// This file is part of Eigen, a lightweight C++ template library // for linear algebra. // // Copyright (C) 2009 Benoit Jacob <jacob.benoit.1@gmail.com> // Copyright (C) 2009-2011 Gael Guennebaud <gael.guennebaud@inria.fr> // // This Source Code Form is subject to the terms of the Mozilla // Public License v. 2.0. If a copy of the MPL was not distributed // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. #ifndef EIGEN_PERMUTATIONMATRIX_H #define EIGEN_PERMUTATIONMATRIX_H namespace Eigen { template<int RowCol,typename IndicesType,typename MatrixType, typename StorageKind> class PermutedImpl; /** \class PermutationBase * \ingroup Core_Module * * \brief Base class for permutations * * \param Derived the derived class * * This class is the base class for all expressions representing a permutation matrix, * internally stored as a vector of integers. * The convention followed here is that if \f$ \sigma \f$ is a permutation, the corresponding permutation matrix * \f$ P_\sigma \f$ is such that if \f$ (e_1,\ldots,e_p) \f$ is the canonical basis, we have: * \f[ P_\sigma(e_i) = e_{\sigma(i)}. \f] * This convention ensures that for any two permutations \f$ \sigma, \tau \f$, we have: * \f[ P_{\sigma\circ\tau} = P_\sigma P_\tau. \f] * * Permutation matrices are square and invertible. * * Notice that in addition to the member functions and operators listed here, there also are non-member * operator* to multiply any kind of permutation object with any kind of matrix expression (MatrixBase) * on either side. * * \sa class PermutationMatrix, class PermutationWrapper */ namespace internal { template<typename PermutationType, typename MatrixType, int Side, bool Transposed=false> struct permut_matrix_product_retval; template<typename PermutationType, typename MatrixType, int Side, bool Transposed=false> struct permut_sparsematrix_product_retval; enum PermPermProduct_t {PermPermProduct}; } // end namespace internal template<typename Derived> class PermutationBase : public EigenBase<Derived> { typedef internal::traits<Derived> Traits; typedef EigenBase<Derived> Base; public: #ifndef EIGEN_PARSED_BY_DOXYGEN typedef typename Traits::IndicesType IndicesType; enum { Flags = Traits::Flags, CoeffReadCost = Traits::CoeffReadCost, RowsAtCompileTime = Traits::RowsAtCompileTime, ColsAtCompileTime = Traits::ColsAtCompileTime, MaxRowsAtCompileTime = Traits::MaxRowsAtCompileTime, MaxColsAtCompileTime = Traits::MaxColsAtCompileTime }; typedef typename Traits::Scalar Scalar; typedef typename Traits::Index Index; typedef Matrix<Scalar,RowsAtCompileTime,ColsAtCompileTime,0,MaxRowsAtCompileTime,MaxColsAtCompileTime> DenseMatrixType; typedef PermutationMatrix<IndicesType::SizeAtCompileTime,IndicesType::MaxSizeAtCompileTime,Index> PlainPermutationType; using Base::derived; #endif /** Copies the other permutation into *this */ template<typename OtherDerived> Derived& operator=(const PermutationBase<OtherDerived>& other) { indices() = other.indices(); return derived(); } /** Assignment from the Transpositions \a tr */ template<typename OtherDerived> Derived& operator=(const TranspositionsBase<OtherDerived>& tr) { setIdentity(tr.size()); for(Index k=size()-1; k>=0; --k) applyTranspositionOnTheRight(k,tr.coeff(k)); return derived(); } #ifndef EIGEN_PARSED_BY_DOXYGEN /** This is a special case of the templated operator=. Its purpose is to * prevent a default operator= from hiding the templated operator=. */ Derived& operator=(const PermutationBase& other) { indices() = other.indices(); return derived(); } #endif /** \returns the number of rows */ inline Index rows() const { return indices().size(); } /** \returns the number of columns */ inline Index cols() const { return indices().size(); } /** \returns the size of a side of the respective square matrix, i.e., the number of indices */ inline Index size() const { return indices().size(); } #ifndef EIGEN_PARSED_BY_DOXYGEN template<typename DenseDerived> void evalTo(MatrixBase<DenseDerived>& other) const { other.setZero(); for (int i=0; i<rows();++i) other.coeffRef(indices().coeff(i),i) = typename DenseDerived::Scalar(1); } #endif /** \returns a Matrix object initialized from this permutation matrix. Notice that it * is inefficient to return this Matrix object by value. For efficiency, favor using * the Matrix constructor taking EigenBase objects. */ DenseMatrixType toDenseMatrix() const { return derived(); } /** const version of indices(). */ const IndicesType& indices() const { return derived().indices(); } /** \returns a reference to the stored array representing the permutation. */ IndicesType& indices() { return derived().indices(); } /** Resizes to given size. */ inline void resize(Index size) { indices().resize(size); } /** Sets *this to be the identity permutation matrix */ void setIdentity() { for(Index i = 0; i < size(); ++i) indices().coeffRef(i) = i; } /** Sets *this to be the identity permutation matrix of given size. */ void setIdentity(Index size) { resize(size); setIdentity(); } /** Multiplies *this by the transposition \f$(ij)\f$ on the left. * * \returns a reference to *this. * * \warning This is much slower than applyTranspositionOnTheRight(int,int): * this has linear complexity and requires a lot of branching. * * \sa applyTranspositionOnTheRight(int,int) */ Derived& applyTranspositionOnTheLeft(Index i, Index j) { eigen_assert(i>=0 && j>=0 && i<size() && j<size()); for(Index k = 0; k < size(); ++k) { if(indices().coeff(k) == i) indices().coeffRef(k) = j; else if(indices().coeff(k) == j) indices().coeffRef(k) = i; } return derived(); } /** Multiplies *this by the transposition \f$(ij)\f$ on the right. * * \returns a reference to *this. * * This is a fast operation, it only consists in swapping two indices. * * \sa applyTranspositionOnTheLeft(int,int) */ Derived& applyTranspositionOnTheRight(Index i, Index j) { eigen_assert(i>=0 && j>=0 && i<size() && j<size()); std::swap(indices().coeffRef(i), indices().coeffRef(j)); return derived(); } /** \returns the inverse permutation matrix. * * \note \note_try_to_help_rvo */ inline Transpose<PermutationBase> inverse() const { return derived(); } /** \returns the tranpose permutation matrix. * * \note \note_try_to_help_rvo */ inline Transpose<PermutationBase> transpose() const { return derived(); } /**** multiplication helpers to hopefully get RVO ****/ #ifndef EIGEN_PARSED_BY_DOXYGEN protected: template<typename OtherDerived> void assignTranspose(const PermutationBase<OtherDerived>& other) { for (int i=0; i<rows();++i) indices().coeffRef(other.indices().coeff(i)) = i; } template<typename Lhs,typename Rhs> void assignProduct(const Lhs& lhs, const Rhs& rhs) { eigen_assert(lhs.cols() == rhs.rows()); for (int i=0; i<rows();++i) indices().coeffRef(i) = lhs.indices().coeff(rhs.indices().coeff(i)); } #endif public: /** \returns the product permutation matrix. * * \note \note_try_to_help_rvo */ template<typename Other> inline PlainPermutationType operator*(const PermutationBase<Other>& other) const { return PlainPermutationType(internal::PermPermProduct, derived(), other.derived()); } /** \returns the product of a permutation with another inverse permutation. * * \note \note_try_to_help_rvo */ template<typename Other> inline PlainPermutationType operator*(const Transpose<PermutationBase<Other> >& other) const { return PlainPermutationType(internal::PermPermProduct, *this, other.eval()); } /** \returns the product of an inverse permutation with another permutation. * * \note \note_try_to_help_rvo */ template<typename Other> friend inline PlainPermutationType operator*(const Transpose<PermutationBase<Other> >& other, const PermutationBase& perm) { return PlainPermutationType(internal::PermPermProduct, other.eval(), perm); } protected: }; /** \class PermutationMatrix * \ingroup Core_Module * * \brief Permutation matrix * * \param SizeAtCompileTime the number of rows/cols, or Dynamic * \param MaxSizeAtCompileTime the maximum number of rows/cols, or Dynamic. This optional parameter defaults to SizeAtCompileTime. Most of the time, you should not have to specify it. * \param IndexType the interger type of the indices * * This class represents a permutation matrix, internally stored as a vector of integers. * * \sa class PermutationBase, class PermutationWrapper, class DiagonalMatrix */ namespace internal { template<int SizeAtCompileTime, int MaxSizeAtCompileTime, typename IndexType> struct traits<PermutationMatrix<SizeAtCompileTime, MaxSizeAtCompileTime, IndexType> > : traits<Matrix<IndexType,SizeAtCompileTime,SizeAtCompileTime,0,MaxSizeAtCompileTime,MaxSizeAtCompileTime> > { typedef