/* * libjingle * Copyright 2004--2005, Google Inc. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are met: * * 1. Redistributions of source code must retain the above copyright notice, * this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright notice, * this list of conditions and the following disclaimer in the documentation * and/or other materials provided with the distribution. * 3. The name of the author may not be used to endorse or promote products * derived from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR * OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF * ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #if defined(_MSC_VER) && _MSC_VER < 1300 #pragma warning(disable:4786) #endif #include <time.h> #include <errno.h> #ifdef WIN32 #define WIN32_LEAN_AND_MEAN #include <windows.h> #include <winsock2.h> #include <ws2tcpip.h> #define SECURITY_WIN32 #include <security.h> #endif #include "talk/base/bytebuffer.h" #include "talk/base/common.h" #include "talk/base/httpcommon.h" #include "talk/base/logging.h" #include "talk/base/socketadapters.h" #include "talk/base/stringencode.h" #include "talk/base/stringutils.h" #ifdef WIN32 #include "talk/base/sec_buffer.h" #endif // WIN32 namespace talk_base { BufferedReadAdapter::BufferedReadAdapter(AsyncSocket* socket, size_t size) : AsyncSocketAdapter(socket), buffer_size_(size), data_len_(0), buffering_(false) { buffer_ = new char[buffer_size_]; } BufferedReadAdapter::~BufferedReadAdapter() { delete [] buffer_; } int BufferedReadAdapter::Send(const void *pv, size_t cb) { if (buffering_) { // TODO: Spoof error better; Signal Writeable socket_->SetError(EWOULDBLOCK); return -1; } return AsyncSocketAdapter::Send(pv, cb); } int BufferedReadAdapter::Recv(void *pv, size_t cb) { if (buffering_) { socket_->SetError(EWOULDBLOCK); return -1; } size_t read = 0; if (data_len_) { read = _min(cb, data_len_); memcpy(pv, buffer_, read); data_len_ -= read; if (data_len_ > 0) { memmove(buffer_, buffer_ + read, data_len_); } pv = static_cast<char *>(pv) + read; cb -= read; } // FIX: If cb == 0, we won't generate another read event int res = AsyncSocketAdapter::Recv(pv, cb); if (res < 0) return res; return res + static_cast<int>(read); } void BufferedReadAdapter::BufferInput(bool on) { buffering_ = on; } void BufferedReadAdapter::OnReadEvent(AsyncSocket * socket) { ASSERT(socket == socket_); if (!buffering_) { AsyncSocketAdapter::OnReadEvent(socket); return; } if (data_len_ >= buffer_size_) { LOG(INFO) << "Input buffer overflow"; ASSERT(false); data_len_ = 0; } int len = socket_->Recv(buffer_ + data_len_, buffer_size_ - data_len_); if (len < 0) { // TODO: Do something better like forwarding the error to the user. LOG_ERR(INFO) << "Recv"; return; } data_len_ += len; ProcessInput(buffer_, &data_len_); } /////////////////////////////////////////////////////////////////////////////// // This is a SSL v2 CLIENT_HELLO message. // TODO: Should this have a session id? The response doesn't have a // certificate, so the hello should have a session id. static const uint8 kSslClientHello[] = { 0x80, 0x46, // msg len 0x01, // CLIENT_HELLO 0x03, 0x01, // SSL 3.1 0x00, 0x2d, // ciphersuite len 0x00, 0x00, // session id len 0x00, 