// This file is part of Eigen, a lightweight C++ template library // for linear algebra. // // Copyright (C) 2008 Gael Guennebaud <gael.guennebaud@inria.fr> // // This Source Code Form is subject to the terms of the Mozilla // Public License v. 2.0. If a copy of the MPL was not distributed // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. #ifndef EIGEN_ALIGNEDBOX_H #define EIGEN_ALIGNEDBOX_H namespace Eigen { /** \geometry_module \ingroup Geometry_Module * * * \class AlignedBox * * \brief An axis aligned box * * \param _Scalar the type of the scalar coefficients * \param _AmbientDim the dimension of the ambient space, can be a compile time value or Dynamic. * * This class represents an axis aligned box as a pair of the minimal and maximal corners. */ template <typename _Scalar, int _AmbientDim> class AlignedBox { public: EIGEN_MAKE_ALIGNED_OPERATOR_NEW_IF_VECTORIZABLE_FIXED_SIZE(_Scalar,_AmbientDim) enum { AmbientDimAtCompileTime = _AmbientDim }; typedef _Scalar Scalar; typedef NumTraits<Scalar> ScalarTraits; typedef DenseIndex Index; typedef typename ScalarTraits::Real RealScalar; typedef typename ScalarTraits::NonInteger NonInteger; typedef Matrix<Scalar,AmbientDimAtCompileTime,1> VectorType; /** Define constants to name the corners of a 1D, 2D or 3D axis aligned bounding box */ enum CornerType { /** 1D names */ Min=0, Max=1, /** Added names for 2D */ BottomLeft=0, BottomRight=1, TopLeft=2, TopRight=3, /** Added names for 3D */ BottomLeftFloor=0, BottomRightFloor=1, TopLeftFloor=2, TopRightFloor=3, BottomLeftCeil=4, BottomRightCeil=5, TopLeftCeil=6, TopRightCeil=7 }; /** Default constructor initializing a null box. */ inline explicit AlignedBox() { if (AmbientDimAtCompileTime!=Dynamic) setEmpty(); } /** Constructs a null box with \a _dim the dimension of the ambient space. */ inline explicit AlignedBox(Index _dim) : m_min(_dim), m_max(_dim) { setEmpty(); } /** Constructs a box with extremities \a _min and \a _max. */ template<typename OtherVectorType1, typename OtherVectorType2> inline AlignedBox(const OtherVectorType1& _min, const OtherVectorType2& _max) : m_min(_min), m_max(_max) {} /** Constructs a box containing a single point \a p. */ template<typename Derived> inline explicit AlignedBox(const MatrixBase<Derived>& a_p) { const typename internal::nested<Derived,2>::type p(a_p.derived()); m_min = p; m_max = p; } ~AlignedBox() {} /** \returns the dimension in which the box holds */ inline Index dim() const { return AmbientDimAtCompileTime==Dynamic ? m_min.size()-1 : Index(AmbientDimAtCompileTime); } /** \deprecated use isEmpty */ inline bool isNull() const { return isEmpty(); } /** \deprecated use setEmpty */ inline void setNull() { setEmpty(); } /** \returns true if the box is empty. */ inline bool isEmpty() const { return (m_min.array() > m_max.array()).any(); } /** Makes \c *this an empty box. */ inline void setEmpty() { m_min.setConstant( ScalarTraits::highest() ); m_max.setConstant( ScalarTraits::lowest() ); } /** \returns the minimal corner */ inline const VectorType& (min)() const { return m_min; } /** \returns a non const reference to the minimal corner */ inline VectorType& (min)() { return m_min; } /** \returns the maximal corner */ inline const VectorType& (max)() const { return m_max; } /** \returns a non const reference to the maximal corner */ inline VectorType& (max)() { return m_max; } /** \returns the center of the box */ inline const CwiseUnaryOp<internal::scalar_quotient1_op<Scalar>, const CwiseBinaryOp<internal::scalar_sum_op<Scalar>, const VectorType, const VectorType> > center() const { return (m_min+m_max)/2; } /** \returns the lengths of the sides of the bounding box. * Note that this function does not get the same * result for integral or floating scalar types: see */ inline const CwiseBinaryOp< internal::scalar_difference_op<Scalar>, const VectorType, const VectorType> sizes() const { return m_max - m_min; } /** \returns the volume of the bounding box */ inline Scalar volume() const { return sizes().prod(); } /** \returns an expression for the bounding box diagonal vector * if the length of the diagonal is needed: diagonal().norm() * will provide it. */ inline CwiseBinaryOp< internal::scalar_difference_op<Scalar>, const VectorType, const VectorType> diagonal() const { return sizes(); } /** \returns the vertex of the bounding box at the corner defined by * the corner-id corner. It works only for a 1D, 2D or 3D bounding box. * For 1D bounding boxes corners are named by 2 enum constants: * BottomLeft and BottomRight. * For 2D bounding boxes, corners are named by 4 enum constants: * BottomLeft, BottomRight, TopLeft, TopRight. * For 3D bounding boxes, the following names are added: * BottomLeftCeil, BottomRightCeil, TopLeftCeil, TopRightCeil. */ inline VectorType corner(CornerType corner) const { EIGEN_STATIC_ASSERT(_AmbientDim <= 3, THIS_METHOD_IS_ONLY_FOR_VECTORS_OF_A_SPECIFIC_SIZE); VectorType res; Index mult = 1; for(Index d=0; d<dim(); ++d) { if( mult & corner ) res[d] = m_max[d]; else res[d] = m_min[d]; mult *= 2; } return res; } /** \returns a random point inside the bounding box sampled with * a uniform distribution */ inline VectorType sample() const { VectorType r; for(Index d=0; d<dim(); ++d) { if(!ScalarTraits::IsInteger) { r[d] = m_min[d] + (m_max[d]-m_min[d]) * internal::random<Scalar>(Scalar(0), Scalar(1)); } else r[d] = internal::random(m_min[d], m_max[d]); } return r; } /** \returns true if the point \a p is inside the box \c *this. */ template<typename Derived> inline bool contains(const MatrixBase<Derived>& a_p) const { typename internal::nested<Derived,2>::type p(a_p.derived()); return (m_min.array()<=p.array()).all() && (p.array()<=m_max.array()).all(); } /** \returns true if the box \a b is entirely inside the box \c *this. */ inline bool contains(const AlignedBox& b) const { return (m_min.array()<=(b.min)().array()).all() && ((b.max)().array()<=m_max.array()).all(); } /** Extends \c *this such that it contains the point \a p and returns a reference to \c *this. */ template<typename Derived> inline AlignedBox& extend(const MatrixBase<Derived>& a_p) { typename internal::nested<Derived,2>::type p(a_p.derived()); m_min = m_min.cwiseMin(p); m_max = m_max.cwiseMax(p); return *this; } /** Extends \c *this such that it contains the box \a b and returns a reference to \c *this. */ inline AlignedBox& extend(const AlignedBox& b) { m_min = m_min.cwiseMin(b.m_min); m_max = m_max.cwiseMax(b.m_max); return *this; } /** Clamps \c *this by the box \a b and returns a reference to \c *this. */ inline AlignedBox& clamp(const AlignedBox& b) { m_min = m_min.cwiseMax(b.m_min); m_max = m_max.cwiseMin(b.m_max); return *this; } /** Returns an AlignedBox that is the intersection of \a b and \c *this */ inline AlignedBox intersection(const AlignedBox& b) const {return AlignedBox(m_min.cwiseMax(b.m_min), m_max.cwiseMin(b.m_max)); } /** Returns an AlignedBox that is the union of \a b and \c *this */ inline AlignedBox merged(const AlignedBox& b) const { return AlignedBox(m_min.cwiseMin(b.m_min), m_max.cwiseMax(b.m_max)); } /** Translate \c *this by the vector \a t and returns a reference to \c *this. */ template<typename Derived> inline AlignedBox& translate(const MatrixBase<Derived>& a_t) { const typename internal::nested<Derived,2>::type t(a_t.derived()); m_min += t; m_max += t; return *this; } /** \returns the squared distance between the point \a p and the box \c *this, * and zero if \a p is inside the box. * \sa exteriorDistance() */ template<typename Derived> inline Scalar squaredExteriorDistance(const MatrixBase<Derived>& a_p) const; /** \returns the squared distance between the boxes \a b and \c *this, * and zero if the boxes intersect. * \sa exteriorDistance() */ inline Scalar