IndexType Index; typedef Matrix<IndexType, SizeAtCompileTime, 1, 0, MaxSizeAtCompileTime, 1> IndicesType; }; } template<int SizeAtCompileTime, int MaxSizeAtCompileTime, typename IndexType> class PermutationMatrix : public PermutationBase<PermutationMatrix<SizeAtCompileTime, MaxSizeAtCompileTime, IndexType> > { typedef PermutationBase<PermutationMatrix> Base; typedef internal::traits<PermutationMatrix> Traits; public: #ifndef EIGEN_PARSED_BY_DOXYGEN typedef typename Traits::IndicesType IndicesType; #endif inline PermutationMatrix() {} /** Constructs an uninitialized permutation matrix of given size. */ inline PermutationMatrix(int size) : m_indices(size) {} /** Copy constructor. */ template<typename OtherDerived> inline PermutationMatrix(const PermutationBase<OtherDerived>& other) : m_indices(other.indices()) {} #ifndef EIGEN_PARSED_BY_DOXYGEN /** Standard copy constructor. Defined only to prevent a default copy constructor * from hiding the other templated constructor */ inline PermutationMatrix(const PermutationMatrix& other) : m_indices(other.indices()) {} #endif /** Generic constructor from expression of the indices. The indices * array has the meaning that the permutations sends each integer i to indices[i]. * * \warning It is your responsibility to check that the indices array that you passes actually * describes a permutation, i.e., each value between 0 and n-1 occurs exactly once, where n is the * array's size. */ template<typename Other> explicit inline PermutationMatrix(const MatrixBase<Other>& indices) : m_indices(indices) {} /** Convert the Transpositions \a tr to a permutation matrix */ template<typename Other> explicit PermutationMatrix(const TranspositionsBase<Other>& tr) : m_indices(tr.size()) { *this = tr; } /** Copies the other permutation into *this */ template<typename Other> PermutationMatrix& operator=(const PermutationBase<Other>& other) { m_indices = other.indices(); return *this; } /** Assignment from the Transpositions \a tr */ template<typename Other> PermutationMatrix& operator=(const TranspositionsBase<Other>& tr) { return Base::operator=(tr.derived()); } #ifndef EIGEN_PARSED_BY_DOXYGEN /** This is a special case of the templated operator=. Its purpose is to * prevent a default operator= from hiding the templated operator=. */ PermutationMatrix& operator=(const PermutationMatrix& other) { m_indices = other.m_indices; return *this; } #endif /** const version of indices(). */ const IndicesType& indices() const { return m_indices; } /** \returns a reference to the stored array representing the permutation. */ IndicesType& indices() { return m_indices; } /**** multiplication helpers to hopefully get RVO ****/ #ifndef EIGEN_PARSED_BY_DOXYGEN template<typename Other> PermutationMatrix(const Transpose<PermutationBase<Other> >& other) : m_indices(other.nestedPermutation().size()) { for (int i=0; i<m_indices.size();++i) m_indices.coeffRef(other.nestedPermutation().indices().coeff(i)) = i; } template<typename Lhs,typename Rhs> PermutationMatrix(internal::PermPermProduct_t, const Lhs& lhs, const Rhs& rhs) : m_indices(lhs.indices().size()) { Base::assignProduct(lhs,rhs); } #endif protected: IndicesType m_indices; }; namespace internal { template<int SizeAtCompileTime, int MaxSizeAtCompileTime, typename IndexType, int _PacketAccess> struct traits<Map<PermutationMatrix<SizeAtCompileTime, MaxSizeAtCompileTime, IndexType>,_PacketAccess> > : traits<Matrix<IndexType,SizeAtCompileTime,SizeAtCompileTime,0,MaxSizeAtCompileTime,MaxSizeAtCompileTime> > { typedef IndexType Index; typedef Map<const Matrix<IndexType, SizeAtCompileTime, 1, 0, MaxSizeAtCompileTime, 1>, _PacketAccess> IndicesType; }; } template<int SizeAtCompileTime, int MaxSizeAtCompileTime, typename IndexType, int _PacketAccess> class Map<PermutationMatrix<SizeAtCompileTime, MaxSizeAtCompileTime, IndexType>,_PacketAccess> : public PermutationBase<Map<PermutationMatrix<SizeAtCompileTime, MaxSizeAtCompileTime, IndexType>,_PacketAccess> > { typedef PermutationBase<Map> Base; typedef internal::traits<Map> Traits; public: #ifndef EIGEN_PARSED_BY_DOXYGEN typedef typename Traits::IndicesType IndicesType; typedef typename IndicesType::Scalar Index; #endif inline Map(const Index* indices) : m_indices(indices) {} inline