0x10, // challenge len 0x01, 0x00, 0x80, 0x03, 0x00, 0x80, 0x07, 0x00, 0xc0, // ciphersuites 0x06, 0x00, 0x40, 0x02, 0x00, 0x80, 0x04, 0x00, 0x80, // 0x00, 0x00, 0x04, 0x00, 0xfe, 0xff, 0x00, 0x00, 0x0a, // 0x00, 0xfe, 0xfe, 0x00, 0x00, 0x09, 0x00, 0x00, 0x64, // 0x00, 0x00, 0x62, 0x00, 0x00, 0x03, 0x00, 0x00, 0x06, // 0x1f, 0x17, 0x0c, 0xa6, 0x2f, 0x00, 0x78, 0xfc, // challenge 0x46, 0x55, 0x2e, 0xb1, 0x83, 0x39, 0xf1, 0xea // }; // This is a TLSv1 SERVER_HELLO message. static const uint8 kSslServerHello[] = { 0x16, // handshake message 0x03, 0x01, // SSL 3.1 0x00, 0x4a, // message len 0x02, // SERVER_HELLO 0x00, 0x00, 0x46, // handshake len 0x03, 0x01, // SSL 3.1 0x42, 0x85, 0x45, 0xa7, 0x27, 0xa9, 0x5d, 0xa0, // server random 0xb3, 0xc5, 0xe7, 0x53, 0xda, 0x48, 0x2b, 0x3f, // 0xc6, 0x5a, 0xca, 0x89, 0xc1, 0x58, 0x52, 0xa1, // 0x78, 0x3c, 0x5b, 0x17, 0x46, 0x00, 0x85, 0x3f, // 0x20, // session id len 0x0e, 0xd3, 0x06, 0x72, 0x5b, 0x5b, 0x1b, 0x5f, // session id 0x15, 0xac, 0x13, 0xf9, 0x88, 0x53, 0x9d, 0x9b, // 0xe8, 0x3d, 0x7b, 0x0c, 0x30, 0x32, 0x6e, 0x38, // 0x4d, 0xa2, 0x75, 0x57, 0x41, 0x6c, 0x34, 0x5c, // 0x00, 0x04, // RSA/RC4-128/MD5 0x00 // null compression }; AsyncSSLSocket::AsyncSSLSocket(AsyncSocket* socket) : BufferedReadAdapter(socket, 1024) { } int AsyncSSLSocket::Connect(const SocketAddress& addr) { // Begin buffering before we connect, so that there isn't a race condition // between potential senders and receiving the OnConnectEvent signal BufferInput(true); return BufferedReadAdapter::Connect(addr); } void AsyncSSLSocket::OnConnectEvent(AsyncSocket * socket) { ASSERT(socket == socket_); // TODO: we could buffer output too... VERIFY(sizeof(kSslClientHello) == DirectSend(kSslClientHello, sizeof(kSslClientHello))); } void AsyncSSLSocket::ProcessInput(char* data, size_t* len) { if (*len < sizeof(kSslServerHello)) return; if (memcmp(kSslServerHello, data, sizeof(kSslServerHello)) != 0) { Close(); SignalCloseEvent(this, 0); // TODO: error code? return; } *len -= sizeof(kSslServerHello); if (*len > 0) { memmove(data, data + sizeof(kSslServerHello), *len); } bool remainder = (*len > 0); BufferInput(false); SignalConnectEvent(this); // FIX: if SignalConnect causes the socket to be destroyed, we are in trouble if (remainder) SignalReadEvent(this); } AsyncSSLServerSocket::AsyncSSLServerSocket(AsyncSocket* socket) : BufferedReadAdapter(socket, 1024) { BufferInput(true); } void AsyncSSLServerSocket::ProcessInput(char* data, size_t* len) { // We only accept client hello messages. if (*len < sizeof(kSslClientHello)) { return; } if (memcmp(kSslClientHello, data, sizeof(kSslClientHello)) != 0) { Close(); SignalCloseEvent(this, 0); return; } *len -= sizeof(kSslClientHello); // Clients should not send more data until the handshake is completed. ASSERT(*len == 0); // Send a server hello back to the client. DirectSend(kSslServerHello, sizeof(kSslServerHello)); // Handshake completed for us, redirect input to our parent. BufferInput(false); } /////////////////////////////////////////////////////////////////////////////// AsyncHttpsProxySocket::AsyncHttpsProxySocket(AsyncSocket* socket, const std::string& user_agent, const SocketAddress& proxy, const std::string& username, const