// This file is part of Eigen, a lightweight C++ template library // for linear algebra. Eigen itself is part of the KDE project. // // Copyright (C) 2008 Gael Guennebaud <g.gael@free.fr> // // This Source Code Form is subject to the terms of the Mozilla // Public License v. 2.0. If a copy of the MPL was not distributed // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. // no include guard, we'll include this twice from All.h from Eigen2Support, and it's internal anyway namespace Eigen { /** \geometry_module \ingroup Geometry_Module * \nonstableyet * * \class AlignedBox * * \brief An axis aligned box * * \param _Scalar the type of the scalar coefficients * \param _AmbientDim the dimension of the ambient space, can be a compile time value or Dynamic. * * This class represents an axis aligned box as a pair of the minimal and maximal corners. */ template <typename _Scalar, int _AmbientDim> class AlignedBox { public: EIGEN_MAKE_ALIGNED_OPERATOR_NEW_IF_VECTORIZABLE_FIXED_SIZE(_Scalar,_AmbientDim==Dynamic ? Dynamic : _AmbientDim+1) enum { AmbientDimAtCompileTime = _AmbientDim }; typedef _Scalar Scalar; typedef typename NumTraits<Scalar>::Real RealScalar; typedef Matrix<Scalar,AmbientDimAtCompileTime,1> VectorType; /** Default constructor initializing a null box. */ inline explicit AlignedBox() { if (AmbientDimAtCompileTime!=Dynamic) setNull(); } /** Constructs a null box with \a _dim the dimension of the ambient space. */ inline explicit AlignedBox(int _dim) : m_min(_dim), m_max(_dim) { setNull(); } /** Constructs a box with extremities \a _min and \a _max. */ inline AlignedBox(const VectorType& _min, const VectorType& _max) : m_min(_min), m_max(_max) {} /** Constructs a box containing a single point \a p. */ inline explicit AlignedBox(const VectorType& p) : m_min(p), m_max(p) {} ~AlignedBox() {} /** \returns the dimension in which the box holds */ inline int dim() const { return AmbientDimAtCompileTime==Dynamic ? m_min.size()-1 : AmbientDimAtCompileTime; } /** \returns true if the box is null, i.e, empty. */ inline bool isNull() const { return (m_min.cwise() > m_max).any(); } /** Makes \c *this a null/empty box. */ inline void setNull() { m_min.setConstant( (std::numeric_limits<Scalar>::max)()); m_max.setConstant(-(std::numeric_limits<Scalar>::max)()); } /** \returns the minimal corner */ inline const VectorType& (min)() const { return m_min; } /** \returns a non const reference to the minimal corner */ inline VectorType& (min)() { return m_min; } /** \returns the maximal corner */ inline const VectorType& (max)() const { return m_max; } /** \returns a non const reference to the maximal corner */ inline VectorType& (max)() { return m_max; } /** \returns true if the point \a p is inside the box \c *this. */ inline bool contains(const VectorType& p) const { return (m_min.cwise()<=p).all() && (p.cwise()<=m_max).all(); } /** \returns true if the box \a b is entirely inside the box \c *this. */ inline bool contains(const AlignedBox& b) const { return (m_min.cwise()<=(b.min)()).all() && ((b.max)().cwise()<=m_max).all(); } /** Extends \c *this such that it contains the point \a p and returns a reference to \c *this. */ inline AlignedBox& extend(const VectorType& p) { m_min = (m_min.cwise().min)(p); m_max = (m_max.cwise().max)(p); return *this; } /** Extends \c *this such that it contains the box \a b and returns a reference to \c *this. */ inline AlignedBox& extend(const AlignedBox& b) { m_min = (m_min.cwise().min)(b.m_min); m_max = (m_max.cwise().max)(b.m_max); return *this; } /** Clamps \c *this by the box \a b and returns a reference to \c *this. */ inline AlignedBox& clamp(const AlignedBox& b) { m_min = (m_min.cwise().max)(b.m_min); m_max = (m_max.cwise().min)(b.m_max); return *this; } /** Translate \c *this by the vector \a t and returns a reference to \c *this. */ inline AlignedBox& translate(const VectorType& t) { m_min += t; m_max += t; return *this; } /** \returns the squared distance between the point \a p and the box \c *this, * and zero if \a p is inside the box. * \sa exteriorDistance() */ inline Scalar squaredExteriorDistance(const VectorType& p) const; /** \returns the distance between the point \a p and the box \c *this, * and zero if \a p is inside the box. * \sa squaredExteriorDistance() */ inline Scalar exteriorDistance(const VectorType& p) const { return ei_sqrt(squaredExteriorDistance(p)); } /** \returns \c *this with scalar type casted to \a NewScalarType * * Note that if \a NewScalarType is equal to the current scalar type of \c *this * then this function smartly returns a const reference to \c *this. */ template<typename NewScalarType> inline typename internal::cast_return_type<AlignedBox, AlignedBox<NewScalarType,AmbientDimAtCompileTime> >::type cast() const { return typename internal::cast_return_type<AlignedBox, AlignedBox<NewScalarType,AmbientDimAtCompileTime> >::type(*this); } /** Copy constructor with scalar type conversion */ template<typename OtherScalarType> inline explicit AlignedBox(const AlignedBox<OtherScalarType,AmbientDimAtCompileTime>& other) { m_min = (other.min)().template cast<Scalar>(); m_max = (other.max)().template cast<Scalar>(); } /** \returns \c true if \c *this is approximately equal to \a other, within the precision * determined by \a prec. * * \sa MatrixBase::isApprox() */ bool isApprox(const AlignedBox& other, typename NumTraits<Scalar>::Real prec = precision<Scalar>()) const { return m_min.isApprox(other.m_min, prec) && m_max.isApprox(other.m_max, prec); } protected: VectorType m_min, m_max; }; template<typename Scalar,int AmbiantDim> inline Scalar AlignedBox<Scalar,AmbiantDim>::squaredExteriorDistance(const VectorType& p) const { Scalar dist2(0); Scalar aux; for (int k=0; k<dim(); ++k) { if ((aux = (p[k]-m_min[k]))<Scalar(0)) dist2 += aux*aux; else if ( (aux = (m_max[k]-p[k]))<Scalar(0)) dist2 += aux*aux; } return dist2; } } // end namespace Eigen