// This file is part of Eigen, a lightweight C++ template library // for linear algebra. // // Copyright (C) 2008-2011 Gael Guennebaud <gael.guennebaud@inria.fr> // Copyright (C) 2009 Keir Mierle <mierle@gmail.com> // Copyright (C) 2009 Benoit Jacob <jacob.benoit.1@gmail.com> // Copyright (C) 2011 Timothy E. Holy <tim.holy@gmail.com > // // This Source Code Form is subject to the terms of the Mozilla // Public License v. 2.0. If a copy of the MPL was not distributed // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. #ifndef EIGEN_LDLT_H #define EIGEN_LDLT_H namespace Eigen { namespace internal { template<typename MatrixType, int UpLo> struct LDLT_Traits; } /** \ingroup Cholesky_Module * * \class LDLT * * \brief Robust Cholesky decomposition of a matrix with pivoting * * \param MatrixType the type of the matrix of which to compute the LDL^T Cholesky decomposition * \param UpLo the triangular part that will be used for the decompositon: Lower (default) or Upper. * The other triangular part won't be read. * * Perform a robust Cholesky decomposition of a positive semidefinite or negative semidefinite * matrix \f$ A \f$ such that \f$ A = P^TLDL^*P \f$, where P is a permutation matrix, L * is lower triangular with a unit diagonal and D is a diagonal matrix. * * The decomposition uses pivoting to ensure stability, so that L will have * zeros in the bottom right rank(A) - n submatrix. Avoiding the square root * on D also stabilizes the computation. * * Remember that Cholesky decompositions are not rank-revealing. Also, do not use a Cholesky * decomposition to determine whether a system of equations has a solution. * * \sa MatrixBase::ldlt(), class LLT */ template<typename _MatrixType, int _UpLo> class LDLT { public: typedef _MatrixType MatrixType; enum { RowsAtCompileTime = MatrixType::RowsAtCompileTime, ColsAtCompileTime = MatrixType::ColsAtCompileTime, Options = MatrixType::Options & ~RowMajorBit, // these are the options for the TmpMatrixType, we need a ColMajor matrix here! MaxRowsAtCompileTime = MatrixType::MaxRowsAtCompileTime, MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime, UpLo = _UpLo }; typedef typename MatrixType::Scalar Scalar; typedef typename NumTraits<typename MatrixType::Scalar>::Real RealScalar; typedef typename MatrixType::Index Index; typedef Matrix<Scalar, RowsAtCompileTime, 1, Options, MaxRowsAtCompileTime, 1> TmpMatrixType; typedef Transpositions<RowsAtCompileTime, MaxRowsAtCompileTime> TranspositionType; typedef PermutationMatrix<RowsAtCompileTime, MaxRowsAtCompileTime> PermutationType; typedef internal::LDLT_Traits<MatrixType,UpLo> Traits; /** \brief Default Constructor. * * The default constructor is useful in cases in which the user intends to * perform decompositions via LDLT::compute(const MatrixType&). */ LDLT() : m_matrix(), m_transpositions(), m_isInitialized(false) {} /** \brief Default Constructor with memory preallocation * * Like the default constructor but with preallocation of the internal data * according to the specified problem \a size. * \sa LDLT() */ LDLT(Index size) : m_matrix(size, size), m_transpositions(size), m_temporary(size), m_isInitialized(false) {} /** \brief Constructor with decomposition * * This calculates the decomposition for the input \a matrix. * \sa LDLT(Index size) */ LDLT(const MatrixType& matrix) : m_matrix(matrix.rows(), matrix.cols()), m_transpositions(matrix.rows()), m_temporary(matrix.rows()), m_isInitialized(false) { compute(matrix); } /** Clear any existing decomposition * \sa rankUpdate(w,sigma) */ void setZero() { m_isInitialized = false; } /** \returns a view of the upper triangular matrix U */ inline typename Traits::MatrixU