CryptString& password) : BufferedReadAdapter(socket, 1024), proxy_(proxy), agent_(user_agent), user_(username), pass_(password), force_connect_(false), state_(PS_ERROR), context_(0) { } AsyncHttpsProxySocket::~AsyncHttpsProxySocket() { delete context_; } int AsyncHttpsProxySocket::Connect(const SocketAddress& addr) { int ret; LOG(LS_VERBOSE) << "AsyncHttpsProxySocket::Connect(" << proxy_.ToString() << ")"; dest_ = addr; state_ = PS_INIT; if (ShouldIssueConnect()) { BufferInput(true); } ret = BufferedReadAdapter::Connect(proxy_); // TODO: Set state_ appropriately if Connect fails. return ret; } SocketAddress AsyncHttpsProxySocket::GetRemoteAddress() const { return dest_; } int AsyncHttpsProxySocket::Close() { headers_.clear(); state_ = PS_ERROR; dest_.Clear(); delete context_; context_ = NULL; return BufferedReadAdapter::Close(); } Socket::ConnState AsyncHttpsProxySocket::GetState() const { if (state_ < PS_TUNNEL) { return CS_CONNECTING; } else if (state_ == PS_TUNNEL) { return CS_CONNECTED; } else { return CS_CLOSED; } } void AsyncHttpsProxySocket::OnConnectEvent(AsyncSocket * socket) { LOG(LS_VERBOSE) << "AsyncHttpsProxySocket::OnConnectEvent"; if (!ShouldIssueConnect()) { state_ = PS_TUNNEL; BufferedReadAdapter::OnConnectEvent(socket); return; } SendRequest(); } void AsyncHttpsProxySocket::OnCloseEvent(AsyncSocket * socket, int err) { LOG(LS_VERBOSE) << "AsyncHttpsProxySocket::OnCloseEvent(" << err << ")"; if ((state_ == PS_WAIT_CLOSE) && (err == 0)) { state_ = PS_ERROR; Connect(dest_); } else { BufferedReadAdapter::OnCloseEvent(socket, err); } } void AsyncHttpsProxySocket::ProcessInput(char* data, size_t* len) { size_t start = 0; for (size_t pos = start; state_ < PS_TUNNEL && pos < *len;) { if (state_ == PS_SKIP_BODY) { size_t consume = _min(*len - pos, content_length_); pos += consume; start = pos; content_length_ -= consume; if (content_length_ == 0) { EndResponse(); } continue; } if (data[pos++] != '\n') continue; size_t len = pos - start - 1; if ((len > 0) && (data[start + len - 1] == '\r')) --len; data[start + len] = 0; ProcessLine(data + start, len); start = pos; } *len -= start; if (*len > 0) { memmove(data, data + start, *len); } if (state_ != PS_TUNNEL) return; bool remainder = (*len > 0); BufferInput(false); SignalConnectEvent(this); // FIX: if SignalConnect causes the socket to be destroyed, we are in trouble if (remainder) SignalReadEvent(this); // TODO: signal this?? } bool AsyncHttpsProxySocket::ShouldIssueConnect() const { // TODO: Think about whether a more sophisticated test // than dest port == 80 is needed. return force_connect_ || (dest_.port() != 80); } void AsyncHttpsProxySocket::SendRequest() { std::stringstream ss; ss << "CONNECT " << dest_.ToString() << " HTTP/1.0\r\n"; ss << "User-Agent: " << agent_ << "\r\n"; ss << "Host: " << dest_.IPAsString() << "\r\n"; ss << "Content-Length: 0\r\n"; ss << "Proxy-Connection: Keep-Alive\r\n"; ss << headers_; ss << "\r\n"; std::string str = ss.str(); DirectSend(str.c_str(), str.size()); state_ = PS_LEADER; expect_close_ = true; content_length_ = 0; headers_.clear(); LOG(LS_VERBOSE) << "AsyncHttpsProxySocket >> " << str; } void AsyncHttpsProxySocket::ProcessLine(char * data, size_t len) { LOG(LS_VERBOSE) << "AsyncHttpsProxySocket << " << data; if (len == 0) { if (state_ == PS_TUNNEL_HEADERS) { state_ = PS_TUNNEL; } else if (state_ == PS_ERROR_HEADERS) { Error(defer_error_); return; } else if (state_ == PS_SKIP_HEADERS) { if (content_length_) { state_ = PS_SKIP_BODY; } else { EndResponse(); return; } } else { static bool report = false; if (!unknown_mechanisms_.empty() && !report) { report = true; std::string msg( "Unable to connect to the Google Talk service due to an incompatibility " "with your proxy.\r\nPlease help us resolve this issue by submitting the " "following information to us using our technical issue submission form " "at:\r\n\r\n" "http://www.google.com/support/talk/bin/request.py\r\n\r\n" "We apologize for the inconvenience.\r\n\r\n" "Information to submit to Google: " ); //std::string msg("Please report the following information to foo@bar.com:\r\nUnknown methods: "); msg.append(unknown_mechanisms_); #ifdef WIN32 MessageBoxA(0, msg.c_str(), "Oops!", MB_OK); #endif #ifdef POSIX // TODO: Raise a signal so the UI can be separated. LOG(LS_ERROR) << "Oops!\n\n" << msg; #endif } // Unexpected end of headers Error(0); return; } } else if (state_ == PS_LEADER) { unsigned int code; if (sscanf(data, "HTTP/%*u.%*u %u", &code) != 1) { Error(0); return; } switch (code) { case 200: // connection good! state_ = PS_TUNNEL_HEADERS; return; #if defined(HTTP_STATUS_PROXY_AUTH_REQ) && (HTTP_STATUS_PROXY_AUTH_REQ != 407) #error Wrong code for HTTP_STATUS_PROXY_AUTH_REQ #endif case 407: // HTTP_STATUS_PROXY_AUTH_REQ state_ = PS_AUTHENTICATE; return; default: defer_error_ = 0; state_ = PS_ERROR_HEADERS; return; } } else if ((state_ == PS_AUTHENTICATE) && (_strnicmp(data, "Proxy-Authenticate:", 19) == 0)) { std::string response, auth_method; switch (HttpAuthenticate(data + 19, len - 19, proxy_, "CONNECT", "/", user_, pass_, context_, response, auth_method)) { case HAR_IGNORE: LOG(LS_VERBOSE) << "Ignoring Proxy-Authenticate: " << auth_method; if (!unknown_mechanisms_.empty()) unknown_mechanisms_.append(", "); unknown_mechanisms_.append(auth_method); break; case HAR_RESPONSE: headers_ = "Proxy-Authorization: "; headers_.append(response); headers_.append("\r\n"); state_ = PS_SKIP_HEADERS; unknown_mechanisms_.clear(); break; case HAR_CREDENTIALS: defer_error_ = SOCKET_EACCES; state_ = PS_ERROR_HEADERS; unknown_mechanisms_.clear(); break; case HAR_ERROR: defer_error_ = 0; state_ = PS_ERROR_HEADERS; unknown_mechanisms_.clear(); break; } } else if (_strnicmp(data, "Content-Length:", 15) == 0) { content_length_ = strtoul(data + 15, 0, 0); } else if (_strnicmp(data, "Proxy-Connection: Keep-Alive", 28) == 0) { expect_close_ = false; /* } else if (_strnicmp(data, "Connection: close", 17) == 0) { expect_close_ = true; */ } } void AsyncHttpsProxySocket::EndResponse() { if (!expect_close_) { SendRequest(); return; } // No point in waiting for the server to close... let's close now // TODO: Refactor out PS_WAIT_CLOSE state_ = PS_WAIT_CLOSE; BufferedReadAdapter::Close(); OnCloseEvent(this, 0); } void AsyncHttpsProxySocket::Error(int error) { BufferInput(false); Close(); SetError(error); SignalCloseEvent(this, error); } /////////////////////////////////////////////////////////////////////////////// AsyncSocksProxySocket::AsyncSocksProxySocket(AsyncSocket* socket, const