#if HAVE_CONFIG_H #include "config.h" #endif // HAVE_CONFIG_H #if HAVE_OPENSSL_SSL_H #include <openssl/bio.h> #include <openssl/crypto.h> #include <openssl/err.h> #include <openssl/opensslv.h> #include <openssl/rand.h> #include <openssl/ssl.h> #include <openssl/x509v3.h> #include "talk/base/common.h" #include "talk/base/logging.h" #include "talk/base/openssladapter.h" #include "talk/base/stringutils.h" #include "talk/base/Equifax_Secure_Global_eBusiness_CA-1.h" // TODO: Use a nicer abstraction for mutex. #if defined(WIN32) #define MUTEX_TYPE HANDLE #define MUTEX_SETUP(x) (x) = CreateMutex(NULL, FALSE, NULL) #define MUTEX_CLEANUP(x) CloseHandle(x) #define MUTEX_LOCK(x) WaitForSingleObject((x), INFINITE) #define MUTEX_UNLOCK(x) ReleaseMutex(x) #define THREAD_ID GetCurrentThreadId() #elif defined(_POSIX_THREADS) // _POSIX_THREADS is normally defined in unistd.h if pthreads are available // on your platform. #define MUTEX_TYPE pthread_mutex_t #define MUTEX_SETUP(x) pthread_mutex_init(&(x), NULL) #define MUTEX_CLEANUP(x) pthread_mutex_destroy(&(x)) #define MUTEX_LOCK(x) pthread_mutex_lock(&(x)) #define MUTEX_UNLOCK(x) pthread_mutex_unlock(&(x)) #define THREAD_ID pthread_self() #else #error You must define mutex operations appropriate for your platform! #endif struct CRYPTO_dynlock_value { MUTEX_TYPE mutex; }; ////////////////////////////////////////////////////////////////////// // SocketBIO ////////////////////////////////////////////////////////////////////// static int socket_write(BIO* h, const char* buf, int num); static int socket_read(BIO* h, char* buf, int size); static int socket_puts(BIO* h, const char* str); static long socket_ctrl(BIO* h, int cmd, long arg1, void* arg2); static int socket_new(BIO* h); static int socket_free(BIO* data); static BIO_METHOD methods_socket = { BIO_TYPE_BIO, "socket", socket_write, socket_read, socket_puts, 0, socket_ctrl, socket_new, socket_free, NULL, }; BIO_METHOD* BIO_s_socket2() { return(&methods_socket); } BIO* BIO_new_socket(talk_base::AsyncSocket* socket) { BIO* ret = BIO_new(BIO_s_socket2()); if (ret == NULL) { return NULL; } ret->ptr = socket; return ret; } static int socket_new(BIO* b) { b->shutdown = 0; b->init = 1; b->num = 0; // 1 means socket closed b->ptr = 0; return 1; } static int socket_free(BIO* b) { if (b == NULL) return 0; return 1; } static int socket_read(BIO* b, char* out, int outl) { if (!out) return -1; talk_base::AsyncSocket* socket = static_cast<talk_base::AsyncSocket*>(b->ptr); BIO_clear_retry_flags(b); int result = socket->Recv(out, outl); if (result > 0) { return result; } else if (result == 0) { b->num = 1; } else if (socket->IsBlocking()) { BIO_set_retry_read(b); } return -1; } static int socket_write(BIO* b, const char* in, int inl) { if (!in) return -1; talk_base::AsyncSocket* socket = static_cast<talk_base::AsyncSocket*>(b->ptr); BIO_clear_retry_flags(b); int result = socket->Send(in, inl); if (result > 0) { return result; } else if (socket->IsBlocking()) { BIO_set_retry_write(b); } return -1; } static int socket_puts(BIO* b, const char* str) { return socket_write(b, str, strlen(str)); } static long socket_ctrl(BIO* b, int cmd, long num, void* ptr) { UNUSED(num); UNUSED(ptr); switch (cmd) { case BIO_CTRL_RESET: return 0; case BIO_CTRL_EOF: return b->num; case BIO_CTRL_WPENDING: case BIO_CTRL_PENDING: return 0; case BIO_CTRL_FLUSH: return 1; default: return 0; } } ///////////////////////////////////////////////////////////////////////////// // OpenSSLAdapter ///////////////////////////////////////////////////////////////////////////// namespace talk_base { // This array will store all of the mutexes available to OpenSSL. static MUTEX_TYPE* mutex_buf = NULL; static void locking_function(int mode, int n, const char * file, int line) { if (mode & CRYPTO_LOCK) { MUTEX_LOCK(mutex_buf[n]); } else { MUTEX_UNLOCK(mutex_buf[n]); } } static pthread_t id_function() { return THREAD_ID; } static CRYPTO_dynlock_value* dyn_create_function(const char* file, int line) { CRYPTO_dynlock_value* value = new CRYPTO_dynlock_value; if (!value) return NULL; MUTEX_SETUP(value->mutex); return value; } static void dyn_lock_function(int mode, CRYPTO_dynlock_value* l, const char* file, int line) { if (mode & CRYPTO_LOCK) { MUTEX_LOCK(l->mutex); } else { MUTEX_UNLOCK(l->mutex); } } static void dyn_destroy_function(CRYPTO_dynlock_value* l, const char* file, int line) { MUTEX_CLEANUP(l->mutex); delete l; } VerificationCallback OpenSSLAdapter::custom_verify_callback_ = NULL; bool OpenSSLAdapter::InitializeSSL(VerificationCallback callback) { if (!InitializeSSLThread() || !SSL_library_init()) return false; SSL_load_error_strings(); ERR_load_BIO_strings(); OpenSSL_add_all_algorithms(); RAND_poll(); custom_verify_callback_ = callback; return true; } bool OpenSSLAdapter::InitializeSSLThread() { mutex_buf = new MUTEX_TYPE[CRYPTO_num_locks()]; if (!mutex_buf) return false; for (int i = 0; i < CRYPTO_num_locks(); ++i) MUTEX_SETUP(mutex_buf[i]); // we need to cast our id_function to return an unsigned long -- pthread_t is a pointer CRYPTO_set_id_callback((unsigned long (*)())id_function); CRYPTO_set_locking_callback(locking_function); CRYPTO_set_dynlock_create_callback(dyn_create_function); CRYPTO_set_dynlock_lock_callback(dyn_lock_function); CRYPTO_set_dynlock_destroy_callback(dyn_destroy_function); return true; } bool OpenSSLAdapter::CleanupSSL() { if (!mutex_buf) return false; CRYPTO_set_id_callback(NULL); CRYPTO_set_locking_callback(NULL); CRYPTO_set_dynlock_create_callback(NULL); CRYPTO_set_dynlock_lock_callback(NULL); CRYPTO_set_dynlock_destroy_callback(NULL); for (int i = 0; i < CRYPTO_num_locks(); ++i) MUTEX_CLEANUP(mutex_buf[i]); delete [] mutex_buf; mutex_buf = NULL; return true; } OpenSSLAdapter::OpenSSLAdapter(AsyncSocket* socket) : SSLAdapter(socket), state_(SSL_NONE), ssl_read_needs_write_(false), ssl_write_needs_read_(false), restartable_(false), ssl_(NULL), ssl_ctx_(NULL), custom_verification_succeeded_(false) { } OpenSSLAdapter::~OpenSSLAdapter() { Cleanup(); } int OpenSSLAdapter::StartSSL(const char* hostname, bool restartable) { if (state_ != SSL_NONE) return -1; ssl_host_name_ = hostname; restartable_ = restartable; if (socket_->GetState() != Socket::CS_CONNECTED) { state_ = SSL_WAIT; return 0; } state_ = SSL_CONNECTING; if (int err = BeginSSL()) { Error("BeginSSL", err, false); return err; } return 0; } int OpenSSLAdapter::BeginSSL() { LOG(LS_INFO) << "BeginSSL: " << ssl_host_name_; ASSERT(state_ == SSL_CONNECTING); int err = 0; BIO* bio = NULL; // First set up the