// This file is part of Eigen, a lightweight C++ template library // for linear algebra. // // Copyright (C) 2006-2010 Benoit Jacob <jacob.benoit.1@gmail.com> // // This Source Code Form is subject to the terms of the Mozilla // Public License v. 2.0. If a copy of the MPL was not distributed // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. #ifndef EIGEN_MATHFUNCTIONS_H #define EIGEN_MATHFUNCTIONS_H namespace Eigen { namespace internal { /** \internal \struct global_math_functions_filtering_base * * What it does: * Defines a typedef 'type' as follows: * - if type T has a member typedef Eigen_BaseClassForSpecializationOfGlobalMathFuncImpl, then * global_math_functions_filtering_base<T>::type is a typedef for it. * - otherwise, global_math_functions_filtering_base<T>::type is a typedef for T. * * How it's used: * To allow to defined the global math functions (like sin...) in certain cases, like the Array expressions. * When you do sin(array1+array2), the object array1+array2 has a complicated expression type, all what you want to know * is that it inherits ArrayBase. So we implement a partial specialization of sin_impl for ArrayBase<Derived>. * So we must make sure to use sin_impl<ArrayBase<Derived> > and not sin_impl<Derived>, otherwise our partial specialization * won't be used. How does sin know that? That's exactly what global_math_functions_filtering_base tells it. * * How it's implemented: * SFINAE in the style of enable_if. Highly susceptible of breaking compilers. With GCC, it sure does work, but if you replace * the typename dummy by an integer template parameter, it doesn't work anymore! */ template<typename T, typename dummy = void> struct global_math_functions_filtering_base { typedef T type; }; template<typename T> struct always_void { typedef void type; }; template<typename T> struct global_math_functions_filtering_base <T, typename always_void<typename T::Eigen_BaseClassForSpecializationOfGlobalMathFuncImpl>::type > { typedef typename T::Eigen_BaseClassForSpecializationOfGlobalMathFuncImpl type; }; #define EIGEN_MATHFUNC_IMPL(func, scalar) func##_impl<typename global_math_functions_filtering_base<scalar>::type> #define EIGEN_MATHFUNC_RETVAL(func, scalar) typename func##_retval<typename global_math_functions_filtering_base<scalar>::type>::type /**************************************************************************** * Implementation of real * ****************************************************************************/ template<typename Scalar> struct real_impl { typedef typename NumTraits<Scalar>::Real RealScalar; static inline RealScalar run(const Scalar& x) { return x; } }; template<typename RealScalar> struct real_impl<std::complex<RealScalar> > { static inline RealScalar run(const std::complex<RealScalar>& x) { using std::real; return real(x); } }; template<typename Scalar> struct real_retval { typedef typename NumTraits<Scalar>::Real type; }; template<typename Scalar> inline EIGEN_MATHFUNC_RETVAL(real, Scalar) real(const Scalar& x) { return EIGEN_MATHFUNC_IMPL(real, Scalar)::run(x); } /**************************************************************************** * Implementation of imag * ****************************************************************************/ template<typename Scalar> struct imag_impl { typedef typename NumTraits<Scalar>::Real RealScalar; static inline RealScalar run(const Scalar&) { return RealScalar(0); } }; template<typename RealScalar> struct imag_impl<std::complex<RealScalar> > { static inline RealScalar run(const std::complex<RealScalar>& x) { using std::imag; return imag(x); } }; template<typename Scalar> struct imag_retval { typedef typename