matrixU() const { eigen_assert(m_isInitialized && "LDLT is not initialized."); return Traits::getU(m_matrix); } /** \returns a view of the lower triangular matrix L */ inline typename Traits::MatrixL matrixL() const { eigen_assert(m_isInitialized && "LDLT is not initialized."); return Traits::getL(m_matrix); } /** \returns the permutation matrix P as a transposition sequence. */ inline const TranspositionType& transpositionsP() const { eigen_assert(m_isInitialized && "LDLT is not initialized."); return m_transpositions; } /** \returns the coefficients of the diagonal matrix D */ inline Diagonal<const MatrixType> vectorD() const { eigen_assert(m_isInitialized && "LDLT is not initialized."); return m_matrix.diagonal(); } /** \returns true if the matrix is positive (semidefinite) */ inline bool isPositive() const { eigen_assert(m_isInitialized && "LDLT is not initialized."); return m_sign == 1; } #ifdef EIGEN2_SUPPORT inline bool isPositiveDefinite() const { return isPositive(); } #endif /** \returns true if the matrix is negative (semidefinite) */ inline bool isNegative(void) const { eigen_assert(m_isInitialized && "LDLT is not initialized."); return m_sign == -1; } /** \returns a solution x of \f$ A x = b \f$ using the current decomposition of A. * * This function also supports in-place solves using the syntax <tt>x = decompositionObject.solve(x)</tt> . * * \note_about_checking_solutions * * More precisely, this method solves \f$ A x = b \f$ using the decomposition \f$ A = P^T L D L^* P \f$ * by solving the systems \f$ P^T y_1 = b \f$, \f$ L y_2 = y_1 \f$, \f$ D y_3 = y_2 \f$, * \f$ L^* y_4 = y_3 \f$ and \f$ P x = y_4 \f$ in succession. If the matrix \f$ A \f$ is singular, then * \f$ D \f$ will also be singular (all the other matrices are invertible). In that case, the * least-square solution of \f$ D y_3 = y_2 \f$ is computed. This does not mean that this function * computes the least-square solution of \f$ A x = b \f$ is \f$ A \f$ is singular. * * \sa MatrixBase::ldlt() */ template<typename Rhs> inline const internal::solve_retval<LDLT, Rhs> solve(const MatrixBase<Rhs>& b) const { eigen_assert(m_isInitialized && "LDLT is not initialized."); eigen_assert(m_matrix.rows()==b.rows() && "LDLT::solve(): invalid number of rows of the right hand side matrix b"); return internal::solve_retval<LDLT, Rhs>(*this, b.derived()); } #ifdef EIGEN2_SUPPORT template<typename OtherDerived, typename ResultType> bool solve(const MatrixBase<OtherDerived>& b, ResultType *result) const { *result = this->solve(b); return true; } #endif template<typename Derived> bool solveInPlace(MatrixBase<Derived> &bAndX) const; LDLT& compute(const MatrixType& matrix); template <typename Derived> LDLT& rankUpdate(const MatrixBase<Derived>& w,RealScalar alpha=1); /** \returns the internal LDLT decomposition matrix * * TODO: document the storage layout */ inline const MatrixType& matrixLDLT() const { eigen_assert(m_isInitialized && "LDLT is not initialized."); return m_matrix; } MatrixType reconstructedMatrix() const; inline Index rows() const { return m_matrix.rows(); } inline Index cols() const { return m_matrix.cols(); } /** \brief Reports whether previous computation was successful. * * \returns \c Success if computation was succesful, * \c NumericalIssue if the matrix.appears to be negative. */ ComputationInfo info() const { eigen_assert(m_isInitialized && "LDLT is not initialized."); return Success; } protected: /** \internal * Used to compute and store the Cholesky decomposition A = L D L^* = U^* D U. * The strict upper part is used during the decomposition, the strict lower * part correspond to the coefficients of L (its diagonal