM_RECV; data_ = data; len_ = 0; ignore_data_ = chunk_data_ = false; reset(); if (doc_stream_) { doc_stream_->SignalEvent(doc_stream_, SE_OPEN | SE_READ, 0); } else { read_and_process_data(); } } void HttpBase::abort(HttpError err) { if (mode_ != HM_NONE) { if (http_stream_ != NULL) { http_stream_->Close(); } do_complete(err); } } StreamInterface* HttpBase::GetDocumentStream() { if (doc_stream_) return NULL; doc_stream_ = new DocumentStream(this); return doc_stream_; } HttpError HttpBase::HandleStreamClose(int error) { if (http_stream_ != NULL) { http_stream_->Close(); } if (error == 0) { if ((mode_ == HM_RECV) && is_valid_end_of_input()) { return HE_NONE; } else { return HE_DISCONNECTED; } } else if (error == SOCKET_EACCES) { return HE_AUTH; } else if (error == SEC_E_CERT_EXPIRED) { return HE_CERTIFICATE_EXPIRED; } LOG_F(LS_ERROR) << "(" << error << ")"; return (HM_CONNECT == mode_) ? HE_CONNECT_FAILED : HE_SOCKET_ERROR; } bool HttpBase::DoReceiveLoop(HttpError* error) { ASSERT(HM_RECV == mode_); ASSERT(NULL != error); // Do to the latency between receiving read notifications from // pseudotcpchannel, we rely on repeated calls to read in order to acheive // ideal throughput. The number of reads is limited to prevent starving // the caller. size_t loop_count = 0; const size_t kMaxReadCount = 20; bool process_requires_more_data = false; do { // The most frequent use of this function is response to new data available // on http_stream_. Therefore, we optimize by attempting to read from the // network first (as opposed to processing existing data first). if (len_ < sizeof(buffer_)) { // Attempt to buffer more data. size_t read; int read_error; StreamResult read_result = http_stream_->Read(buffer_ + len_, sizeof(buffer_) - len_, &read, &read_error); switch (read_result) { case SR_SUCCESS: ASSERT(len_ + read <= sizeof(buffer_)); len_ += read; break; case SR_BLOCK: if (process_requires_more_data) { // We're can't make progress until more data is available. return false; } // Attempt to process the data already in our buffer. break; case SR_EOS: // Clean close, with no error. Fall through to HandleStreamClose. read_error = 0; case SR_ERROR: *error = HandleStreamClose(read_error); return true; } } else if (process_requires_more_data) { // We have too much unprocessed data in our buffer. This should only // occur when a single HTTP header is longer than the buffer size (32K). // Anything longer than that is almost certainly an error. *error = HE_OVERFLOW; return true; } // Process data in our buffer. Process is not guaranteed to process all // the buffered data. In particular, it will wait until a complete // protocol element (such as http header, or chunk size) is available, // before processing it in its entirety. Also, it is valid and sometimes // necessary to call Process with an empty buffer, since the state machine // may have interrupted state transitions to complete. size_t processed; ProcessResult process_result = Process(buffer_, len_, &processed, error); ASSERT(processed <= len_); len_ -= processed; memmove(buffer_, buffer_ + processed, len_); switch (process_result) { case PR_CONTINUE: // We need more data to make progress. process_requires_more_data = true; break; case PR_BLOCK: // We're stalled on writing the processed data. return false; case PR_COMPLETE: // *error already contains the correct code. return true; } } while (++loop_count <= kMaxReadCount); LOG_F(LS_WARNING) << "danger of starvation"; return false; } void HttpBase::read_and_process_data() { HttpError error; if (DoReceiveLoop(&error)) { complete(error); } } void