Map(const Index* indices, Index size) : m_indices(indices,size) {} /** Copies the other permutation into *this */ template<typename Other> Map& operator=(const PermutationBase<Other>& other) { return Base::operator=(other.derived()); } /** Assignment from the Transpositions \a tr */ template<typename Other> Map& operator=(const TranspositionsBase<Other>& tr) { return Base::operator=(tr.derived()); } #ifndef EIGEN_PARSED_BY_DOXYGEN /** This is a special case of the templated operator=. Its purpose is to * prevent a default operator= from hiding the templated operator=. */ Map& operator=(const Map& other) { m_indices = other.m_indices; return *this; } #endif /** const version of indices(). */ const IndicesType& indices() const { return m_indices; } /** \returns a reference to the stored array representing the permutation. */ IndicesType& indices() { return m_indices; } protected: IndicesType m_indices; }; /** \class PermutationWrapper * \ingroup Core_Module * * \brief Class to view a vector of integers as a permutation matrix * * \param _IndicesType the type of the vector of integer (can be any compatible expression) * * This class allows to view any vector expression of integers as a permutation matrix. * * \sa class PermutationBase, class PermutationMatrix */ struct PermutationStorage {}; template<typename _IndicesType> class TranspositionsWrapper; namespace internal { template<typename _IndicesType> struct traits<PermutationWrapper<_IndicesType> > { typedef PermutationStorage StorageKind; typedef typename _IndicesType::Scalar Scalar; typedef typename _IndicesType::Scalar Index; typedef _IndicesType IndicesType; enum { RowsAtCompileTime = _IndicesType::SizeAtCompileTime, ColsAtCompileTime = _IndicesType::SizeAtCompileTime, MaxRowsAtCompileTime = IndicesType::MaxRowsAtCompileTime, MaxColsAtCompileTime = IndicesType::MaxColsAtCompileTime, Flags = 0, CoeffReadCost = _IndicesType::CoeffReadCost }; }; } template<typename _IndicesType> class PermutationWrapper : public PermutationBase<PermutationWrapper<_IndicesType> > { typedef PermutationBase<PermutationWrapper> Base; typedef internal::traits<PermutationWrapper> Traits; public: #ifndef EIGEN_PARSED_BY_DOXYGEN typedef typename Traits::IndicesType IndicesType; #endif inline PermutationWrapper(const IndicesType& indices) : m_indices(indices) {} /** const version of indices(). */ const typename internal::remove_all<typename IndicesType::Nested>::type& indices() const { return m_indices; } protected: typename IndicesType::Nested m_indices; }; /** \returns the matrix with the permutation applied to the columns. */ template<typename Derived, typename PermutationDerived> inline const internal::permut_matrix_product_retval<PermutationDerived, Derived, OnTheRight> operator*(const MatrixBase<Derived>& matrix, const PermutationBase<PermutationDerived> &permutation) { return internal::permut_matrix_product_retval <PermutationDerived, Derived, OnTheRight> (permutation.derived(), matrix.derived()); } /** \returns the matrix with the permutation applied to the rows. */ template<typename Derived, typename PermutationDerived> inline const internal::permut_matrix_product_retval <PermutationDerived, Derived, OnTheLeft> operator*(const PermutationBase<PermutationDerived> &permutation, const MatrixBase<Derived>& matrix) { return internal::permut_matrix_product_retval <PermutationDerived, Derived, OnTheLeft> (permutation.derived(), matrix.derived()); } namespace internal { template<typename PermutationType, typename MatrixType, int Side, bool Transposed> struct traits<permut_matrix_product_retval<PermutationType, MatrixType, Side, Transposed> > { typedef typename MatrixType::PlainObject ReturnType; }; template<typename PermutationType, typename MatrixType, int Side, bool Transposed> struct permut_matrix_product_retval : public ReturnByValue<permut_matrix_product_retval<PermutationType, MatrixType, Side, Transposed> > { typedef typename remove_all<typename MatrixType::Nested>::type MatrixTypeNestedCleaned; permut_matrix_product_retval(const PermutationType& perm, const MatrixType& matrix) : m_permutation(perm), m_matrix(matrix) {} inline int rows() const { return m_matrix.rows(); } inline int cols() const { return m_matrix.cols(); } template<typename Dest> inline void