is equal to 1 and * is not stored), and the diagonal entries correspond to D. */ MatrixType m_matrix; TranspositionType m_transpositions; TmpMatrixType m_temporary; int m_sign; bool m_isInitialized; }; namespace internal { template<int UpLo> struct ldlt_inplace; template<> struct ldlt_inplace<Lower> { template<typename MatrixType, typename TranspositionType, typename Workspace> static bool unblocked(MatrixType& mat, TranspositionType& transpositions, Workspace& temp, int* sign=0) { typedef typename MatrixType::Scalar Scalar; typedef typename MatrixType::RealScalar RealScalar; typedef typename MatrixType::Index Index; eigen_assert(mat.rows()==mat.cols()); const Index size = mat.rows(); if (size <= 1) { transpositions.setIdentity(); if(sign) *sign = real(mat.coeff(0,0))>0 ? 1:-1; return true; } RealScalar cutoff(0), biggest_in_corner; for (Index k = 0; k < size; ++k) { // Find largest diagonal element Index index_of_biggest_in_corner; biggest_in_corner = mat.diagonal().tail(size-k).cwiseAbs().maxCoeff(&index_of_biggest_in_corner); index_of_biggest_in_corner += k; if(k == 0) { // The biggest overall is the point of reference to which further diagonals // are compared; if any diagonal is negligible compared // to the largest overall, the algorithm bails. cutoff = abs(NumTraits<Scalar>::epsilon() * biggest_in_corner); if(sign) *sign = real(mat.diagonal().coeff(index_of_biggest_in_corner)) > 0 ? 1 : -1; } // Finish early if the matrix is not full rank. if(biggest_in_corner < cutoff) { for(Index i = k; i < size; i++) transpositions.coeffRef(i) = i; break; } transpositions.coeffRef(k) = index_of_biggest_in_corner; if(k != index_of_biggest_in_corner) { // apply the transposition while taking care to consider only // the lower triangular part Index s = size-index_of_biggest_in_corner-1; // trailing size after the biggest element mat.row(k).head(k).swap(mat.row(index_of_biggest_in_corner).head(k)); mat.col(k).tail(s).swap(mat.col(index_of_biggest_in_corner).tail(s)); std::swap(mat.coeffRef(k,k),mat.coeffRef(index_of_biggest_in_corner,index_of_biggest_in_corner)); for(int i=k+1;i<index_of_biggest_in_corner;++i) { Scalar tmp = mat.coeffRef(i,k); mat.coeffRef(i,k) = conj(mat.coeffRef(index_of_biggest_in_corner,i)); mat.coeffRef(index_of_biggest_in_corner,i) = conj(tmp); } if(NumTraits<Scalar>::IsComplex) mat.coeffRef(index_of_biggest_in_corner,k) = conj(mat.coeff(index_of_biggest_in_corner,k)); } // partition the matrix: // A00 | - | - // lu = A10 | A11 | - // A20 | A21 | A22 Index rs = size - k - 1; Block<MatrixType,Dynamic,1> A21(mat,k+1,k,rs,1); Block<MatrixType,1,Dynamic> A10(mat,k,0,1,k); Block<MatrixType,Dynamic,Dynamic> A20(mat,k+1,0,rs,k); if(k>0) { temp.head(k) = mat.diagonal().head(k).asDiagonal() * A10.adjoint(); mat.coeffRef(k,k) -= (A10 * temp.head(k)).value(); if(rs>0) A21.noalias() -= A20 * temp.head(k); } if((rs>0) && (abs(mat.coeffRef(k,k)) > cutoff)) A21 /= mat.coeffRef(k,k); } return true; } // Reference for the algorithm: Davis and Hager, "Multiple Rank // Modifications of a Sparse Cholesky Factorization" (Algorithm 1) // Trivial rearrangements of their computations (Timothy E. Holy) // allow their algorithm to work for rank-1 updates even if the // original matrix is not of full rank. // Here only rank-1 updates are implemented, to reduce the // requirement for intermediate storage and improve accuracy template<typename MatrixType, typename WDerived> static bool updateInPlace(MatrixType& mat, MatrixBase<WDerived>& w, typename MatrixType::RealScalar sigma=1) { using internal::isfinite; typedef typename MatrixType::Scalar Scalar; typedef typename MatrixType::RealScalar RealScalar; typedef typename MatrixType::Index Index; const Index size = mat.rows(); eigen_assert(mat.cols() == size && w.size()==size); RealScalar alpha = 1; // Apply the update for (Index j = 0; j < size; j++) { // Check for termination due to an original decomposition of low-rank if (!