// This file is part of Eigen, a lightweight C++ template library // for linear algebra. // // Copyright (C) 2006-2009 Benoit Jacob <jacob.benoit.1@gmail.com> // Copyright (C) 2008 Gael Guennebaud <gael.guennebaud@inria.fr> // // This Source Code Form is subject to the terms of the Mozilla // Public License v. 2.0. If a copy of the MPL was not distributed // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. #ifndef EIGEN_MATRIXBASE_H #define EIGEN_MATRIXBASE_H namespace Eigen { /** \class MatrixBase * \ingroup Core_Module * * \brief Base class for all dense matrices, vectors, and expressions * * This class is the base that is inherited by all matrix, vector, and related expression * types. Most of the Eigen API is contained in this class, and its base classes. Other important * classes for the Eigen API are Matrix, and VectorwiseOp. * * Note that some methods are defined in other modules such as the \ref LU_Module LU module * for all functions related to matrix inversions. * * \tparam Derived is the derived type, e.g. a matrix type, or an expression, etc. * * When writing a function taking Eigen objects as argument, if you want your function * to take as argument any matrix, vector, or expression, just let it take a * MatrixBase argument. As an example, here is a function printFirstRow which, given * a matrix, vector, or expression \a x, prints the first row of \a x. * * \code template<typename Derived> void printFirstRow(const Eigen::MatrixBase<Derived>& x) { cout << x.row(0) << endl; } * \endcode * * This class can be extended with the help of the plugin mechanism described on the page * \ref TopicCustomizingEigen by defining the preprocessor symbol \c EIGEN_MATRIXBASE_PLUGIN. * * \sa \ref TopicClassHierarchy */ template<typename Derived> class MatrixBase : public DenseBase<Derived> { public: #ifndef EIGEN_PARSED_BY_DOXYGEN typedef MatrixBase StorageBaseType; typedef typename internal::traits<Derived>::StorageKind StorageKind; typedef typename internal::traits<Derived>::Index Index; typedef typename internal::traits<Derived>::Scalar Scalar; typedef typename internal::packet_traits<Scalar>::type PacketScalar; typedef typename NumTraits<Scalar>::Real RealScalar; typedef DenseBase<Derived> Base; using Base::RowsAtCompileTime; using Base::ColsAtCompileTime; using Base::SizeAtCompileTime; using Base::MaxRowsAtCompileTime; using Base::MaxColsAtCompileTime; using Base::MaxSizeAtCompileTime; using Base::IsVectorAtCompileTime; using Base::Flags; using Base::CoeffReadCost; using Base::derived; using Base::const_cast_derived; using Base::rows; using Base::cols; using Base::size; using Base::coeff; using Base::coeffRef; using Base::lazyAssign; using Base::eval; using Base::operator+=; using Base::operator-=; using Base::operator*=; using Base::operator/=; typedef typename Base::CoeffReturnType CoeffReturnType; typedef typename Base::ConstTransposeReturnType ConstTransposeReturnType; typedef typename Base::RowXpr RowXpr; typedef typename Base::ColXpr ColXpr; #endif // not EIGEN_PARSED_BY_DOXYGEN #ifndef EIGEN_PARSED_BY_DOXYGEN /** type of the equivalent square matrix */ typedef Matrix<Scalar,EIGEN_SIZE_MAX(RowsAtCompileTime,ColsAtCompileTime), EIGEN_SIZE_MAX(RowsAtCompileTime,ColsAtCompileTime)> SquareMatrixType; #endif // not EIGEN_PARSED_BY_DOXYGEN /** \returns the size of the main diagonal, which is min(rows(),cols()). * \sa rows(), cols(), SizeAtCompileTime. */ inline Index diagonalSize() const { return (std::min)(rows(),cols()); } /** \brief The plain matrix type corresponding to this expression. * * This is not necessarily exactly the return type of eval(). In the case of plain matrices, * the return type of eval() is a const reference to a matrix, not a matrix! It is however guaranteed * that the return type of eval() is either PlainObject or const PlainObject&. */ typedef Matrix<typename internal::traits<Derived>::Scalar, internal::traits<Derived>::RowsAtCompileTime, internal::traits<Derived>::ColsAtCompileTime, AutoAlign | (internal::traits<Derived>::Flags&RowMajorBit ? RowMajor : ColMajor), internal::traits<Derived>::MaxRowsAtCompileTime, internal::traits<Derived>::MaxColsAtCompileTime > PlainObject; #ifndef EIGEN_PARSED_BY_DOXYGEN /** \internal Represents a matrix with all coefficients equal to one another*/ typedef CwiseNullaryOp<internal::scalar_constant_op<Scalar>,Derived> ConstantReturnType; /** \internal the return type of MatrixBase::adjoint() */ typedef typename internal::conditional<NumTraits<Scalar>::IsComplex, CwiseUnaryOp<internal::scalar_conjugate_op<Scalar>, ConstTransposeReturnType>, ConstTransposeReturnType >::type AdjointReturnType; /** \internal Return type of eigenvalues() */ typedef Matrix<std::complex<RealScalar>, internal::traits<Derived>::ColsAtCompileTime, 1, ColMajor> EigenvaluesReturnType; /** \internal the return type of identity */ typedef CwiseNullaryOp<internal::scalar_identity_op<Scalar>,Derived> IdentityReturnType; /** \internal the return type of unit vectors */ typedef Block<const CwiseNullaryOp<internal::scalar_identity_op<Scalar>, SquareMatrixType>, internal::traits<Derived>::RowsAtCompileTime, internal::traits<Derived>::ColsAtCompileTime> BasisReturnType; #endif // not EIGEN_PARSED_BY_DOXYGEN #define EIGEN_CURRENT_STORAGE_BASE_CLASS Eigen::MatrixBase # include "../plugins/CommonCwiseUnaryOps.h" # include "../plugins/CommonCwiseBinaryOps.h" # include "../plugins/MatrixCwiseUnaryOps.h" # include "../plugins/MatrixCwiseBinaryOps.h" # ifdef EIGEN_MATRIXBASE_PLUGIN # include EIGEN_MATRIXBASE_PLUGIN # endif #undef EIGEN_CURRENT_STORAGE_BASE_CLASS /** Special case of the template operator=, in order to prevent the compiler * from generating a default operator= (issue hit with g++ 4.1) */ Derived& operator=(const MatrixBase& other); // We cannot inherit here via Base::operator= since it is causing // trouble with MSVC. template <typename OtherDerived> Derived& operator=(const DenseBase<OtherDerived>& other); template <typename OtherDerived> Derived& operator=(const EigenBase<OtherDerived>& other); template<typename OtherDerived> Derived& operator=(const ReturnByValue<OtherDerived>& other); #ifndef EIGEN_PARSED_BY_DOXYGEN template<typename ProductDerived, typename Lhs, typename Rhs> Derived& lazyAssign(const ProductBase<ProductDerived, Lhs,Rhs>& other); #endif // not EIGEN_PARSED_BY_DOXYGEN template<typename OtherDerived> Derived& operator+=(const MatrixBase<OtherDerived>& other); template<typename OtherDerived> Derived& operator-=(const MatrixBase<OtherDerived>& other); template<typename OtherDerived> const typename ProductReturnType<Derived,OtherDerived>::Type operator*(const MatrixBase<OtherDerived> &other) const; template<typename OtherDerived> const typename LazyProductReturnType<Derived,OtherDerived>::Type lazyProduct(const MatrixBase<OtherDerived> &other) const; template<typename OtherDerived> Derived& operator*=(const EigenBase<OtherDerived>& other); template<typename OtherDerived> void applyOnTheLeft(const EigenBase<OtherDerived>& other); template<typename OtherDerived> void applyOnTheRight(const EigenBase<OtherDerived>& other); template<typename DiagonalDerived> const DiagonalProduct<Derived, DiagonalDerived, OnTheRight> operator*(const DiagonalBase<DiagonalDerived> &diagonal) const; template<typename OtherDerived> typename internal::scalar_product_traits<typename internal::traits<Derived>::Scalar,typename internal::traits<OtherDerived>::Scalar>::ReturnType dot(const MatrixBase<OtherDerived>& other) const; #ifdef EIGEN2_SUPPORT template<typename OtherDerived> Scalar eigen2_dot(const MatrixBase<OtherDerived>& other) const; #endif RealScalar squaredNorm() const; RealScalar norm() const; RealScalar stableNorm() const; RealScalar blueNorm() const; RealScalar hypotNorm() const; const PlainObject normalized() const; void normalize(); const AdjointReturnType adjoint() const; void adjointInPlace(); typedef Diagonal<Derived> DiagonalReturnType; DiagonalReturnType diagonal(); typedef const Diagonal<const Derived> ConstDiagonalReturnType; const ConstDiagonalReturnType diagonal() const; template<int Index> struct DiagonalIndexReturnType { typedef Diagonal<Derived,Index> Type; }; template<int