evalTo(Dest& dst) const { const int n = Side==OnTheLeft ? rows() : cols(); if(is_same<MatrixTypeNestedCleaned,Dest>::value && extract_data(dst) == extract_data(m_matrix)) { // apply the permutation inplace Matrix<bool,PermutationType::RowsAtCompileTime,1,0,PermutationType::MaxRowsAtCompileTime> mask(m_permutation.size()); mask.fill(false); int r = 0; while(r < m_permutation.size()) { // search for the next seed while(r<m_permutation.size() && mask[r]) r++; if(r>=m_permutation.size()) break; // we got one, let's follow it until we are back to the seed int k0 = r++; int kPrev = k0; mask.coeffRef(k0) = true; for(int k=m_permutation.indices().coeff(k0); k!=k0; k=m_permutation.indices().coeff(k)) { Block<Dest, Side==OnTheLeft ? 1 : Dest::RowsAtCompileTime, Side==OnTheRight ? 1 : Dest::ColsAtCompileTime>(dst, k) .swap(Block<Dest, Side==OnTheLeft ? 1 : Dest::RowsAtCompileTime, Side==OnTheRight ? 1 : Dest::ColsAtCompileTime> (dst,((Side==OnTheLeft) ^ Transposed) ? k0 : kPrev)); mask.coeffRef(k) = true; kPrev = k; } } } else { for(int i = 0; i < n; ++i) { Block<Dest, Side==OnTheLeft ? 1 : Dest::RowsAtCompileTime, Side==OnTheRight ? 1 : Dest::ColsAtCompileTime> (dst, ((Side==OnTheLeft) ^ Transposed) ? m_permutation.indices().coeff(i) : i) = Block<const MatrixTypeNestedCleaned,Side==OnTheLeft ? 1 : MatrixType::RowsAtCompileTime,Side==OnTheRight ? 1 : MatrixType::ColsAtCompileTime> (m_matrix, ((Side==OnTheRight) ^ Transposed) ? m_permutation.indices().coeff(i) : i); } } } protected: const PermutationType& m_permutation; typename MatrixType::Nested m_matrix; }; /* Template partial specialization for transposed/inverse permutations */ template<typename Derived> struct traits<Transpose<PermutationBase<Derived> > > : traits<Derived> {}; } // end namespace internal template<typename Derived> class Transpose<PermutationBase<Derived> > : public EigenBase<Transpose<PermutationBase<Derived> > > { typedef Derived PermutationType; typedef typename PermutationType::IndicesType IndicesType; typedef typename PermutationType::PlainPermutationType PlainPermutationType; public: #ifndef EIGEN_PARSED_BY_DOXYGEN typedef internal::traits<PermutationType> Traits; typedef typename Derived::DenseMatrixType DenseMatrixType; enum { Flags = Traits::Flags, CoeffReadCost = Traits::CoeffReadCost, RowsAtCompileTime = Traits::RowsAtCompileTime, ColsAtCompileTime = Traits::ColsAtCompileTime, MaxRowsAtCompileTime = Traits::MaxRowsAtCompileTime, MaxColsAtCompileTime = Traits::MaxColsAtCompileTime }; typedef typename Traits::Scalar Scalar; #endif Transpose(const PermutationType& p) : m_permutation(p) {} inline int rows() const { return m_permutation.rows(); } inline int cols() const { return m_permutation.cols(); } #ifndef EIGEN_PARSED_BY_DOXYGEN template<typename DenseDerived> void evalTo(MatrixBase<DenseDerived>& other) const { other.setZero(); for (int i=0; i<rows();++i) other.coeffRef(i, m_permutation.indices().coeff(i)) = typename DenseDerived::Scalar(1); } #endif /** \return the equivalent permutation matrix */ PlainPermutationType eval() const { return *this; } DenseMatrixType toDenseMatrix() const { return *this; } /** \returns the matrix with the inverse permutation applied to the columns. */ template<typename OtherDerived> friend inline const internal::permut_matrix_product_retval<PermutationType, OtherDerived, OnTheRight, true> operator*(const MatrixBase<OtherDerived>& matrix, const Transpose& trPerm) { return internal::permut_matrix_product_retval<PermutationType, OtherDerived, OnTheRight, true>(trPerm.m_permutation, matrix.derived()); } /** \returns the matrix with the inverse permutation applied to the rows. */ template<typename OtherDerived> inline const internal::permut_matrix_product_retval<PermutationType, OtherDerived, OnTheLeft, true> operator*(const MatrixBase<OtherDerived>& matrix) const { return internal::permut_matrix_product_retval<PermutationType, OtherDerived, OnTheLeft, true>(m_permutation, matrix.derived()); } const PermutationType& nestedPermutation() const { return m_permutation; } protected: const PermutationType& m_permutation; }; template<typename Derived> const PermutationWrapper<const Derived> MatrixBase<Derived>::asPermutation() const { return derived(); } } // end namespace Eigen #endif // EIGEN_PERMUTATIONMATRIX_H