(isfinite)(alpha)) break; // Update the diagonal terms RealScalar dj = real(mat.coeff(j,j)); Scalar wj = w.coeff(j); RealScalar swj2 = sigma*abs2(wj); RealScalar gamma = dj*alpha + swj2; mat.coeffRef(j,j) += swj2/alpha; alpha += swj2/dj; // Update the terms of L Index rs = size-j-1; w.tail(rs) -= wj * mat.col(j).tail(rs); if(gamma != 0) mat.col(j).tail(rs) += (sigma*conj(wj)/gamma)*w.tail(rs); } return true; } template<typename MatrixType, typename TranspositionType, typename Workspace, typename WType> static bool update(MatrixType& mat, const TranspositionType& transpositions, Workspace& tmp, const WType& w, typename MatrixType::RealScalar sigma=1) { // Apply the permutation to the input w tmp = transpositions * w; return ldlt_inplace<Lower>::updateInPlace(mat,tmp,sigma); } }; template<> struct ldlt_inplace<Upper> { template<typename MatrixType, typename TranspositionType, typename Workspace> static EIGEN_STRONG_INLINE bool unblocked(MatrixType& mat, TranspositionType& transpositions, Workspace& temp, int* sign=0) { Transpose<MatrixType> matt(mat); return ldlt_inplace<Lower>::unblocked(matt, transpositions, temp, sign); } template<typename MatrixType, typename TranspositionType, typename Workspace, typename WType> static EIGEN_STRONG_INLINE bool update(MatrixType& mat, TranspositionType& transpositions, Workspace& tmp, WType& w, typename MatrixType::RealScalar sigma=1) { Transpose<MatrixType> matt(mat); return ldlt_inplace<Lower>::update(matt, transpositions, tmp, w.conjugate(), sigma); } }; template<typename MatrixType> struct LDLT_Traits<MatrixType,Lower> { typedef const TriangularView<const MatrixType, UnitLower> MatrixL; typedef const TriangularView<const typename MatrixType::AdjointReturnType, UnitUpper> MatrixU; static inline MatrixL getL(const MatrixType& m) { return m; } static inline MatrixU getU(const MatrixType& m) { return m.adjoint(); } }; template<typename MatrixType> struct LDLT_Traits<MatrixType,Upper> { typedef const TriangularView<const typename MatrixType::AdjointReturnType, UnitLower> MatrixL; typedef const TriangularView<const MatrixType, UnitUpper> MatrixU; static inline MatrixL getL(const MatrixType& m) { return m.adjoint(); } static inline MatrixU getU(const MatrixType& m) { return m; } }; } // end namespace internal /** Compute / recompute the LDLT decomposition A = L D L^* = U^* D U of \a matrix */ template<typename MatrixType, int _UpLo> LDLT<MatrixType,_UpLo>& LDLT<MatrixType,_UpLo>::compute(const MatrixType& a) { eigen_assert(a.rows()==a.cols()); const Index size = a.rows(); m_matrix = a; m_transpositions.resize(size); m_isInitialized = false; m_temporary.resize(size); internal::ldlt_inplace<UpLo>::unblocked(m_matrix, m_transpositions, m_temporary, &m_sign); m_isInitialized = true; return *this; } /** Update the LDLT decomposition: given A = L D L^T, efficiently compute the decomposition of A + sigma w w^T. * \param w a vector to be incorporated into the decomposition. * \param sigma a scalar, +1 for updates and -1 for "downdates," which correspond to removing previously-added column vectors. Optional; default value is +1. * \sa setZero() */ template<typename MatrixType, int _UpLo> template<typename Derived> LDLT<MatrixType,_UpLo>& LDLT<MatrixType,_UpLo>::rankUpdate(const MatrixBase<Derived>& w,typename NumTraits<typename MatrixType::Scalar>::Real sigma) { const Index size = w.rows(); if (m_isInitialized) { eigen_assert(m_matrix.rows()==size); } else { m_matrix.resize(size,size); m_matrix.setZero(); m_transpositions.resize(size); for (Index i = 0; i < size; i++) m_transpositions.coeffRef(i) = i; m_temporary.resize(size); m_sign = sigma>=0 ? 