NumTraits<Scalar>::Real type; }; template<typename Scalar> inline EIGEN_MATHFUNC_RETVAL(imag, Scalar) imag(const Scalar& x) { return EIGEN_MATHFUNC_IMPL(imag, Scalar)::run(x); } /**************************************************************************** * Implementation of real_ref * ****************************************************************************/ template<typename Scalar> struct real_ref_impl { typedef typename NumTraits<Scalar>::Real RealScalar; static inline RealScalar& run(Scalar& x) { return reinterpret_cast<RealScalar*>(&x)[0]; } static inline const RealScalar& run(const Scalar& x) { return reinterpret_cast<const RealScalar*>(&x)[0]; } }; template<typename Scalar> struct real_ref_retval { typedef typename NumTraits<Scalar>::Real & type; }; template<typename Scalar> inline typename add_const_on_value_type< EIGEN_MATHFUNC_RETVAL(real_ref, Scalar) >::type real_ref(const Scalar& x) { return real_ref_impl<Scalar>::run(x); } template<typename Scalar> inline EIGEN_MATHFUNC_RETVAL(real_ref, Scalar) real_ref(Scalar& x) { return EIGEN_MATHFUNC_IMPL(real_ref, Scalar)::run(x); } /**************************************************************************** * Implementation of imag_ref * ****************************************************************************/ template<typename Scalar, bool IsComplex> struct imag_ref_default_impl { typedef typename NumTraits<Scalar>::Real RealScalar; static inline RealScalar& run(Scalar& x) { return reinterpret_cast<RealScalar*>(&x)[1]; } static inline const RealScalar& run(const Scalar& x) { return reinterpret_cast<RealScalar*>(&x)[1]; } }; template<typename Scalar> struct imag_ref_default_impl<Scalar, false> { static inline Scalar run(Scalar&) { return Scalar(0); } static inline const Scalar run(const Scalar&) { return Scalar(0); } }; template<typename Scalar> struct imag_ref_impl : imag_ref_default_impl<Scalar, NumTraits<Scalar>::IsComplex> {}; template<typename Scalar> struct imag_ref_retval { typedef typename NumTraits<Scalar>::Real & type; }; template<typename Scalar> inline typename add_const_on_value_type< EIGEN_MATHFUNC_RETVAL(imag_ref, Scalar) >::type imag_ref(const Scalar& x) { return imag_ref_impl<Scalar>::run(x); } template<typename Scalar> inline EIGEN_MATHFUNC_RETVAL(imag_ref, Scalar) imag_ref(Scalar& x) { return EIGEN_MATHFUNC_IMPL(imag_ref, Scalar)::run(x); } /**************************************************************************** * Implementation of conj * ****************************************************************************/ template<typename Scalar> struct conj_impl { static inline Scalar run(const Scalar& x) { return x; } }; template<typename RealScalar> struct conj_impl<std::complex<RealScalar> > { static inline std::complex<RealScalar> run(const std::complex<RealScalar>& x) { using std::conj; return conj(x); } }; template<typename Scalar> struct conj_retval { typedef Scalar type; }; template<typename Scalar> inline EIGEN_MATHFUNC_RETVAL(conj, Scalar) conj(const Scalar& x) { return EIGEN_MATHFUNC_IMPL(conj, Scalar)::run(x); } /**************************************************************************** * Implementation of abs * ****************************************************************************/ template<typename Scalar> struct abs_impl { typedef typename NumTraits<Scalar>::Real RealScalar; static inline RealScalar run(const Scalar& x) { using std::abs; return abs(x); } }; template<typename Scalar> struct abs_retval { typedef typename NumTraits<Scalar>::Real type; }; template<typename Scalar> inline EIGEN_MATHFUNC_RETVAL(abs, Scalar) abs(const Scalar& x) { return EIGEN_MATHFUNC_IMPL(abs, Scalar)::run(x); } /**************************************************************************** * Implementation