// This file is part of Eigen, a lightweight C++ template library // for linear algebra. Eigen itself is part of the KDE project. // // Copyright (C) 2008 Gael Guennebaud <g.gael@free.fr> // // This Source Code Form is subject to the terms of the Mozilla // Public License v. 2.0. If a copy of the MPL was not distributed // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. // no include guard, we'll include this twice from All.h from Eigen2Support, and it's internal anyway namespace Eigen { template<typename Other, int OtherRows=Other::RowsAtCompileTime, int OtherCols=Other::ColsAtCompileTime> struct ei_quaternion_assign_impl; /** \geometry_module \ingroup Geometry_Module * * \class Quaternion * * \brief The quaternion class used to represent 3D orientations and rotations * * \param _Scalar the scalar type, i.e., the type of the coefficients * * This class represents a quaternion \f$ w+xi+yj+zk \f$ that is a convenient representation of * orientations and rotations of objects in three dimensions. Compared to other representations * like Euler angles or 3x3 matrices, quatertions offer the following advantages: * \li \b compact storage (4 scalars) * \li \b efficient to compose (28 flops), * \li \b stable spherical interpolation * * The following two typedefs are provided for convenience: * \li \c Quaternionf for \c float * \li \c Quaterniond for \c double * * \sa class AngleAxis, class Transform */ template<typename _Scalar> struct ei_traits<Quaternion<_Scalar> > { typedef _Scalar Scalar; }; template<typename _Scalar> class Quaternion : public RotationBase<Quaternion<_Scalar>,3> { typedef RotationBase<Quaternion<_Scalar>,3> Base; public: EIGEN_MAKE_ALIGNED_OPERATOR_NEW_IF_VECTORIZABLE_FIXED_SIZE(_Scalar,4) using Base::operator*; /** the scalar type of the coefficients */ typedef _Scalar Scalar; /** the type of the Coefficients 4-vector */ typedef Matrix<Scalar, 4, 1> Coefficients; /** the type of a 3D vector */ typedef Matrix<Scalar,3,1> Vector3; /** the equivalent rotation matrix type */ typedef Matrix<Scalar,3,3> Matrix3; /** the equivalent angle-axis type */ typedef AngleAxis<Scalar> AngleAxisType; /** \returns the \c x coefficient */ inline Scalar x() const { return m_coeffs.coeff(0); } /** \returns the \c y coefficient */ inline Scalar y() const { return m_coeffs.coeff(1); } /** \returns the \c z coefficient */ inline Scalar z() const { return m_coeffs.coeff(2); } /** \returns the \c w coefficient */ inline Scalar w() const { return m_coeffs.coeff(3); } /** \returns a reference to the \c x coefficient */ inline Scalar& x() { return m_coeffs.coeffRef(0); } /** \returns a reference to the \c y coefficient */ inline Scalar& y() { return m_coeffs.coeffRef(1); } /** \returns a reference to the \c z coefficient */ inline Scalar& z() { return m_coeffs.coeffRef(2); } /** \returns a reference to the \c w coefficient */ inline Scalar& w() { return m_coeffs.coeffRef(3); } /** \returns a read-only vector expression of the imaginary part (x,y,z) */ inline const Block<const Coefficients,3,1> vec() const { return m_coeffs.template start<3>(); } /** \returns a vector expression of the imaginary part (x,y,z) */ inline Block<Coefficients,3,1> vec() { return m_coeffs.template start<3>(); } /** \returns a read-only vector expression of the coefficients (x,y,z,w) */ inline const Coefficients& coeffs() const { return m_coeffs; } /** \returns a vector expression of the coefficients (x,y,z,w) */ inline Coefficients& coeffs() { return m_coeffs; } /** Default constructor leaving the quaternion uninitialized. */ inline Quaternion() {} /** Constructs and initializes the quaternion \f$ w+xi+yj+zk \f$ from * its four coefficients \a w, \a x, \a y and \a z. * * \warning Note the order of the arguments: the real \a w coefficient first, * while internally the coefficients are stored in the following order: * [\c x, \c y, \c z, \c w] */ inline Quaternion(Scalar w, Scalar x, Scalar y, Scalar z) { m_coeffs << x, y, z, w; } /** Copy constructor */ inline