context if (!ssl_ctx_) ssl_ctx_ = SetupSSLContext(); if (!ssl_ctx_) { err = -1; goto ssl_error; } bio = BIO_new_socket(static_cast<AsyncSocketAdapter*>(socket_)); if (!bio) { err = -1; goto ssl_error; } ssl_ = SSL_new(ssl_ctx_); if (!ssl_) { err = -1; goto ssl_error; } SSL_set_app_data(ssl_, this); SSL_set_bio(ssl_, bio, bio); SSL_set_mode(ssl_, SSL_MODE_ENABLE_PARTIAL_WRITE | SSL_MODE_ACCEPT_MOVING_WRITE_BUFFER); // the SSL object owns the bio now bio = NULL; // Do the connect err = ContinueSSL(); if (err != 0) goto ssl_error; return err; ssl_error: Cleanup(); if (bio) BIO_free(bio); return err; } int OpenSSLAdapter::ContinueSSL() { LOG(LS_INFO) << "ContinueSSL"; ASSERT(state_ == SSL_CONNECTING); int code = SSL_connect(ssl_); switch (SSL_get_error(ssl_, code)) { case SSL_ERROR_NONE: LOG(LS_INFO) << " -- success"; if (!SSLPostConnectionCheck(ssl_, ssl_host_name_.c_str())) { LOG(LS_ERROR) << "TLS post connection check failed"; // make sure we close the socket Cleanup(); // The connect failed so return -1 to shut down the socket return -1; } state_ = SSL_CONNECTED; AsyncSocketAdapter::OnConnectEvent(this); #if 0 // TODO: worry about this // Don't let ourselves go away during the callbacks PRefPtr<OpenSSLAdapter> lock(this); LOG(LS_INFO) << " -- onStreamReadable"; AsyncSocketAdapter::OnReadEvent(this); LOG(LS_INFO) << " -- onStreamWriteable"; AsyncSocketAdapter::OnWriteEvent(this); #endif break; case SSL_ERROR_WANT_READ: LOG(LS_INFO) << " -- error want read"; break; case SSL_ERROR_WANT_WRITE: LOG(LS_INFO) << " -- error want write"; break; case SSL_ERROR_ZERO_RETURN: default: LOG(LS_INFO) << " -- error " << code; return (code != 0) ? code : -1; } return 0; } void OpenSSLAdapter::Error(const char* context, int err, bool signal) { LOG(LS_WARNING) << "SChannelAdapter::Error(" << context << ", " << err << ")"; state_ = SSL_ERROR; SetError(err); if (signal) AsyncSocketAdapter::OnCloseEvent(this, err); } void OpenSSLAdapter::Cleanup() { LOG(LS_INFO) << "Cleanup"; state_ = SSL_NONE; ssl_read_needs_write_ = false; ssl_write_needs_read_ = false; custom_verification_succeeded_ = false; if (ssl_) { SSL_free(ssl_); ssl_ = NULL; } if (ssl_ctx_) { SSL_CTX_free(ssl_ctx_); ssl_ctx_ = NULL; } } // // AsyncSocket Implementation // int OpenSSLAdapter::Send(const void* pv, size_t cb) { //LOG(LS_INFO) << "OpenSSLAdapter::Send(" << cb << ")"; switch (state_) { case SSL_NONE: return AsyncSocketAdapter::Send(pv, cb); case SSL_WAIT: case SSL_CONNECTING: SetError(EWOULDBLOCK); return SOCKET_ERROR; case SSL_CONNECTED: break; case SSL_ERROR: default: return SOCKET_ERROR; } // OpenSSL will return an error if we try to write zero bytes if (cb == 0) return 0; ssl_write_needs_read_ = false; int code = SSL_write(ssl_, pv, cb); switch (SSL_get_error(ssl_, code)) { case SSL_ERROR_NONE: //LOG(LS_INFO) << " -- success"; return code; case SSL_ERROR_WANT_READ: //LOG(LS_INFO) << " -- error want read"; ssl_write_needs_read_ = true; SetError(EWOULDBLOCK); break; case SSL_ERROR_WANT_WRITE: //LOG(LS_INFO) << " -- error want write"; SetError(EWOULDBLOCK); break; case SSL_ERROR_ZERO_RETURN: //LOG(LS_INFO) << " -- remote side closed"; SetError(EWOULDBLOCK); // do we need to signal closure? break; default: //LOG(LS_INFO) << " -- error " << code; Error("SSL_write", (code ? code : -1), false); break; } return SOCKET_ERROR; } int OpenSSLAdapter::Recv(void* pv, size_t cb) { //LOG(LS_INFO) << "OpenSSLAdapter::Recv(" << cb << ")"; switch (state_) { case SSL_NONE: return AsyncSocketAdapter::Recv(pv, cb); case SSL_WAIT: case SSL_CONNECTING: SetError(EWOULDBLOCK); return SOCKET_ERROR; case SSL_CONNECTED: break; case SSL_ERROR: default: return SOCKET_ERROR; } // Don't trust OpenSSL with zero byte reads if (cb == 0) return 0; ssl_read_needs_write_ = false; int code = SSL_read(ssl_, pv, cb); switch (SSL_get_error(ssl_, code)) { case SSL_ERROR_NONE: //LOG(LS_INFO) << " -- success"; return code; case SSL_ERROR_WANT_READ: //LOG(LS_INFO) << " -- error want read"; SetError(EWOULDBLOCK); break; case SSL_ERROR_WANT_WRITE: //LOG(LS_INFO) << " -- error want write"; ssl_read_needs_write_ = true; SetError(EWOULDBLOCK); break; case SSL_ERROR_ZERO_RETURN: //LOG(LS_INFO) << " -- remote side closed"; SetError(EWOULDBLOCK); // do we need to signal closure? break; default: //LOG(LS_INFO) << " -- error " << code; Error("SSL_read", (code ? code : -1), false); break; } return SOCKET_ERROR; } int OpenSSLAdapter::Close() { Cleanup(); state_ = restartable_ ? SSL_WAIT : SSL_NONE; return AsyncSocketAdapter::Close(); } Socket::ConnState OpenSSLAdapter::GetState() const { //if (signal_close_) // return CS_CONNECTED; ConnState state = socket_->GetState(); if ((state == CS_CONNECTED) && ((state_ == SSL_WAIT) || (state_ == SSL_CONNECTING))) state = CS_CONNECTING; return state; } void OpenSSLAdapter::OnConnectEvent(AsyncSocket* socket) { LOG(LS_INFO) << "OpenSSLAdapter::OnConnectEvent"; if (state_ != SSL_WAIT) { ASSERT(state_ == SSL_NONE); AsyncSocketAdapter::OnConnectEvent(socket); return; } state_ = SSL_CONNECTING; if (int err = BeginSSL()) { AsyncSocketAdapter::OnCloseEvent(socket, err); } } void OpenSSLAdapter::OnReadEvent(AsyncSocket* socket) { //LOG(LS_INFO) << "OpenSSLAdapter::OnReadEvent"; if (state_ == SSL_NONE) { AsyncSocketAdapter::OnReadEvent(socket); return; } if (state_ == SSL_CONNECTING) { if (int err = ContinueSSL()) { Error("ContinueSSL", err); } return; } if (state_ != SSL_CONNECTED) return; // Don't let ourselves go away during the callbacks //PRefPtr<OpenSSLAdapter> lock(this); // TODO: fix this if (ssl_write_needs_read_) { //LOG(LS_INFO) << " -- onStreamWriteable"; AsyncSocketAdapter::OnWriteEvent(socket); } //LOG(LS_INFO) << " -- onStreamReadable"; AsyncSocketAdapter::OnReadEvent(socket); } void OpenSSLAdapter::OnWriteEvent(AsyncSocket* socket) { //LOG(LS_INFO) << "OpenSSLAdapter::OnWriteEvent"; if (state_ == SSL_NONE) { AsyncSocketAdapter::OnWriteEvent(socket); return; } if (state_ == SSL_CONNECTING) { if (int err = ContinueSSL()) { Error("ContinueSSL", err); } return; } if (state_ != SSL_CONNECTED) return; // Don't let ourselves go away during the callbacks //PRefPtr<OpenSSLAdapter> lock(this); // TODO: fix this if (ssl_read_needs_write_) { //LOG(LS_INFO) << " -- onStreamReadable"; AsyncSocketAdapter::OnReadEvent(socket); } //LOG(LS_INFO) << " -- onStreamWriteable"; AsyncSocketAdapter::OnWriteEvent(socket); } void OpenSSLAdapter::OnCloseEvent(AsyncSocket* socket, int err) { LOG(LS_INFO) << "OpenSSLAdapter::OnCloseEvent(" << err << ")"; AsyncSocketAdapter::OnCloseEvent(socket, err); } // This