HttpBase::flush_data() { ASSERT(HM_SEND == mode_); // When send_required is true, no more buffering can occur without a network // write. bool send_required = (len_ >= sizeof(buffer_)); while (true) { ASSERT(len_ <= sizeof(buffer_)); // HTTP is inherently sensitive to round trip latency, since a frequent use // case is for small requests and responses to be sent back and forth, and // the lack of pipelining forces a single request to take a minimum of the // round trip time. As a result, it is to our benefit to pack as much data // into each packet as possible. Thus, we defer network writes until we've // buffered as much data as possible. if (!send_required && (header_ != data_->end())) { // First, attempt to queue more header data. send_required = queue_headers(); } if (!send_required && (NULL != data_->document.get())) { // Next, attempt to queue document data. const size_t kChunkDigits = 8; size_t offset, reserve; if (chunk_data_) { // Reserve characters at the start for X-byte hex value and \r\n offset = len_ + kChunkDigits + 2; // ... and 2 characters at the end for \r\n reserve = offset + 2; } else { offset = len_; reserve = offset; } if (reserve >= sizeof(buffer_)) { send_required = true; } else { size_t read; int error; StreamResult result = data_->document->Read(buffer_ + offset, sizeof(buffer_) - reserve, &read, &error); if (result == SR_SUCCESS) { ASSERT(reserve + read <= sizeof(buffer_)); if (chunk_data_) { // Prepend the chunk length in hex. // Note: sprintfn appends a null terminator, which is why we can't // combine it with the line terminator. sprintfn(buffer_ + len_, kChunkDigits + 1, "%.*x", kChunkDigits, read); // Add line terminator to the chunk length. memcpy(buffer_ + len_ + kChunkDigits, "\r\n", 2); // Add line terminator to the end of the chunk. memcpy(buffer_ + offset + read, "\r\n", 2); } len_ = reserve + read; } else if (result == SR_BLOCK) { // Nothing to do but flush data to the network. send_required = true; } else if (result == SR_EOS) { if (chunk_data_) { // Append the empty chunk and empty trailers, then turn off // chunking. ASSERT(len_ + 5 <= sizeof(buffer_)); memcpy(buffer_ + len_, "0\r\n\r\n", 5); len_ += 5; chunk_data_ = false; } else if (0 == len_) { // No more data to read, and no more data to write. do_complete(); return; } // Although we are done reading data, there is still data which needs // to be flushed to the network. send_required = true; } else { LOG_F(LS_ERROR) << "Read error: " << error; do_complete(HE_STREAM); return; } } } if (0 == len_) { // No data currently available to send. if (NULL == data_->document.get()) { // If there is no source document, that means we're done. do_complete(); } return; } size_t written; int error; StreamResult result = http_stream_->Write(buffer_, len_, &written, &error); if (result == SR_SUCCESS) { ASSERT(written <= len_); len_ -= written; memmove(buffer_, buffer_ + written, len_); send_required = false; } else if (result == SR_BLOCK) { if (send_required) { // Nothing more we can do until network is writeable. return; } } else { ASSERT(result == SR_ERROR); LOG_F(LS_ERROR) << "error"; OnHttpStreamEvent(http_stream_, SE_CLOSE, error); return; } } ASSERT(false); } bool HttpBase::queue_headers() { ASSERT(HM_SEND == mode_); while (header_ != data_->end()) { size_t len = sprintfn(buffer_ + len_, sizeof(buffer_) - len_, "%.*s: %.