of abs2 * ****************************************************************************/ template<typename Scalar> struct abs2_impl { typedef typename NumTraits<Scalar>::Real RealScalar; static inline RealScalar run(const Scalar& x) { return x*x; } }; template<typename RealScalar> struct abs2_impl<std::complex<RealScalar> > { static inline RealScalar run(const std::complex<RealScalar>& x) { return real(x)*real(x) + imag(x)*imag(x); } }; template<typename Scalar> struct abs2_retval { typedef typename NumTraits<Scalar>::Real type; }; template<typename Scalar> inline EIGEN_MATHFUNC_RETVAL(abs2, Scalar) abs2(const Scalar& x) { return EIGEN_MATHFUNC_IMPL(abs2, Scalar)::run(x); } /**************************************************************************** * Implementation of norm1 * ****************************************************************************/ template<typename Scalar, bool IsComplex> struct norm1_default_impl { typedef typename NumTraits<Scalar>::Real RealScalar; static inline RealScalar run(const Scalar& x) { return abs(real(x)) + abs(imag(x)); } }; template<typename Scalar> struct norm1_default_impl<Scalar, false> { static inline Scalar run(const Scalar& x) { return abs(x); } }; template<typename Scalar> struct norm1_impl : norm1_default_impl<Scalar, NumTraits<Scalar>::IsComplex> {}; template<typename Scalar> struct norm1_retval { typedef typename NumTraits<Scalar>::Real type; }; template<typename Scalar> inline EIGEN_MATHFUNC_RETVAL(norm1, Scalar) norm1(const Scalar& x) { return EIGEN_MATHFUNC_IMPL(norm1, Scalar)::run(x); } /**************************************************************************** * Implementation of hypot * ****************************************************************************/ template<typename Scalar> struct hypot_impl { typedef typename NumTraits<Scalar>::Real RealScalar; static inline RealScalar run(const Scalar& x, const Scalar& y) { using std::max; using std::min; RealScalar _x = abs(x); RealScalar _y = abs(y); RealScalar p = (max)(_x, _y); RealScalar q = (min)(_x, _y); RealScalar qp = q/p; return p * sqrt(RealScalar(1) + qp*qp); } }; template<typename Scalar> struct hypot_retval { typedef typename NumTraits<Scalar>::Real type; }; template<typename Scalar> inline EIGEN_MATHFUNC_RETVAL(hypot, Scalar) hypot(const Scalar& x, const Scalar& y) { return EIGEN_MATHFUNC_IMPL(hypot, Scalar)::run(x, y); } /**************************************************************************** * Implementation of cast * ****************************************************************************/ template<typename OldType, typename NewType> struct cast_impl { static inline NewType run(const OldType& x) { return static_cast<NewType>(x); } }; // here, for once, we're plainly returning NewType: we don't want cast to do weird things. template<typename OldType, typename NewType> inline NewType cast(const OldType& x) { return cast_impl<OldType, NewType>::run(x); } /**************************************************************************** * Implementation of sqrt * ****************************************************************************/ template<typename Scalar, bool IsInteger> struct sqrt_default_impl { static inline Scalar run(const Scalar& x) { using std::sqrt; return sqrt(x); } }; template<typename Scalar> struct sqrt_default_impl<Scalar, true> { static inline Scalar run(const Scalar&) { #ifdef EIGEN2_SUPPORT eigen_assert(!NumTraits<Scalar>::IsInteger); #else EIGEN_STATIC_ASSERT_NON_INTEGER(Scalar) #endif return Scalar(0); } }; template<typename Scalar> struct sqrt_impl : sqrt_default_impl<Scalar, NumTraits<Scalar>::IsInteger> {}; template<typename