code is taken from the "Network Security with OpenSSL" // sample in chapter 5 bool OpenSSLAdapter::VerifyServerName(SSL* ssl, const char* host, bool ignore_bad_cert) { if (!host) return false; // Checking the return from SSL_get_peer_certificate here is not strictly // necessary. With our setup, it is not possible for it to return // NULL. However, it is good form to check the return. X509* certificate = SSL_get_peer_certificate(ssl); if (!certificate) return false; #ifdef _DEBUG { LOG(LS_INFO) << "Certificate from server:"; BIO* mem = BIO_new(BIO_s_mem()); X509_print_ex(mem, certificate, XN_FLAG_SEP_CPLUS_SPC, X509_FLAG_NO_HEADER); BIO_write(mem, "\0", 1); char* buffer; BIO_get_mem_data(mem, &buffer); LOG(LS_INFO) << buffer; BIO_free(mem); char* cipher_description = SSL_CIPHER_description(SSL_get_current_cipher(ssl), NULL, 128); LOG(LS_INFO) << "Cipher: " << cipher_description; OPENSSL_free(cipher_description); } #endif bool ok = false; int extension_count = X509_get_ext_count(certificate); for (int i = 0; i < extension_count; ++i) { X509_EXTENSION* extension = X509_get_ext(certificate, i); int extension_nid = OBJ_obj2nid(X509_EXTENSION_get_object(extension)); if (extension_nid == NID_subject_alt_name) { #if OPENSSL_VERSION_NUMBER >= 0x10000000L const X509V3_EXT_METHOD* meth = X509V3_EXT_get(extension); #else X509V3_EXT_METHOD* meth = X509V3_EXT_get(extension); #endif if (!meth) break; void* ext_str = NULL; // We assign this to a local variable, instead of passing the address // directly to ASN1_item_d2i. // See http://readlist.com/lists/openssl.org/openssl-users/0/4761.html. unsigned char* ext_value_data = extension->value->data; #if OPENSSL_VERSION_NUMBER >= 0x0090800fL const unsigned char **ext_value_data_ptr = (const_cast<const unsigned char **>(&ext_value_data)); #else unsigned char **ext_value_data_ptr = &ext_value_data; #endif if (meth->it) { ext_str = ASN1_item_d2i(NULL, ext_value_data_ptr, extension->value->length, ASN1_ITEM_ptr(meth->it)); } else { ext_str = meth->d2i(NULL, ext_value_data_ptr, extension->value->length); } STACK_OF(CONF_VALUE)* value = meth->i2v(meth, ext_str, NULL); for (int j = 0; j < sk_CONF_VALUE_num(value); ++j) { CONF_VALUE* nval = sk_CONF_VALUE_value(value, j); // The value for nval can contain wildcards if (!strcmp(nval->name, "DNS") && string_match(host, nval->value)) { ok = true; break; } } sk_CONF_VALUE_pop_free(value, X509V3_conf_free); value = NULL; if (meth->it) { ASN1_item_free(reinterpret_cast<ASN1_VALUE*>(ext_str), meth->it); } else { meth->ext_free(ext_str); } ext_str = NULL; } if (ok) break; } char data[256]; X509_name_st* subject; if (!ok && (subject = X509_get_subject_name(certificate)) && (X509_NAME_get_text_by_NID(subject, NID_commonName, data, sizeof(data)) > 0)) { data[sizeof(data)-1] = 0; if (_stricmp(data, host) == 0) ok = true; } X509_free(certificate); if (!ok && ignore_bad_cert) { LOG(LS_WARNING) << "TLS certificate check FAILED. " << "Allowing connection anyway."; ok = true; } return ok; } bool OpenSSLAdapter::SSLPostConnectionCheck(SSL* ssl, const char* host) { bool ok = VerifyServerName(ssl, host, ignore_bad_cert()); if (ok) { ok = (SSL_get_verify_result(ssl) == X509_V_OK || custom_verification_succeeded_); } if (!ok && ignore_bad_cert()) { LOG(LS_INFO) << "Other