Index> struct ConstDiagonalIndexReturnType { typedef const Diagonal<const Derived,Index> Type; }; template<int Index> typename DiagonalIndexReturnType<Index>::Type diagonal(); template<int Index> typename ConstDiagonalIndexReturnType<Index>::Type diagonal() const; // Note: The "MatrixBase::" prefixes are added to help MSVC9 to match these declarations with the later implementations. // On the other hand they confuse MSVC8... #if (defined _MSC_VER) && (_MSC_VER >= 1500) // 2008 or later typename MatrixBase::template DiagonalIndexReturnType<Dynamic>::Type diagonal(Index index); typename MatrixBase::template ConstDiagonalIndexReturnType<Dynamic>::Type diagonal(Index index) const; #else typename DiagonalIndexReturnType<Dynamic>::Type diagonal(Index index); typename ConstDiagonalIndexReturnType<Dynamic>::Type diagonal(Index index) const; #endif #ifdef EIGEN2_SUPPORT template<unsigned int Mode> typename internal::eigen2_part_return_type<Derived, Mode>::type part(); template<unsigned int Mode> const typename internal::eigen2_part_return_type<Derived, Mode>::type part() const; // huuuge hack. make Eigen2's matrix.part<Diagonal>() work in eigen3. Problem: Diagonal is now a class template instead // of an integer constant. Solution: overload the part() method template wrt template parameters list. template<template<typename T, int n> class U> const DiagonalWrapper<ConstDiagonalReturnType> part() const { return diagonal().asDiagonal(); } #endif // EIGEN2_SUPPORT template<unsigned int Mode> struct TriangularViewReturnType { typedef TriangularView<Derived, Mode> Type; }; template<unsigned int Mode> struct ConstTriangularViewReturnType { typedef const TriangularView<const Derived, Mode> Type; }; template<unsigned int Mode> typename TriangularViewReturnType<Mode>::Type triangularView(); template<unsigned int Mode> typename ConstTriangularViewReturnType<Mode>::Type triangularView() const; template<unsigned int UpLo> struct SelfAdjointViewReturnType { typedef SelfAdjointView<Derived, UpLo> Type; }; template<unsigned int UpLo> struct ConstSelfAdjointViewReturnType { typedef const SelfAdjointView<const Derived, UpLo> Type; }; template<unsigned int UpLo> typename SelfAdjointViewReturnType<UpLo>::Type selfadjointView(); template<unsigned int UpLo> typename ConstSelfAdjointViewReturnType<UpLo>::Type selfadjointView() const; const SparseView<Derived> sparseView(const Scalar& m_reference = Scalar(0), typename NumTraits<Scalar>::Real m_epsilon = NumTraits<Scalar>::dummy_precision()) const; static const IdentityReturnType Identity(); static const IdentityReturnType Identity(Index rows, Index cols); static const BasisReturnType Unit(Index size, Index i); static const BasisReturnType Unit(Index i); static const BasisReturnType UnitX(); static const BasisReturnType UnitY(); static const BasisReturnType UnitZ(); static const BasisReturnType UnitW(); const DiagonalWrapper<const Derived> asDiagonal() const; const PermutationWrapper<const Derived> asPermutation() const; Derived& setIdentity(); Derived& setIdentity(Index rows, Index cols); bool isIdentity(RealScalar prec = NumTraits<Scalar>::dummy_precision()) const; bool isDiagonal(RealScalar prec = NumTraits<Scalar>::dummy_precision()) const; bool isUpperTriangular(RealScalar prec = NumTraits<Scalar>::dummy_precision()) const; bool isLowerTriangular(RealScalar prec = NumTraits<Scalar>::dummy_precision()) const; template<typename OtherDerived> bool isOrthogonal(const MatrixBase<OtherDerived>& other, RealScalar prec = NumTraits<Scalar>::dummy_precision()) const; bool isUnitary(RealScalar prec = NumTraits<Scalar>::dummy_precision()) const; /** \returns true if each coefficients of \c *this and \a other are all exactly equal. * \warning When using floating point scalar values you probably should rather use a * fuzzy comparison such as isApprox() * \sa isApprox(), operator!