Scalar> struct sqrt_retval { typedef Scalar type; }; template<typename Scalar> inline EIGEN_MATHFUNC_RETVAL(sqrt, Scalar) sqrt(const Scalar& x) { return EIGEN_MATHFUNC_IMPL(sqrt, Scalar)::run(x); } /**************************************************************************** * Implementation of standard unary real functions (exp, log, sin, cos, ... * ****************************************************************************/ // This macro instanciate all the necessary template mechanism which is common to all unary real functions. #define EIGEN_MATHFUNC_STANDARD_REAL_UNARY(NAME) \ template<typename Scalar, bool IsInteger> struct NAME##_default_impl { \ static inline Scalar run(const Scalar& x) { using std::NAME; return NAME(x); } \ }; \ template<typename Scalar> struct NAME##_default_impl<Scalar, true> { \ static inline Scalar run(const Scalar&) { \ EIGEN_STATIC_ASSERT_NON_INTEGER(Scalar) \ return Scalar(0); \ } \ }; \ template<typename Scalar> struct NAME##_impl \ : NAME##_default_impl<Scalar, NumTraits<Scalar>::IsInteger> \ {}; \ template<typename Scalar> struct NAME##_retval { typedef Scalar type; }; \ template<typename Scalar> \ inline EIGEN_MATHFUNC_RETVAL(NAME, Scalar) NAME(const Scalar& x) { \ return EIGEN_MATHFUNC_IMPL(NAME, Scalar)::run(x); \ } EIGEN_MATHFUNC_STANDARD_REAL_UNARY(exp) EIGEN_MATHFUNC_STANDARD_REAL_UNARY(log) EIGEN_MATHFUNC_STANDARD_REAL_UNARY(sin) EIGEN_MATHFUNC_STANDARD_REAL_UNARY(cos) EIGEN_MATHFUNC_STANDARD_REAL_UNARY(tan) EIGEN_MATHFUNC_STANDARD_REAL_UNARY(asin) EIGEN_MATHFUNC_STANDARD_REAL_UNARY(acos) /**************************************************************************** * Implementation of atan2 * ****************************************************************************/ template<typename Scalar, bool IsInteger> struct atan2_default_impl { typedef Scalar retval; static inline Scalar run(const Scalar& x, const Scalar& y) { using std::atan2; return atan2(x, y); } }; template<typename Scalar> struct atan2_default_impl<Scalar, true> { static inline Scalar run(const Scalar&, const Scalar&) { EIGEN_STATIC_ASSERT_NON_INTEGER(Scalar) return Scalar(0); } }; template<typename Scalar> struct atan2_impl : atan2_default_impl<Scalar, NumTraits<Scalar>::IsInteger> {}; template<typename Scalar> struct atan2_retval { typedef Scalar type; }; template<typename Scalar> inline EIGEN_MATHFUNC_RETVAL(atan2, Scalar) atan2(const Scalar& x, const Scalar& y) { return EIGEN_MATHFUNC_IMPL(atan2, Scalar)::run(x, y); } /**************************************************************************** * Implementation of pow * ****************************************************************************/ template<typename Scalar, bool IsInteger> struct pow_default_impl { typedef Scalar retval; static inline Scalar run(const Scalar& x, const Scalar& y) { using std::pow; return pow(x, y); } }; template<typename Scalar> struct pow_default_impl<Scalar, true> { static inline Scalar run(Scalar x, Scalar y) { Scalar res(1); eigen_assert(!NumTraits<Scalar>::IsSigned || y >= 0); if(y & 1) res *= x; y >>= 1; while(y) { x *= x; if(y&1) res *= x; y >>= 1; } return res; } }; template<typename Scalar> struct pow_impl : pow_default_impl<Scalar, NumTraits<Scalar>::IsInteger> {}; template<typename Scalar> struct pow_retval { typedef Scalar type; }; template<typename Scalar> inline EIGEN_MATHFUNC_RETVAL(pow, Scalar) pow(const Scalar& x, const Scalar& y) { return EIGEN_MATHFUNC_IMPL(pow, Scalar)::run(x, y); } /**************************************************************************** * Implementation of random * ****************************************************************************/ template<typename Scalar, bool IsComplex, bool IsInteger> struct random_default_impl {}; template<typename Scalar> struct random_impl : random_default_impl<Scalar, NumTraits<Scalar>::IsComplex, NumTraits<Scalar>::IsInteger> {}; template<typename Scalar> struct random_retval { typedef Scalar type; }; template<typename Scalar> inline EIGEN_MATHFUNC_RETVAL(random, Scalar) random(const Scalar& x, const Scalar& y); template<typename Scalar> inline EIGEN_MATHFUNC_RETVAL(random, Scalar) random(); template<typename Scalar> struct random_default_impl<Scalar, false, false> { static inline Scalar run(const Scalar& x, const Scalar& y) { return x + (y-x) * Scalar(std::rand()) / Scalar(RAND_MAX); } static inline Scalar run() { return run(Scalar(NumTraits<Scalar>::IsSigned ? -1 : 0), Scalar(1)); } }; enum { floor_log2_terminate, floor_log2_move_up, floor_log2_move_down, floor_log2_bogus }; template<unsigned int n, int lower, int upper> struct floor_log2_selector { enum { middle = (lower + upper) / 2, value = (upper <= lower + 1) ? int(floor_log2_terminate) : (n < (1 << middle)) ? int(floor_log2_move_down) : (n==0) ? int(floor_log2_bogus) : int(floor_log2_move_up) }; }; template<unsigned int n, int lower = 0, int upper = sizeof(unsigned int) * CHAR_BIT - 1, int selector = floor_log2_selector<n, lower, upper>::value> struct floor_log2 {}; template<unsigned int n, int lower, int upper> struct floor_log2<n, lower, upper, floor_log2_move_down> { enum { value = floor_log2<n, lower, floor_log2_selector<n, lower, upper>::middle>::value }; }; template<unsigned int n, int lower, int upper> struct floor_log2<n, lower, upper, floor_log2_move_up> { enum { value = floor_log2<n, floor_log2_selector<n, lower, upper>::middle, upper>::value }; }; template<unsigned int n, int lower, int upper> struct floor_log2<n, lower, upper, floor_log2_terminate> { enum { value = (n >= ((unsigned int)(1) << (lower+1))) ? lower+1 : lower }; }; template<unsigned int n, int lower, int upper> struct floor_log2<n, lower, upper, floor_log2_bogus> { // no value, error at compile time }; template<typename Scalar> struct random_default_impl<Scalar, false, true> { typedef typename NumTraits<Scalar>::NonInteger NonInteger; static inline Scalar run(const Scalar& x, const Scalar& y) { return x + Scalar((NonInteger(y)-x+1) * std::rand() / (RAND_MAX + NonInteger(1))); } static inline Scalar run() { #ifdef EIGEN_MAKING_DOCS return run(Scalar(NumTraits<Scalar>::IsSigned ? -10 : 0), Scalar(10)); #else enum { rand_bits = floor_log2<(unsigned int)(RAND_MAX)+1>::value, scalar_bits = sizeof(Scalar) * CHAR_BIT, shift = EIGEN_PLAIN_ENUM_MAX(0, int(rand_bits) - int(scalar_bits)) }; Scalar x = Scalar(std::rand() >> shift); Scalar offset = NumTraits<Scalar>::IsSigned ? Scalar(1 << (rand_bits-1)) : Scalar(0); return x - offset; #endif } }; template<typename Scalar> struct random_default_impl<Scalar, true, false> { static inline Scalar run(const Scalar& x, const Scalar& y) { return Scalar(random(real(x), real(y)), random(imag(x), imag(y))); } static inline Scalar run() { typedef typename NumTraits<Scalar>::Real RealScalar; return Scalar(random<RealScalar>(), random<RealScalar>()); } }; template<typename Scalar> inline EIGEN_MATHFUNC_RETVAL(random, Scalar) random(const Scalar& x, const Scalar& y) { return EIGEN_MATHFUNC_IMPL(random, Scalar)::run(x, y); } template<typename Scalar> inline EIGEN_MATHFUNC_RETVAL(random, Scalar) random() { return EIGEN_MATHFUNC_IMPL(random, Scalar)::run(); } /**************************************************************************** * Implementation of fuzzy comparisons * ****************************************************************************/ template<typename