TLS post connection checks failed."; ok = true; } return ok; } #if _DEBUG // We only use this for tracing and so it is only needed in debug mode void OpenSSLAdapter::SSLInfoCallback(const SSL* s, int where, int ret) { const char* str = "undefined"; int w = where & ~SSL_ST_MASK; if (w & SSL_ST_CONNECT) { str = "SSL_connect"; } else if (w & SSL_ST_ACCEPT) { str = "SSL_accept"; } if (where & SSL_CB_LOOP) { LOG(LS_INFO) << str << ":" << SSL_state_string_long(s); } else if (where & SSL_CB_ALERT) { str = (where & SSL_CB_READ) ? "read" : "write"; LOG(LS_INFO) << "SSL3 alert " << str << ":" << SSL_alert_type_string_long(ret) << ":" << SSL_alert_desc_string_long(ret); } else if (where & SSL_CB_EXIT) { if (ret == 0) { LOG(LS_INFO) << str << ":failed in " << SSL_state_string_long(s); } else if (ret < 0) { LOG(LS_INFO) << str << ":error in " << SSL_state_string_long(s); } } } #endif // _DEBUG int OpenSSLAdapter::SSLVerifyCallback(int ok, X509_STORE_CTX* store) { #if _DEBUG if (!ok) { char data[256]; X509* cert = X509_STORE_CTX_get_current_cert(store); int depth = X509_STORE_CTX_get_error_depth(store); int err = X509_STORE_CTX_get_error(store); LOG(LS_INFO) << "Error with certificate at depth: " << depth; X509_NAME_oneline(X509_get_issuer_name(cert), data, sizeof(data)); LOG(LS_INFO) << " issuer = " << data; X509_NAME_oneline(X509_get_subject_name(cert), data, sizeof(data)); LOG(LS_INFO) << " subject = " << data; LOG(LS_INFO) << " err = " << err << ":" << X509_verify_cert_error_string(err); } #endif // Get our stream pointer from the store SSL* ssl = reinterpret_cast<SSL*>( X509_STORE_CTX_get_ex_data(store, SSL_get_ex_data_X509_STORE_CTX_idx())); OpenSSLAdapter* stream = reinterpret_cast<OpenSSLAdapter*>(SSL_get_app_data(ssl)); if (!ok && custom_verify_callback_) { void* cert = reinterpret_cast<void*>(X509_STORE_CTX_get_current_cert(store)); if (custom_verify_callback_(cert)) { stream->custom_verification_succeeded_ = true; LOG(LS_INFO) << "validated certificate using custom callback"; ok = true; } } if (!ok && stream->ignore_bad_cert()) { LOG(LS_WARNING) << "Ignoring cert error while verifying cert chain"; ok = 1; } return ok; } bool OpenSSLAdapter::ConfigureTrustedRootCertificates(SSL_CTX* ctx) { // Add the root cert to the SSL context // TODO: this cert appears to be the wrong one. #if OPENSSL_VERSION_NUMBER >= 0x0090800fL const unsigned char* cert_buffer #else unsigned char* cert_buffer #endif = EquifaxSecureGlobalEBusinessCA1_certificate; size_t cert_buffer_len = sizeof(EquifaxSecureGlobalEBusinessCA1_certificate); X509* cert = d2i_X509(NULL, &cert_buffer, cert_buffer_len); if (cert == NULL) return false; bool success = X509_STORE_add_cert(SSL_CTX_get_cert_store(ctx), cert); X509_free(cert); return success; } SSL_CTX* OpenSSLAdapter::SetupSSLContext() { SSL_CTX* ctx = SSL_CTX_new(TLSv1_client_method()); if (ctx == NULL) return NULL; if (!ConfigureTrustedRootCertificates(ctx)) { SSL_CTX_free(ctx); return NULL; } #ifdef _DEBUG SSL_CTX_set_info_callback(ctx, SSLInfoCallback); #endif SSL_CTX_set_verify(ctx, SSL_VERIFY_PEER, SSLVerifyCallback); SSL_CTX_set_verify_depth(ctx, 4); SSL_CTX_set_cipher_list(ctx, "ALL:!ADH:!LOW:!EXP:!MD5:@STRENGTH"); return ctx; } } // namespace talk_base #endif // HAVE_OPENSSL_SSL_H