= */ template<typename OtherDerived> inline bool operator==(const MatrixBase<OtherDerived>& other) const { return cwiseEqual(other).all(); } /** \returns true if at least one pair of coefficients of \c *this and \a other are not exactly equal to each other. * \warning When using floating point scalar values you probably should rather use a * fuzzy comparison such as isApprox() * \sa isApprox(), operator== */ template<typename OtherDerived> inline bool operator!=(const MatrixBase<OtherDerived>& other) const { return cwiseNotEqual(other).any(); } NoAlias<Derived,Eigen::MatrixBase > noalias(); inline const ForceAlignedAccess<Derived> forceAlignedAccess() const; inline ForceAlignedAccess<Derived> forceAlignedAccess(); template<bool Enable> inline typename internal::add_const_on_value_type<typename internal::conditional<Enable,ForceAlignedAccess<Derived>,Derived&>::type>::type forceAlignedAccessIf() const; template<bool Enable> inline typename internal::conditional<Enable,ForceAlignedAccess<Derived>,Derived&>::type forceAlignedAccessIf(); Scalar trace() const; /////////// Array module /////////// template<int p> RealScalar lpNorm() const; MatrixBase<Derived>& matrix() { return *this; } const MatrixBase<Derived>& matrix() const { return *this; } /** \returns an \link ArrayBase Array \endlink expression of this matrix * \sa ArrayBase::matrix() */ ArrayWrapper<Derived> array() { return derived(); } const ArrayWrapper<const Derived> array() const { return derived(); } /////////// LU module /////////// const FullPivLU<PlainObject> fullPivLu() const; const PartialPivLU<PlainObject> partialPivLu() const; #if EIGEN2_SUPPORT_STAGE < STAGE20_RESOLVE_API_CONFLICTS const LU<PlainObject> lu() const; #endif #ifdef EIGEN2_SUPPORT const LU<PlainObject> eigen2_lu() const; #endif #if EIGEN2_SUPPORT_STAGE > STAGE20_RESOLVE_API_CONFLICTS const PartialPivLU<PlainObject> lu() const; #endif #ifdef EIGEN2_SUPPORT template<typename ResultType> void computeInverse(MatrixBase<ResultType> *result) const { *result = this->inverse(); } #endif const internal::inverse_impl<Derived> inverse() const; template<typename ResultType> void computeInverseAndDetWithCheck( ResultType& inverse, typename ResultType::Scalar& determinant, bool& invertible, const RealScalar& absDeterminantThreshold = NumTraits<Scalar>::dummy_precision() ) const; template<typename ResultType> void computeInverseWithCheck( ResultType& inverse, bool& invertible, const RealScalar& absDeterminantThreshold = NumTraits<Scalar>::dummy_precision() ) const; Scalar determinant() const; /////////// Cholesky module /////////// const LLT<PlainObject> llt() const; const LDLT<PlainObject> ldlt() const; /////////// QR module /////////// const HouseholderQR<PlainObject> householderQr() const; const ColPivHouseholderQR<PlainObject> colPivHouseholderQr() const; const FullPivHouseholderQR<PlainObject> fullPivHouseholderQr() const; #ifdef EIGEN2_SUPPORT const QR<PlainObject> qr() const; #endif EigenvaluesReturnType eigenvalues() const; RealScalar operatorNorm() const; /////////// SVD module /////////// JacobiSVD<PlainObject> jacobiSvd(unsigned int computationOptions = 0) const; #ifdef EIGEN2_SUPPORT SVD<PlainObject> svd() const; #endif /////////// Geometry module /////////// #ifndef EIGEN_PARSED_BY_DOXYGEN /// \internal helper struct to form the return type of the cross product template<typename OtherDerived> struct cross_product_return_type { typedef typename internal::scalar_product_traits<typename internal::traits<Derived>::Scalar,typename internal::traits<OtherDerived>::Scalar>::ReturnType Scalar; typedef Matrix<Scalar,MatrixBase::RowsAtCompileTime,MatrixBase::ColsAtCompileTime> type; }; #endif // EIGEN_PARSED_BY_DOXYGEN template<typename OtherDerived> typename cross_product_return_type<OtherDerived>::type cross(const MatrixBase<OtherDerived>& other) const; template<typename OtherDerived> PlainObject cross3(const MatrixBase<OtherDerived>& other) const; PlainObject unitOrthogonal(void) const; Matrix<Scalar,3,1> eulerAngles(Index a0, Index a1, Index a2) const; #if EIGEN2_SUPPORT_STAGE > STAGE20_RESOLVE_API_CONFLICTS ScalarMultipleReturnType operator*(const UniformScaling<Scalar>& s) const; // put this as separate enum value to work around possible GCC 4.3 bug (?) enum { HomogeneousReturnTypeDirection = ColsAtCompileTime==1?Vertical:Horizontal }; typedef Homogeneous<Derived, HomogeneousReturnTypeDirection> HomogeneousReturnType; HomogeneousReturnType homogeneous() const; #endif enum { SizeMinusOne = SizeAtCompileTime==Dynamic ? Dynamic : SizeAtCompileTime-1 }; typedef Block<const Derived, internal::traits<Derived>::ColsAtCompileTime==1 ? SizeMinusOne : 1, internal::traits<Derived>::ColsAtCompileTime==1 ? 