SocketAddress& proxy, const std::string& username, const CryptString& password) : BufferedReadAdapter(socket, 1024), state_(SS_ERROR), proxy_(proxy), user_(username), pass_(password) { } int AsyncSocksProxySocket::Connect(const SocketAddress& addr) { int ret; dest_ = addr; state_ = SS_INIT; BufferInput(true); ret = BufferedReadAdapter::Connect(proxy_); // TODO: Set state_ appropriately if Connect fails. return ret; } SocketAddress AsyncSocksProxySocket::GetRemoteAddress() const { return dest_; } int AsyncSocksProxySocket::Close() { state_ = SS_ERROR; dest_.Clear(); return BufferedReadAdapter::Close(); } Socket::ConnState AsyncSocksProxySocket::GetState() const { if (state_ < SS_TUNNEL) { return CS_CONNECTING; } else if (state_ == SS_TUNNEL) { return CS_CONNECTED; } else { return CS_CLOSED; } } void AsyncSocksProxySocket::OnConnectEvent(AsyncSocket* socket) { SendHello(); } void AsyncSocksProxySocket::ProcessInput(char* data, size_t* len) { ASSERT(state_ < SS_TUNNEL); ByteBuffer response(data, *len); if (state_ == SS_HELLO) { uint8 ver, method; if (!response.ReadUInt8(&ver) || !response.ReadUInt8(&method)) return; if (ver != 5) { Error(0); return; } if (method == 0) { SendConnect(); } else if (method == 2) { SendAuth(); } else { Error(0); return; } } else if (state_ == SS_AUTH) { uint8 ver, status; if (!response.ReadUInt8(&ver) || !response.ReadUInt8(&status)) return; if ((ver != 1) || (status != 0)) { Error(SOCKET_EACCES); return; } SendConnect(); } else if (state_ == SS_CONNECT) { uint8 ver, rep, rsv, atyp; if (!response.ReadUInt8(&ver) || !response.ReadUInt8(&rep) || !response.ReadUInt8(&rsv) || !response.ReadUInt8(&atyp)) return; if ((ver != 5) || (rep != 0)) { Error(0); return; } uint16 port; if (atyp == 1) { uint32 addr; if (!response.ReadUInt32(&addr) || !response.ReadUInt16(&port)) return; LOG(LS_VERBOSE) << "Bound on " << addr << ":" << port; } else if (atyp == 3) { uint8 len; std::string addr; if (!response.ReadUInt8(&len) || !response.ReadString(&addr, len) || !response.ReadUInt16(&port)) return; LOG(LS_VERBOSE) << "Bound on " << addr << ":" << port; } else if (atyp == 4) { std::string addr; if (!response.ReadString(&addr, 16) || !response.ReadUInt16(&port)) return; LOG(LS_VERBOSE) << "Bound on <IPV6>:" << port; } else { Error(0); return; } state_ = SS_TUNNEL; } // Consume parsed data *len = response.Length(); memcpy(data, response.Data(), *len); if (state_ != SS_TUNNEL) return; bool remainder = (*len > 0); BufferInput(false); SignalConnectEvent(this); // FIX: if SignalConnect causes the socket to be destroyed, we are in trouble if (remainder) SignalReadEvent(this); // TODO: signal this?? } void AsyncSocksProxySocket::SendHello() { ByteBuffer request; request.WriteUInt8(5); // Socks Version if (user_.empty()) { request.WriteUInt8(1); // Authentication Mechanisms request.WriteUInt8(0); // No authentication } else { request.WriteUInt8(2); // Authentication Mechanisms request.WriteUInt8(0); // No authentication request.WriteUInt8(2); // Username/Password } DirectSend(request.Data(), request.Length()); state_ = SS_HELLO; } void AsyncSocksProxySocket::SendAuth() { ByteBuffer request; request.WriteUInt8(1); // Negotiation