1 : -1; m_isInitialized = true; } internal::ldlt_inplace<UpLo>::update(m_matrix, m_transpositions, m_temporary, w, sigma); return *this; } namespace internal { template<typename _MatrixType, int _UpLo, typename Rhs> struct solve_retval<LDLT<_MatrixType,_UpLo>, Rhs> : solve_retval_base<LDLT<_MatrixType,_UpLo>, Rhs> { typedef LDLT<_MatrixType,_UpLo> LDLTType; EIGEN_MAKE_SOLVE_HELPERS(LDLTType,Rhs) template<typename Dest> void evalTo(Dest& dst) const { eigen_assert(rhs().rows() == dec().matrixLDLT().rows()); // dst = P b dst = dec().transpositionsP() * rhs(); // dst = L^-1 (P b) dec().matrixL().solveInPlace(dst); // dst = D^-1 (L^-1 P b) // more precisely, use pseudo-inverse of D (see bug 241) using std::abs; using std::max; typedef typename LDLTType::MatrixType MatrixType; typedef typename LDLTType::Scalar Scalar; typedef typename LDLTType::RealScalar RealScalar; const Diagonal<const MatrixType> vectorD = dec().vectorD(); RealScalar tolerance = (max)(vectorD.array().abs().maxCoeff() * NumTraits<Scalar>::epsilon(), RealScalar(1) / NumTraits<RealScalar>::highest()); // motivated by LAPACK's xGELSS for (Index i = 0; i < vectorD.size(); ++i) { if(abs(vectorD(i)) > tolerance) dst.row(i) /= vectorD(i); else dst.row(i).setZero(); } // dst = L^-T (D^-1 L^-1 P b) dec().matrixU().solveInPlace(dst); // dst = P^-1 (L^-T D^-1 L^-1 P b) = A^-1 b dst = dec().transpositionsP().transpose() * dst; } }; } /** \internal use x = ldlt_object.solve(x); * * This is the \em in-place version of solve(). * * \param bAndX represents both the right-hand side matrix b and result x. * * \returns true always! If you need to check for existence of solutions, use another decomposition like LU, QR, or SVD. * * This version avoids a copy when the right hand side matrix b is not * needed anymore. * * \sa LDLT::solve(), MatrixBase::ldlt() */ template<typename MatrixType,int _UpLo> template<typename Derived> bool LDLT<MatrixType,_UpLo>::solveInPlace(MatrixBase<Derived> &bAndX) const { eigen_assert(m_isInitialized && "LDLT is not initialized."); const Index size = m_matrix.rows(); eigen_assert(size == bAndX.rows()); bAndX = this->solve(bAndX); return true; } /** \returns the matrix represented by the decomposition, * i.e., it returns the product: P^T L D L^* P. * This function is provided for debug purpose. */ template<typename MatrixType, int _UpLo> MatrixType LDLT<MatrixType,_UpLo>::reconstructedMatrix() const { eigen_assert(m_isInitialized && "LDLT is not initialized."); const Index size = m_matrix.rows(); MatrixType res(size,size); // P res.setIdentity(); res = transpositionsP() * res; // L^* P res = matrixU() * res; // D(L^*P) res = vectorD().asDiagonal() * res; // L(DL^*P) res = matrixL() * res; // P^T (LDL^*P) res = transpositionsP().transpose() * res; return res; } /** \cholesky_module * \returns the Cholesky decomposition with full pivoting without square root of \c *this */ template<typename MatrixType, unsigned int UpLo> inline const LDLT<typename SelfAdjointView<MatrixType, UpLo>::PlainObject, UpLo> SelfAdjointView<MatrixType, UpLo>::ldlt() const { return LDLT<PlainObject,UpLo>(m_matrix); } /** \cholesky_module * \returns the Cholesky decomposition with full pivoting without square root of \c *this */ template<typename Derived> inline const LDLT<typename MatrixBase<Derived>::PlainObject> MatrixBase<Derived>::ldlt() const { return LDLT<PlainObject>(derived()); } } // end namespace Eigen #endif // EIGEN_LDLT_H