*s\r\n", header_->first.size(), header_->first.data(), header_->second.size(), header_->second.data()); if (len_ + len < sizeof(buffer_) - 3) { len_ += len; ++header_; } else if (len_ == 0) { LOG(WARNING) << "discarding header that is too long: " << header_->first; ++header_; } else { // Not enough room for the next header, write to network first. return true; } } // End of headers len_ += strcpyn(buffer_ + len_, sizeof(buffer_) - len_, "\r\n"); return false; } void HttpBase::do_complete(HttpError err) { ASSERT(mode_ != HM_NONE); HttpMode mode = mode_; mode_ = HM_NONE; if (data_ && data_->document.get()) { data_->document->SignalEvent.disconnect(this); } data_ = NULL; if ((HM_RECV == mode) && doc_stream_) { ASSERT(HE_NONE != err); // We should have Disconnected doc_stream_ already. DocumentStream* ds = doc_stream_; ds->Disconnect(err); ds->SignalEvent(ds, SE_CLOSE, err); } if (notify_) { notify_->onHttpComplete(mode, err); } } // // Stream Signals // void HttpBase::OnHttpStreamEvent(StreamInterface* stream, int events, int error) { ASSERT(stream == http_stream_); if ((events & SE_OPEN) && (mode_ == HM_CONNECT)) { do_complete(); return; } if ((events & SE_WRITE) && (mode_ == HM_SEND)) { flush_data(); return; } if ((events & SE_READ) && (mode_ == HM_RECV)) { if (doc_stream_) { doc_stream_->SignalEvent(doc_stream_, SE_READ, 0); } else { read_and_process_data(); } return; } if ((events & SE_CLOSE) == 0) return; HttpError http_error = HandleStreamClose(error); if (mode_ == HM_RECV) { complete(http_error); } else if (mode_ != HM_NONE) { do_complete(http_error); } else if (notify_) { notify_->onHttpClosed(http_error); } } void HttpBase::OnDocumentEvent(StreamInterface* stream, int events, int error) { ASSERT(stream == data_->document.get()); if ((events & SE_WRITE) && (mode_ == HM_RECV)) { read_and_process_data(); return; } if ((events & SE_READ) && (mode_ == HM_SEND)) { flush_data(); return; } if (events & SE_CLOSE) { LOG_F(LS_ERROR) << "Read error: " << error; do_complete(HE_STREAM); return; } } // // HttpParser Implementation // HttpParser::ProcessResult HttpBase::ProcessLeader(const char* line, size_t len, HttpError* error) { *error = data_->parseLeader(line, len); return (HE_NONE == *error) ? PR_CONTINUE : PR_COMPLETE; } HttpParser::ProcessResult HttpBase::ProcessHeader(const char* name, size_t nlen, const char* value, size_t vlen, HttpError* error) { std::string sname(name, nlen), svalue(value, vlen); data_->addHeader(sname, svalue); return PR_CONTINUE; } HttpParser::ProcessResult HttpBase::ProcessHeaderComplete(bool chunked, size_t& data_size, HttpError* error) { StreamInterface* old_docstream = doc_stream_; if (notify_) { *error = notify_->onHttpHeaderComplete(chunked, data_size); // The request must not be aborted as a result of this callback. ASSERT(NULL != data_); } if ((HE_NONE == *error) && (NULL != data_->document.get())) { data_->document->SignalEvent.connect(this, &HttpBase::OnDocumentEvent); } if (HE_NONE != *error) { return PR_COMPLETE; } if (old_docstream != doc_stream_) { // Break out of Process loop, since our I/O model just changed. return PR_BLOCK; } return PR_CONTINUE; } HttpParser::ProcessResult HttpBase::ProcessData(const char* data, size_t len, size_t& read, HttpError* error) { LOG_F(LS_VERBOSE) << "data: " << std::string(data, len); if (ignore_data_ || !data_->document.get()) { read = len; return PR_CONTINUE; } int write_error = 0; switch (data_->document->Write(data, len, &read, &write_error)) { case SR_SUCCESS: return PR_CONTINUE; case SR_BLOCK: return PR_BLOCK; case SR_EOS: LOG_F(LS_ERROR) << "Unexpected EOS"; *error = HE_STREAM; return PR_COMPLETE; case SR_ERROR: default: LOG_F(LS_ERROR) << "Write error: " << write_error; *error = HE_STREAM; return PR_COMPLETE; } } void HttpBase::OnComplete(HttpError err) { LOG_F(LS_VERBOSE); do_complete(err); } } // namespace talk_base