Version request.WriteUInt8(static_cast<uint8>(user_.size())); request.WriteString(user_); // Username request.WriteUInt8(static_cast<uint8>(pass_.GetLength())); size_t len = pass_.GetLength() + 1; char * sensitive = new char[len]; pass_.CopyTo(sensitive, true); request.WriteString(sensitive); // Password memset(sensitive, 0, len); delete [] sensitive; DirectSend(request.Data(), request.Length()); state_ = SS_AUTH; } void AsyncSocksProxySocket::SendConnect() { ByteBuffer request; request.WriteUInt8(5); // Socks Version request.WriteUInt8(1); // CONNECT request.WriteUInt8(0); // Reserved if (dest_.IsUnresolved()) { std::string hostname = dest_.IPAsString(); request.WriteUInt8(3); // DOMAINNAME request.WriteUInt8(static_cast<uint8>(hostname.size())); request.WriteString(hostname); // Destination Hostname } else { request.WriteUInt8(1); // IPV4 request.WriteUInt32(dest_.ip()); // Destination IP } request.WriteUInt16(dest_.port()); // Destination Port DirectSend(request.Data(), request.Length()); state_ = SS_CONNECT; } void AsyncSocksProxySocket::Error(int error) { state_ = SS_ERROR; BufferInput(false); Close(); SetError(SOCKET_EACCES); SignalCloseEvent(this, error); } AsyncSocksProxyServerSocket::AsyncSocksProxyServerSocket(AsyncSocket* socket) : AsyncProxyServerSocket(socket, kBufferSize), state_(SS_HELLO) { BufferInput(true); } void AsyncSocksProxyServerSocket::ProcessInput(char* data, size_t* len) { // TODO: See if the whole message has arrived ASSERT(state_ < SS_CONNECT_PENDING); ByteBuffer response(data, *len); if (state_ == SS_HELLO) { HandleHello(&response); } else if (state_ == SS_AUTH) { HandleAuth(&response); } else if (state_ == SS_CONNECT) { HandleConnect(&response); } // Consume parsed data *len = response.Length(); memcpy(data, response.Data(), *len); } void AsyncSocksProxyServerSocket::DirectSend(const ByteBuffer& buf) { BufferedReadAdapter::DirectSend(buf.Data(), buf.Length()); } void AsyncSocksProxyServerSocket::HandleHello(ByteBuffer* request) { uint8 ver, num_methods; if (!request->ReadUInt8(&ver) || !request->ReadUInt8(&num_methods)) { Error(0); return; } if (ver != 5) { Error(0); return; } // Handle either no-auth (0) or user/pass auth (2) uint8 method = 0xFF; if (num_methods > 0 && !request->ReadUInt8(&method)) { Error(0); return; } // TODO: Ask the server which method to use. SendHelloReply(method); if (method == 0) { state_ = SS_CONNECT; } else if (method == 2) { state_ = SS_AUTH; } else { state_ = SS_ERROR; } } void AsyncSocksProxyServerSocket::SendHelloReply(int method) { ByteBuffer response; response.WriteUInt8(5); // Socks Version response.WriteUInt8(method); // Auth method DirectSend(response); } void AsyncSocksProxyServerSocket::HandleAuth(ByteBuffer* request) { uint8 ver, user_len, pass_len; std::string user, pass; if (!request->ReadUInt8(&ver) || !request->ReadUInt8(&user_len) || !request->ReadString(&user, user_len) || !request->ReadUInt8(&pass_len) || !request->ReadString(&pass, pass_len)) { Error(0); return; } // TODO: Allow for checking of credentials. SendAuthReply(0); state_ = SS_CONNECT; } void AsyncSocksProxyServerSocket::SendAuthReply(int result) { ByteBuffer response; response.WriteUInt8(1); // Negotiation Version