Quaternion(const Quaternion& other) { m_coeffs = other.m_coeffs; } /** Constructs and initializes a quaternion from the angle-axis \a aa */ explicit inline Quaternion(const AngleAxisType& aa) { *this = aa; } /** Constructs and initializes a quaternion from either: * - a rotation matrix expression, * - a 4D vector expression representing quaternion coefficients. * \sa operator=(MatrixBase<Derived>) */ template<typename Derived> explicit inline Quaternion(const MatrixBase<Derived>& other) { *this = other; } Quaternion& operator=(const Quaternion& other); Quaternion& operator=(const AngleAxisType& aa); template<typename Derived> Quaternion& operator=(const MatrixBase<Derived>& m); /** \returns a quaternion representing an identity rotation * \sa MatrixBase::Identity() */ static inline Quaternion Identity() { return Quaternion(1, 0, 0, 0); } /** \sa Quaternion::Identity(), MatrixBase::setIdentity() */ inline Quaternion& setIdentity() { m_coeffs << 0, 0, 0, 1; return *this; } /** \returns the squared norm of the quaternion's coefficients * \sa Quaternion::norm(), MatrixBase::squaredNorm() */ inline Scalar squaredNorm() const { return m_coeffs.squaredNorm(); } /** \returns the norm of the quaternion's coefficients * \sa Quaternion::squaredNorm(), MatrixBase::norm() */ inline Scalar norm() const { return m_coeffs.norm(); } /** Normalizes the quaternion \c *this * \sa normalized(), MatrixBase::normalize() */ inline void normalize() { m_coeffs.normalize(); } /** \returns a normalized version of \c *this * \sa normalize(), MatrixBase::normalized() */ inline Quaternion normalized() const { return Quaternion(m_coeffs.normalized()); } /** \returns the dot product of \c *this and \a other * Geometrically speaking, the dot product of two unit quaternions * corresponds to the cosine of half the angle between the two rotations. * \sa angularDistance() */ inline Scalar eigen2_dot(const Quaternion& other) const { return m_coeffs.eigen2_dot(other.m_coeffs); } inline Scalar angularDistance(const Quaternion& other) const; Matrix3 toRotationMatrix(void) const; template<typename Derived1, typename Derived2> Quaternion& setFromTwoVectors(const MatrixBase<Derived1>& a, const MatrixBase<Derived2>& b); inline Quaternion operator* (const Quaternion& q) const; inline Quaternion& operator*= (const Quaternion& q); Quaternion inverse(void) const; Quaternion conjugate(void) const; Quaternion slerp(Scalar t, const Quaternion& other) const; template<typename Derived> Vector3 operator* (const MatrixBase<Derived>& vec) const; /** \returns \c *this with scalar type casted to \a NewScalarType * * Note that if \a NewScalarType is equal to the current scalar type of \c *this * then this function smartly returns a const reference to \c *this. */ template<typename NewScalarType> inline typename internal::cast_return_type<Quaternion,Quaternion<NewScalarType> >::type cast() const { return typename internal::cast_return_type<Quaternion,Quaternion<NewScalarType> >::type(*this); } /** Copy constructor with scalar type conversion */ template<typename OtherScalarType> inline explicit Quaternion(const Quaternion<OtherScalarType>& other) { m_coeffs = other.coeffs().template cast<Scalar>(); } /** \returns \c true if \c *this is approximately equal to \a other, within the precision * determined by \a prec. * * \sa MatrixBase::isApprox() */ bool isApprox(const Quaternion& other, typename NumTraits<Scalar>::Real prec = precision<Scalar>()) const { return m_coeffs.isApprox(other.m_coeffs, prec); } protected: Coefficients m_coeffs; }; /** \ingroup Geometry_Module * single precision quaternion type */ typedef Quaternion<float> Quaternionf; /** \ingroup Geometry_Module * double precision quaternion type */ typedef Quaternion<double> Quaterniond; // Generic Quaternion * Quaternion product template<typename Scalar> inline Quaternion<Scalar> ei_quaternion_product(const Quaternion<Scalar>& a, const Quaternion<Scalar>& b) { return