// This file is part of Eigen, a lightweight C++ template library // for linear algebra. // // Copyright (C) 2009 Gael Guennebaud <gael.guennebaud@inria.fr> // // This Source Code Form is subject to the terms of the Mozilla // Public License v. 2.0. If a copy of the MPL was not distributed // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. #ifndef EIGEN_ARRAY_H #define EIGEN_ARRAY_H namespace Eigen { /** \class Array * \ingroup Core_Module * * \brief General-purpose arrays with easy API for coefficient-wise operations * * The %Array class is very similar to the Matrix class. It provides * general-purpose one- and two-dimensional arrays. The difference between the * %Array and the %Matrix class is primarily in the API: the API for the * %Array class provides easy access to coefficient-wise operations, while the * API for the %Matrix class provides easy access to linear-algebra * operations. * * This class can be extended with the help of the plugin mechanism described on the page * \ref TopicCustomizingEigen by defining the preprocessor symbol \c EIGEN_ARRAY_PLUGIN. * * \sa \ref TutorialArrayClass, \ref TopicClassHierarchy */ namespace internal { template<typename _Scalar, int _Rows, int _Cols, int _Options, int _MaxRows, int _MaxCols> struct traits<Array<_Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols> > : traits<Matrix<_Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols> > { typedef ArrayXpr XprKind; typedef ArrayBase<Array<_Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols> > XprBase; }; } template<typename _Scalar, int _Rows, int _Cols, int _Options, int _MaxRows, int _MaxCols> class Array : public PlainObjectBase<Array<_Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols> > { public: typedef PlainObjectBase<Array> Base; EIGEN_DENSE_PUBLIC_INTERFACE(Array) enum { Options = _Options }; typedef typename Base::PlainObject PlainObject; protected: template <typename Derived, typename OtherDerived, bool IsVector> friend struct internal::conservative_resize_like_impl; using Base::m_storage; public: using Base::base; using Base::coeff; using Base::coeffRef; /** * The usage of * using Base::operator=; * fails on MSVC. Since the code below is working with GCC and MSVC, we skipped * the usage of 'using'. This should be done only for operator=. */ template<typename OtherDerived> EIGEN_STRONG_INLINE Array& operator=(const EigenBase<OtherDerived> &other) { return Base::operator=(other); } /** Copies the value of the expression \a other into \c *this with automatic resizing. * * *this might be resized to match the dimensions of \a other. If *this was a null matrix (not already initialized), * it will be initialized. * * Note that copying a row-vector into a vector (and conversely) is allowed. * The resizing, if any, is then done in the appropriate way so that row-vectors * remain row-vectors and vectors remain vectors. */ template<typename OtherDerived> EIGEN_STRONG_INLINE Array& operator=(const ArrayBase<OtherDerived>& other) { return Base::_set(other); } /** This is a special case of the templated operator=. Its purpose is to * prevent a default operator= from hiding the templated operator=. */ EIGEN_STRONG_INLINE Array& operator=(const Array& other) { return Base::_set(other); } /** Default constructor. * * For fixed-size matrices, does nothing. * * For dynamic-size matrices, creates an empty matrix of size 0. Does not allocate any array. Such a matrix * is called a null matrix. This constructor is the unique