response.WriteUInt8(result); DirectSend(response); } void AsyncSocksProxyServerSocket::HandleConnect(ByteBuffer* request) { uint8 ver, command, reserved, addr_type; uint32 ip; uint16 port; if (!request->ReadUInt8(&ver) || !request->ReadUInt8(&command) || !request->ReadUInt8(&reserved) || !request->ReadUInt8(&addr_type) || !request->ReadUInt32(&ip) || !request->ReadUInt16(&port)) { Error(0); return; } if (ver != 5 || command != 1 || reserved != 0 || addr_type != 1) { Error(0); return; } SignalConnectRequest(this, SocketAddress(ip, port)); state_ = SS_CONNECT_PENDING; } void AsyncSocksProxyServerSocket::SendConnectResult(int result, const SocketAddress& addr) { if (state_ != SS_CONNECT_PENDING) return; ByteBuffer response; response.WriteUInt8(5); // Socks version response.WriteUInt8((result != 0)); // 0x01 is generic error response.WriteUInt8(0); // reserved response.WriteUInt8(1); // IPv4 address response.WriteUInt32(addr.ip()); response.WriteUInt16(addr.port()); DirectSend(response); BufferInput(false); state_ = SS_TUNNEL; } void AsyncSocksProxyServerSocket::Error(int error) { state_ = SS_ERROR; BufferInput(false); Close(); SetError(SOCKET_EACCES); SignalCloseEvent(this, error); } /////////////////////////////////////////////////////////////////////////////// LoggingSocketAdapter::LoggingSocketAdapter(AsyncSocket* socket, LoggingSeverity level, const char * label, bool hex_mode) : AsyncSocketAdapter(socket), level_(level), hex_mode_(hex_mode) { label_.append("["); label_.append(label); label_.append("]"); } int LoggingSocketAdapter::Send(const void *pv, size_t cb) { int res = AsyncSocketAdapter::Send(pv, cb); if (res > 0) LogMultiline(level_, label_.c_str(), false, pv, res, hex_mode_, &lms_); return res; } int LoggingSocketAdapter::SendTo(const void *pv, size_t cb, const SocketAddress& addr) { int res = AsyncSocketAdapter::SendTo(pv, cb, addr); if (res > 0) LogMultiline(level_, label_.c_str(), false, pv, res, hex_mode_, &lms_); return res; } int LoggingSocketAdapter::Recv(void *pv, size_t cb) { int res = AsyncSocketAdapter::Recv(pv, cb); if (res > 0) LogMultiline(level_, label_.c_str(), true, pv, res, hex_mode_, &lms_); return res; } int LoggingSocketAdapter::RecvFrom(void *pv, size_t cb, SocketAddress *paddr) { int res = AsyncSocketAdapter::RecvFrom(pv, cb, paddr); if (res > 0) LogMultiline(level_, label_.c_str(), true, pv, res, hex_mode_, &lms_); return res; } int LoggingSocketAdapter::Close() { LogMultiline(level_, label_.c_str(), false, NULL, 0, hex_mode_, &lms_); LogMultiline(level_, label_.c_str(), true, NULL, 0, hex_mode_, &lms_); LOG_V(level_) << label_ << " Closed locally"; return socket_->Close(); } void LoggingSocketAdapter::OnConnectEvent(AsyncSocket * socket) { LOG_V(level_) << label_ << " Connected"; AsyncSocketAdapter::OnConnectEvent(socket); } void LoggingSocketAdapter::OnCloseEvent(AsyncSocket * socket, int err) { LogMultiline(level_, label_.c_str(), false, NULL, 0, hex_mode_, &lms_); LogMultiline(level_, label_.c_str(), true, NULL, 0, hex_mode_, &lms_); LOG_V(level_) << label_ << " Closed with error: " << err; AsyncSocketAdapter::OnCloseEvent(socket, err); } /////////////////////////////////////////////////////////////////////////////// } // namespace talk_base