1 : SizeMinusOne> ConstStartMinusOne; typedef CwiseUnaryOp<internal::scalar_quotient1_op<typename internal::traits<Derived>::Scalar>, const ConstStartMinusOne > HNormalizedReturnType; const HNormalizedReturnType hnormalized() const; ////////// Householder module /////////// void makeHouseholderInPlace(Scalar& tau, RealScalar& beta); template<typename EssentialPart> void makeHouseholder(EssentialPart& essential, Scalar& tau, RealScalar& beta) const; template<typename EssentialPart> void applyHouseholderOnTheLeft(const EssentialPart& essential, const Scalar& tau, Scalar* workspace); template<typename EssentialPart> void applyHouseholderOnTheRight(const EssentialPart& essential, const Scalar& tau, Scalar* workspace); ///////// Jacobi module ///////// template<typename OtherScalar> void applyOnTheLeft(Index p, Index q, const JacobiRotation<OtherScalar>& j); template<typename OtherScalar> void applyOnTheRight(Index p, Index q, const JacobiRotation<OtherScalar>& j); ///////// MatrixFunctions module ///////// typedef typename internal::stem_function<Scalar>::type StemFunction; const MatrixExponentialReturnValue<Derived> exp() const; const MatrixFunctionReturnValue<Derived> matrixFunction(StemFunction f) const; const MatrixFunctionReturnValue<Derived> cosh() const; const MatrixFunctionReturnValue<Derived> sinh() const; const MatrixFunctionReturnValue<Derived> cos() const; const MatrixFunctionReturnValue<Derived> sin() const; const MatrixSquareRootReturnValue<Derived> sqrt() const; const MatrixLogarithmReturnValue<Derived> log() const; #ifdef EIGEN2_SUPPORT template<typename ProductDerived, typename Lhs, typename Rhs> Derived& operator+=(const Flagged<ProductBase<ProductDerived, Lhs,Rhs>, 0, EvalBeforeAssigningBit>& other); template<typename ProductDerived, typename Lhs, typename Rhs> Derived& operator-=(const Flagged<ProductBase<ProductDerived, Lhs,Rhs>, 0, EvalBeforeAssigningBit>& other); /** \deprecated because .lazy() is deprecated * Overloaded for cache friendly product evaluation */ template<typename OtherDerived> Derived& lazyAssign(const Flagged<OtherDerived, 0, EvalBeforeAssigningBit>& other) { return lazyAssign(other._expression()); } template<unsigned int Added> const Flagged<Derived, Added, 0> marked() const; const Flagged<Derived, 0, EvalBeforeAssigningBit> lazy() const; inline const Cwise<Derived> cwise() const; inline Cwise<Derived> cwise(); VectorBlock<Derived> start(Index size); const VectorBlock<const Derived> start(Index size) const; VectorBlock<Derived> end(Index size); const VectorBlock<const Derived> end(Index size) const; template<int Size> VectorBlock<Derived,Size> start(); template<int Size> const VectorBlock<const Derived,Size> start() const; template<int Size> VectorBlock<Derived,Size> end(); template<int Size> const VectorBlock<const Derived,Size> end() const; Minor<Derived> minor(Index row, Index col); const Minor<Derived> minor(Index row, Index col) const; #endif protected: MatrixBase() : Base() {} private: explicit MatrixBase(int); MatrixBase(int,int); template<typename OtherDerived> explicit MatrixBase(const MatrixBase<OtherDerived>&); protected: // mixing arrays and matrices is not legal template<typename OtherDerived> Derived& operator+=(const ArrayBase<OtherDerived>& ) {EIGEN_STATIC_ASSERT(std::ptrdiff_t(sizeof(typename OtherDerived::Scalar))==-1,YOU_CANNOT_MIX_ARRAYS_AND_MATRICES); return *this;} // mixing arrays and matrices is not legal template<typename OtherDerived> Derived& operator-=(const ArrayBase<OtherDerived>& ) {EIGEN_STATIC_ASSERT(std::ptrdiff_t(sizeof(typename OtherDerived::Scalar))==-1,YOU_CANNOT_MIX_ARRAYS_AND_MATRICES); return *this;} }; } // end namespace Eigen #endif // EIGEN_MATRIXBASE_H