way to create null matrices: resizing * a matrix to 0 is not supported. * * \sa resize(Index,Index) */ EIGEN_STRONG_INLINE explicit Array() : Base() { Base::_check_template_params(); EIGEN_INITIALIZE_BY_ZERO_IF_THAT_OPTION_IS_ENABLED } #ifndef EIGEN_PARSED_BY_DOXYGEN // FIXME is it still needed ?? /** \internal */ Array(internal::constructor_without_unaligned_array_assert) : Base(internal::constructor_without_unaligned_array_assert()) { Base::_check_template_params(); EIGEN_INITIALIZE_BY_ZERO_IF_THAT_OPTION_IS_ENABLED } #endif /** Constructs a vector or row-vector with given dimension. \only_for_vectors * * Note that this is only useful for dynamic-size vectors. For fixed-size vectors, * it is redundant to pass the dimension here, so it makes more sense to use the default * constructor Matrix() instead. */ EIGEN_STRONG_INLINE explicit Array(Index dim) : Base(dim, RowsAtCompileTime == 1 ? 1 : dim, ColsAtCompileTime == 1 ? 1 : dim) { Base::_check_template_params(); EIGEN_STATIC_ASSERT_VECTOR_ONLY(Array) eigen_assert(dim >= 0); eigen_assert(SizeAtCompileTime == Dynamic || SizeAtCompileTime == dim); EIGEN_INITIALIZE_BY_ZERO_IF_THAT_OPTION_IS_ENABLED } #ifndef EIGEN_PARSED_BY_DOXYGEN template<typename T0, typename T1> EIGEN_STRONG_INLINE Array(const T0& x, const T1& y) { Base::_check_template_params(); this->template _init2<T0,T1>(x, y); } #else /** constructs an uninitialized matrix with \a rows rows and \a cols columns. * * This is useful for dynamic-size matrices. For fixed-size matrices, * it is redundant to pass these parameters, so one should use the default constructor * Matrix() instead. */ Array(Index rows, Index cols); /** constructs an initialized 2D vector with given coefficients */ Array(const Scalar& x, const Scalar& y); #endif /** constructs an initialized 3D vector with given coefficients */ EIGEN_STRONG_INLINE Array(const Scalar& x, const Scalar& y, const Scalar& z) { Base::_check_template_params(); EIGEN_STATIC_ASSERT_VECTOR_SPECIFIC_SIZE(Array, 3) m_storage.data()[0] = x; m_storage.data()[1] = y; m_storage.data()[2] = z; } /** constructs an initialized 4D vector with given coefficients */ EIGEN_STRONG_INLINE Array(const Scalar& x, const Scalar& y, const Scalar& z, const Scalar& w) { Base::_check_template_params(); EIGEN_STATIC_ASSERT_VECTOR_SPECIFIC_SIZE(Array, 4) m_storage.data()[0] = x; m_storage.data()[1] = y; m_storage.data()[2] = z; m_storage.data()[3] = w; } explicit Array(const Scalar *data); /** Constructor copying the value of the expression \a other */ template<typename OtherDerived> EIGEN_STRONG_INLINE Array(const ArrayBase<OtherDerived>& other) : Base(other.rows() * other.cols(), other.rows(), other.cols()) { Base::_check_template_params(); Base::_set_noalias(other); } /** Copy constructor */ EIGEN_STRONG_INLINE Array(const Array& other) : Base(other.rows() * other.cols(), other.rows(), other.cols()) { Base::_check_template_params(); Base::_set_noalias(other); } /** Copy constructor with in-place evaluation */ template<typename OtherDerived> EIGEN_STRONG_INLINE Array(const ReturnByValue<OtherDerived>& other) { Base::_check_template_params(); Base::resize(other.rows(), other.cols()); other.evalTo(*this); } /** \sa MatrixBase::operator=(const EigenBase<OtherDerived>&) */ template<typename OtherDerived> EIGEN_STRONG_INLINE Array(const EigenBase<OtherDerived> &other) : Base(other.derived().rows() * other.derived().cols(), other.derived().rows(), other.derived().cols()) { Base::_check_template_params(); Base::resize(other.rows(), other.cols()); *this = other; } /** Override MatrixBase::swap() since for dynamic-sized matrices of same type it is enough to swap the * data pointers. */ template<typename OtherDerived> void swap(ArrayBase<OtherDerived> const & other) { this->_swap(other.derived()); } inline Index innerStride() const { return 1; } inline Index outerStride() const { return this->innerSize(); } #ifdef EIGEN_ARRAY_PLUGIN #include EIGEN_ARRAY_PLUGIN #endif private: template<typename MatrixType, typename OtherDerived, bool SwapPointers> friend struct internal::matrix_swap_impl; }; /** \defgroup arraytypedefs Global array typedefs * \ingroup Core_Module * * Eigen defines several typedef shortcuts for most common 1D and 2D array types. * * The general patterns are the following: * * \c ArrayRowsColsType where \c Rows and \c Cols can be \c 2,\c 3,\c 4 for fixed size square matrices or \c X for dynamic size, * and where \c Type can be \c i for integer, \c f for float, \c d for double, \c cf for complex float, \c cd * for complex double. * * For example, \c Array33d is a fixed-size 3x3 array type of doubles, and \c ArrayXXf is a dynamic-size matrix of floats. * * There are also \c ArraySizeType which are self-explanatory. For example, \c Array4cf is * a fixed-size 1D array of 4 complex floats. * * \sa class Array */ #define EIGEN_MAKE_ARRAY_TYPEDEFS(Type, TypeSuffix, Size, SizeSuffix) \ /** \ingroup arraytypedefs */ \ typedef Array<Type, Size, Size> Array##SizeSuffix##SizeSuffix##TypeSuffix; \ /** \ingroup arraytypedefs */ \ typedef Array<Type, Size, 1> Array##SizeSuffix##TypeSuffix; #define EIGEN_MAKE_ARRAY_FIXED_TYPEDEFS(Type, TypeSuffix, Size) \ /** \ingroup arraytypedefs */ \ typedef Array<Type, Size, Dynamic> Array##Size##X##TypeSuffix; \ /** \ingroup arraytypedefs */ \ typedef Array<Type, Dynamic, Size> Array##X##Size##TypeSuffix; #define EIGEN_MAKE_ARRAY_TYPEDEFS_ALL_SIZES(Type, TypeSuffix) \ EIGEN_MAKE_ARRAY_TYPEDEFS(Type, TypeSuffix, 2, 2) \ EIGEN_MAKE_ARRAY_TYPEDEFS(Type, TypeSuffix, 3, 3) \ EIGEN_MAKE_ARRAY_TYPEDEFS(Type, TypeSuffix, 4, 4) \ EIGEN_MAKE_ARRAY_TYPEDEFS(Type, TypeSuffix, Dynamic, X) \ EIGEN_MAKE_ARRAY_FIXED_TYPEDEFS(Type, TypeSuffix, 2) \ EIGEN_MAKE_ARRAY_FIXED_TYPEDEFS(Type, TypeSuffix, 3) \ EIGEN_MAKE_ARRAY_FIXED_TYPEDEFS(Type, TypeSuffix, 4) EIGEN_MAKE_ARRAY_TYPEDEFS_ALL_SIZES(int, i) EIGEN_MAKE_ARRAY_TYPEDEFS_ALL_SIZES(float, f) EIGEN_MAKE_ARRAY_TYPEDEFS_ALL_SIZES(double, d) EIGEN_MAKE_ARRAY_TYPEDEFS_ALL_SIZES(std::complex<float>, cf) EIGEN_MAKE_ARRAY_TYPEDEFS_ALL_SIZES(std::complex<double>, cd) #undef EIGEN_MAKE_ARRAY_TYPEDEFS_ALL_SIZES #undef EIGEN_MAKE_ARRAY_TYPEDEFS #undef EIGEN_MAKE_ARRAY_TYPEDEFS_LARGE #define EIGEN_USING_ARRAY_TYPEDEFS_FOR_TYPE_AND_SIZE(TypeSuffix, SizeSuffix) \ using Eigen::Matrix##SizeSuffix##TypeSuffix; \ using Eigen::Vector##SizeSuffix##TypeSuffix; \ using Eigen::RowVector##SizeSuffix##TypeSuffix; #define EIGEN_USING_ARRAY_TYPEDEFS_FOR_TYPE(TypeSuffix) \ EIGEN_USING_ARRAY_TYPEDEFS_FOR_TYPE_AND_SIZE(TypeSuffix, 2) \ EIGEN_USING_ARRAY_TYPEDEFS_FOR_TYPE_AND_SIZE(TypeSuffix, 3) \ EIGEN_USING_ARRAY_TYPEDEFS_FOR_TYPE_AND_SIZE(TypeSuffix, 4) \ EIGEN_USING_ARRAY_TYPEDEFS_FOR_TYPE_AND_SIZE(TypeSuffix, X) \ #define EIGEN_USING_ARRAY_TYPEDEFS \ EIGEN_USING_ARRAY_TYPEDEFS_FOR_TYPE(i) \ EIGEN_USING_ARRAY_TYPEDEFS_FOR_TYPE(f) \ EIGEN_USING_ARRAY_TYPEDEFS_FOR_TYPE(d) \ EIGEN_USING_ARRAY_TYPEDEFS_FOR_TYPE(cf) \ EIGEN_USING_ARRAY_TYPEDEFS_FOR_TYPE(cd) } // end namespace Eigen #endif // EIGEN_ARRAY_H