Quaternion<Scalar> ( a.w() * b.w() - a.x() * b.x() - a.y() * b.y() - a.z() * b.z(), a.w() * b.x() + a.x() * b.w() + a.y() * b.z() - a.z() * b.y(), a.w() * b.y() + a.y() * b.w() + a.z() * b.x() - a.x() * b.z(), a.w() * b.z() + a.z() * b.w() + a.x() * b.y() - a.y() * b.x() ); } /** \returns the concatenation of two rotations as a quaternion-quaternion product */ template <typename Scalar> inline Quaternion<Scalar> Quaternion<Scalar>::operator* (const Quaternion& other) const { return ei_quaternion_product(*this,other); } /** \sa operator*(Quaternion) */ template <typename Scalar> inline Quaternion<Scalar>& Quaternion<Scalar>::operator*= (const Quaternion& other) { return (*this = *this * other); } /** Rotation of a vector by a quaternion. * \remarks If the quaternion is used to rotate several points (>1) * then it is much more efficient to first convert it to a 3x3 Matrix. * Comparison of the operation cost for n transformations: * - Quaternion: 30n * - Via a Matrix3: 24 + 15n */ template <typename Scalar> template<typename Derived> inline typename Quaternion<Scalar>::Vector3 Quaternion<Scalar>::operator* (const MatrixBase<Derived>& v) const { // Note that this algorithm comes from the optimization by hand // of the conversion to a Matrix followed by a Matrix/Vector product. // It appears to be much faster than the common algorithm found // in the litterature (30 versus 39 flops). It also requires two // Vector3 as temporaries. Vector3 uv; uv = 2 * this->vec().cross(v); return v + this->w() * uv + this->vec().cross(uv); } template<typename Scalar> inline Quaternion<Scalar>& Quaternion<Scalar>::operator=(const Quaternion& other) { m_coeffs = other.m_coeffs; return *this; } /** Set \c *this from an angle-axis \a aa and returns a reference to \c *this */ template<typename Scalar> inline Quaternion<Scalar>& Quaternion<Scalar>::operator=(const AngleAxisType& aa) { Scalar ha = Scalar(0.5)*aa.angle(); // Scalar(0.5) to suppress precision loss warnings this->w() = ei_cos(ha); this->vec() = ei_sin(ha) * aa.axis(); return *this; } /** Set \c *this from the expression \a xpr: * - if \a xpr is a 4x1 vector, then \a xpr is assumed to be a quaternion * - if \a xpr is a 3x3 matrix, then \a xpr is assumed to be rotation matrix * and \a xpr is converted to a quaternion */ template<typename Scalar> template<typename Derived> inline Quaternion<Scalar>& Quaternion<Scalar>::operator=(const MatrixBase<Derived>& xpr) { ei_quaternion_assign_impl<Derived>::run(*this, xpr.derived()); return *this; } /** Convert the quaternion to a 3x3 rotation matrix */ template<typename Scalar> inline typename Quaternion<Scalar>::Matrix3 Quaternion<Scalar>::toRotationMatrix(void) const { // NOTE if inlined, then gcc 4.2 and 4.4 get rid of the temporary (not gcc 4.3 !!) // if not inlined then the cost of the return by value is huge ~ +35%, // however, not inlining this function is an order of magnitude slower, so // it has to be inlined, and so the return by value is not an issue Matrix3 res; const Scalar tx = Scalar(2)*this->x(); const Scalar ty = Scalar(2)*this->y(); const Scalar tz = Scalar(2)*this->z(); const Scalar twx = tx*this->w(); const Scalar twy = ty*this->w(); const Scalar twz = tz*this->w(); const Scalar txx = tx*this->x(); const Scalar txy = ty*this->x(); const Scalar txz = tz*this->x(); const Scalar tyy = ty*this->y(); const Scalar tyz = tz*this->y(); const Scalar tzz = tz*this->z(); res.coeffRef(0,0) = Scalar(1)-(tyy+tzz); res.coeffRef(0,1) = txy-twz; res.coeffRef(0,2) = txz+twy; res.coeffRef(1,0) = txy+twz; res.coeffRef(1,1) = Scalar(1)-(txx+tzz); res.coeffRef(1,2) = tyz-twx; res.coeffRef(2,0) = txz-twy; res.coeffRef(2,1) = tyz+twx; res.coeffRef(2,2) = Scalar(1)-(txx+tyy); return res; } /** Sets *this to be a quaternion representing a rotation sending the vector \a a to the vector \a b. * * \returns a reference to *this. * * Note that the two input vectors do \b not have to be normalized. */ template<typename Scalar> template<typename Derived1, typename Derived2> inline Quaternion<Scalar>& Quaternion<Scalar>::setFromTwoVectors(const