Scalar, bool IsComplex, bool IsInteger> struct scalar_fuzzy_default_impl {}; template<typename Scalar> struct scalar_fuzzy_default_impl<Scalar, false, false> { typedef typename NumTraits<Scalar>::Real RealScalar; template<typename OtherScalar> static inline bool isMuchSmallerThan(const Scalar& x, const OtherScalar& y, const RealScalar& prec) { return abs(x) <= abs(y) * prec; } static inline bool isApprox(const Scalar& x, const Scalar& y, const RealScalar& prec) { using std::min; return abs(x - y) <= (min)(abs(x), abs(y)) * prec; } static inline bool isApproxOrLessThan(const Scalar& x, const Scalar& y, const RealScalar& prec) { return x <= y || isApprox(x, y, prec); } }; template<typename Scalar> struct scalar_fuzzy_default_impl<Scalar, false, true> { typedef typename NumTraits<Scalar>::Real RealScalar; template<typename OtherScalar> static inline bool isMuchSmallerThan(const Scalar& x, const Scalar&, const RealScalar&) { return x == Scalar(0); } static inline bool isApprox(const Scalar& x, const Scalar& y, const RealScalar&) { return x == y; } static inline bool isApproxOrLessThan(const Scalar& x, const Scalar& y, const RealScalar&) { return x <= y; } }; template<typename Scalar> struct scalar_fuzzy_default_impl<Scalar, true, false> { typedef typename NumTraits<Scalar>::Real RealScalar; template<typename OtherScalar> static inline bool isMuchSmallerThan(const Scalar& x, const OtherScalar& y, const RealScalar& prec) { return abs2(x) <= abs2(y) * prec * prec; } static inline bool isApprox(const Scalar& x, const Scalar& y, const RealScalar& prec) { using std::min; return abs2(x - y) <= (min)(abs2(x), abs2(y)) * prec * prec; } }; template<typename Scalar> struct scalar_fuzzy_impl : scalar_fuzzy_default_impl<Scalar, NumTraits<Scalar>::IsComplex, NumTraits<Scalar>::IsInteger> {}; template<typename Scalar, typename OtherScalar> inline bool isMuchSmallerThan(const Scalar& x, const OtherScalar& y, typename NumTraits<Scalar>::Real precision = NumTraits<Scalar>::dummy_precision()) { return scalar_fuzzy_impl<Scalar>::template isMuchSmallerThan<OtherScalar>(x, y, precision); } template<typename Scalar> inline bool isApprox(const Scalar& x, const Scalar& y, typename NumTraits<Scalar>::Real precision = NumTraits<Scalar>::dummy_precision()) { return scalar_fuzzy_impl<Scalar>::isApprox(x, y, precision); } template<typename Scalar> inline bool isApproxOrLessThan(const Scalar& x, const Scalar& y, typename NumTraits<Scalar>::Real precision = NumTraits<Scalar>::dummy_precision()) { return scalar_fuzzy_impl<Scalar>::isApproxOrLessThan(x, y, precision); } /****************************************** *** The special case of the bool type *** ******************************************/ template<> struct random_impl<bool> { static inline bool run() { return random<int>(0,1)==0 ? false : true; } }; template<> struct scalar_fuzzy_impl<bool> { typedef bool RealScalar; template<typename OtherScalar> static inline bool isMuchSmallerThan(const bool& x, const bool&, const bool&) { return !x; } static inline bool isApprox(bool x, bool y, bool) { return x == y; } static inline bool isApproxOrLessThan(const bool& x, const bool& y, const bool&) { return (!x) || y; } }; /**************************************************************************** * Special functions * ****************************************************************************/ // std::isfinite is non standard, so let's define our own version, // even though it is not very efficient. template<typename T> bool (isfinite)(const T& x) { return x<NumTraits<T>::highest() && x>NumTraits<T>::lowest(); } } // end namespace internal } // end namespace Eigen #endif // EIGEN_MATHFUNCTIONS_H