squaredExteriorDistance(const AlignedBox& b) const; /** \returns the distance between the point \a p and the box \c *this, * and zero if \a p is inside the box. * \sa squaredExteriorDistance() */ template<typename Derived> inline NonInteger exteriorDistance(const MatrixBase<Derived>& p) const { return internal::sqrt(NonInteger(squaredExteriorDistance(p))); } /** \returns the distance between the boxes \a b and \c *this, * and zero if the boxes intersect. * \sa squaredExteriorDistance() */ inline NonInteger exteriorDistance(const AlignedBox& b) const { return internal::sqrt(NonInteger(squaredExteriorDistance(b))); } /** \returns \c *this with scalar type casted to \a NewScalarType * * Note that if \a NewScalarType is equal to the current scalar type of \c *this * then this function smartly returns a const reference to \c *this. */ template<typename NewScalarType> inline typename internal::cast_return_type<AlignedBox, AlignedBox<NewScalarType,AmbientDimAtCompileTime> >::type cast() const { return typename internal::cast_return_type<AlignedBox, AlignedBox<NewScalarType,AmbientDimAtCompileTime> >::type(*this); } /** Copy constructor with scalar type conversion */ template<typename OtherScalarType> inline explicit AlignedBox(const AlignedBox<OtherScalarType,AmbientDimAtCompileTime>& other) { m_min = (other.min)().template cast<Scalar>(); m_max = (other.max)().template cast<Scalar>(); } /** \returns \c true if \c *this is approximately equal to \a other, within the precision * determined by \a prec. * * \sa MatrixBase::isApprox() */ bool isApprox(const AlignedBox& other, RealScalar prec = ScalarTraits::dummy_precision()) const { return m_min.isApprox(other.m_min, prec) && m_max.isApprox(other.m_max, prec); } protected: VectorType m_min, m_max; }; template<typename Scalar,int AmbientDim> template<typename Derived> inline Scalar AlignedBox<Scalar,AmbientDim>::squaredExteriorDistance(const MatrixBase<Derived>& a_p) const { const typename internal::nested<Derived,2*AmbientDim>::type p(a_p.derived()); Scalar dist2(0); Scalar aux; for (Index k=0; k<dim(); ++k) { if( m_min[k] > p[k] ) { aux = m_min[k] - p[k]; dist2 += aux*aux; } else if( p[k] > m_max[k] ) { aux = p[k] - m_max[k]; dist2 += aux*aux; } } return dist2; } template<typename Scalar,int AmbientDim> inline Scalar AlignedBox<Scalar,AmbientDim>::squaredExteriorDistance(const AlignedBox& b) const { Scalar dist2(0); Scalar aux; for (Index k=0; k<dim(); ++k) { if( m_min[k] > b.m_max[k] ) { aux = m_min[k] - b.m_max[k]; dist2 += aux*aux; } else if( b.m_min[k] > m_max[k] ) { aux = b.m_min[k] - m_max[k]; dist2 += aux*aux; } } return dist2; } /** \defgroup alignedboxtypedefs Global aligned box typedefs * * \ingroup Geometry_Module * * Eigen defines several typedef shortcuts for most common aligned box types. * * The general patterns are the following: * * \c AlignedBoxSizeType where \c Size can be \c 1, \c 2,\c 3,\c 4 for fixed size boxes or \c X for dynamic size, * and where \c Type can be \c i for integer, \c f for float, \c d for double. * * For example, \c AlignedBox3d is a fixed-size 3x3 aligned box type of doubles, and \c AlignedBoxXf is a dynamic-size aligned box of floats. * * \sa class AlignedBox */ #define EIGEN_MAKE_TYPEDEFS(Type, TypeSuffix, Size, SizeSuffix) \ /** \ingroup alignedboxtypedefs */ \ typedef AlignedBox<Type, Size> AlignedBox##SizeSuffix##TypeSuffix; #define EIGEN_MAKE_TYPEDEFS_ALL_SIZES(Type, TypeSuffix) \ EIGEN_MAKE_TYPEDEFS(Type, TypeSuffix, 1, 1) \ EIGEN_MAKE_TYPEDEFS(Type, TypeSuffix, 2, 2) \ EIGEN_MAKE_TYPEDEFS(Type, TypeSuffix, 3, 3) \ EIGEN_MAKE_TYPEDEFS(Type, TypeSuffix, 4, 4) \ EIGEN_MAKE_TYPEDEFS(Type, TypeSuffix, Dynamic, X) EIGEN_MAKE_TYPEDEFS_ALL_SIZES(int, i) EIGEN_MAKE_TYPEDEFS_ALL_SIZES(float, f) EIGEN_MAKE_TYPEDEFS_ALL_SIZES(double, d) #undef EIGEN_MAKE_TYPEDEFS_ALL_SIZES #undef EIGEN_MAKE_TYPEDEFS } // end namespace Eigen #endif // EIGEN_ALIGNEDBOX_H