MatrixBase<Derived1>& a, const MatrixBase<Derived2>& b) { Vector3 v0 = a.normalized(); Vector3 v1 = b.normalized(); Scalar c = v0.eigen2_dot(v1); // if dot == 1, vectors are the same if (ei_isApprox(c,Scalar(1))) { // set to identity this->w() = 1; this->vec().setZero(); return *this; } // if dot == -1, vectors are opposites if (ei_isApprox(c,Scalar(-1))) { this->vec() = v0.unitOrthogonal(); this->w() = 0; return *this; } Vector3 axis = v0.cross(v1); Scalar s = ei_sqrt((Scalar(1)+c)*Scalar(2)); Scalar invs = Scalar(1)/s; this->vec() = axis * invs; this->w() = s * Scalar(0.5); return *this; } /** \returns the multiplicative inverse of \c *this * Note that in most cases, i.e., if you simply want the opposite rotation, * and/or the quaternion is normalized, then it is enough to use the conjugate. * * \sa Quaternion::conjugate() */ template <typename Scalar> inline Quaternion<Scalar> Quaternion<Scalar>::inverse() const { // FIXME should this function be called multiplicativeInverse and conjugate() be called inverse() or opposite() ?? Scalar n2 = this->squaredNorm(); if (n2 > 0) return Quaternion(conjugate().coeffs() / n2); else { // return an invalid result to flag the error return Quaternion(Coefficients::Zero()); } } /** \returns the conjugate of the \c *this which is equal to the multiplicative inverse * if the quaternion is normalized. * The conjugate of a quaternion represents the opposite rotation. * * \sa Quaternion::inverse() */ template <typename Scalar> inline Quaternion<Scalar> Quaternion<Scalar>::conjugate() const { return Quaternion(this->w(),-this->x(),-this->y(),-this->z()); } /** \returns the angle (in radian) between two rotations * \sa eigen2_dot() */ template <typename Scalar> inline Scalar Quaternion<Scalar>::angularDistance(const Quaternion& other) const { double d = ei_abs(this->eigen2_dot(other)); if (d>=1.0) return 0; return Scalar(2) * std::acos(d); } /** \returns the spherical linear interpolation between the two quaternions * \c *this and \a other at the parameter \a t */ template <typename Scalar> Quaternion<Scalar> Quaternion<Scalar>::slerp(Scalar t, const Quaternion& other) const { static const Scalar one = Scalar(1) - machine_epsilon<Scalar>(); Scalar d = this->eigen2_dot(other); Scalar absD = ei_abs(d); Scalar scale0; Scalar scale1; if (absD>=one) { scale0 = Scalar(1) - t; scale1 = t; } else { // theta is the angle between the 2 quaternions Scalar theta = std::acos(absD); Scalar sinTheta = ei_sin(theta); scale0 = ei_sin( ( Scalar(1) - t ) * theta) / sinTheta; scale1 = ei_sin( ( t * theta) ) / sinTheta; if (d<0) scale1 = -scale1; } return Quaternion<Scalar>(scale0 * coeffs() + scale1 * other.coeffs()); } // set from a rotation matrix template<typename Other> struct ei_quaternion_assign_impl<Other,3,3> { typedef typename Other::Scalar Scalar; static inline void run(Quaternion<Scalar>& q, const Other& mat) { // This algorithm comes from "Quaternion Calculus and Fast Animation", // Ken Shoemake, 1987 SIGGRAPH course notes Scalar t = mat.trace(); if (t > 0) { t = ei_sqrt(t + Scalar(1.0)); q.w() = Scalar(0.5)*t; t = Scalar(0.5)/t; q.x() = (mat.coeff(2,1) - mat.coeff(1,2)) * t; q.y() = (mat.coeff(0,2) - mat.coeff(2,0)) * t; q.z() = (mat.coeff(1,0) - mat.coeff(0,1)) * t; } else { int i = 0; if (mat.coeff(1,1) > mat.coeff(0,0)) i = 1; if (mat.coeff(2,2) > mat.coeff(i,i)) i = 2; int j = (i+1)%3; int k = (j+1)%3; t = ei_sqrt(mat.coeff(i,i)-mat.coeff(j,j)-mat.coeff(k,k) + Scalar(1.0)); q.coeffs().coeffRef(i) = Scalar(0.5) * t; t = Scalar(0.5)/t; q.w() = (mat.coeff(k,j)-mat.coeff(j,k))*t; q.coeffs().coeffRef(j) = (mat.coeff(j,i)+mat.coeff(i,j))*t; q.coeffs().coeffRef(k) = (mat.coeff(k,i)+mat.coeff(i,k))*t; } } }; // set from a vector of coefficients assumed to be a quaternion template<typename Other> struct ei_quaternion_assign_impl<Other,4,1> { typedef typename Other::Scalar Scalar; static inline void run(Quaternion<Scalar>& q, const Other& vec) { q.coeffs() = vec; } }; } // end namespace Eigen