// This file is part of Eigen, a lightweight C++ template library // for linear algebra. // // Copyright (C) 2008 Gael Guennebaud <gael.guennebaud@inria.fr> // // This Source Code Form is subject to the terms of the Mozilla // Public License v. 2.0. If a copy of the MPL was not distributed // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. #ifndef EIGEN_ROTATIONBASE_H #define EIGEN_ROTATIONBASE_H namespace Eigen { // forward declaration namespace internal { template<typename RotationDerived, typename MatrixType, bool IsVector=MatrixType::IsVectorAtCompileTime> struct rotation_base_generic_product_selector; } /** \class RotationBase * * \brief Common base class for compact rotation representations * * \param Derived is the derived type, i.e., a rotation type * \param _Dim the dimension of the space */ template<typename Derived, int _Dim> class RotationBase { public: enum { Dim = _Dim }; /** the scalar type of the coefficients */ typedef typename internal::traits<Derived>::Scalar Scalar; /** corresponding linear transformation matrix type */ typedef Matrix<Scalar,Dim,Dim> RotationMatrixType; typedef Matrix<Scalar,Dim,1> VectorType; public: inline const Derived& derived() const { return *static_cast<const Derived*>(this); } inline Derived& derived() { return *static_cast<Derived*>(this); } /** \returns an equivalent rotation matrix */ inline RotationMatrixType toRotationMatrix() const { return derived().toRotationMatrix(); } /** \returns an equivalent rotation matrix * This function is added to be conform with the Transform class' naming scheme. */ inline RotationMatrixType matrix() const { return derived().toRotationMatrix(); } /** \returns the inverse rotation */ inline Derived inverse() const { return derived().inverse(); } /** \returns the concatenation of the rotation \c *this with a translation \a t */ inline Transform<Scalar,Dim,Isometry> operator*(const Translation<Scalar,Dim>& t) const { return Transform<Scalar,Dim,Isometry>(*this) * t; } /** \returns the concatenation of the rotation \c *this with a uniform scaling \a s */ inline RotationMatrixType operator*(const UniformScaling<Scalar>& s) const { return toRotationMatrix() * s.factor(); } /** \returns the concatenation of the rotation \c *this with a generic expression \a e * \a e can be: * - a DimxDim linear transformation matrix * - a DimxDim diagonal matrix (axis aligned scaling) * - a vector of size Dim */ template<typename OtherDerived> EIGEN_STRONG_INLINE typename internal::rotation_base_generic_product_selector<Derived,OtherDerived,OtherDerived::IsVectorAtCompileTime>::ReturnType operator*(const EigenBase<OtherDerived>& e) const { return internal::rotation_base_generic_product_selector<Derived,OtherDerived>::run(derived(), e.derived()); } /** \returns the concatenation of a linear transformation \a l with the rotation \a r */ template<typename OtherDerived> friend inline RotationMatrixType operator*(const EigenBase<OtherDerived>& l, const Derived& r) { return l.derived() * r.toRotationMatrix(); } /** \returns the concatenation of a scaling \a l with the rotation \a r */ friend inline Transform<Scalar,Dim,Affine> operator*(const DiagonalMatrix<Scalar,Dim>& l, const Derived& r) { Transform<Scalar,Dim,Affine> res(r); res.linear().applyOnTheLeft(l); return res; } /** \returns the concatenation of the rotation \c *this with a transformation \a t */ template<int Mode, int Options> inline Transform<Scalar,Dim,Mode> operator*(const Transform<Scalar,Dim,Mode,Options>& t) const { return toRotationMatrix() * t; } template<typename OtherVectorType> inline VectorType _transformVector(const OtherVectorType& v) const { return toRotationMatrix() * v; } }; namespace internal { // implementation of the generic product rotation * matrix template<typename RotationDerived, typename MatrixType> struct rotation_base_generic_product_selector<RotationDerived,MatrixType,false> { enum { Dim = RotationDerived::Dim }; typedef Matrix<typename RotationDerived::Scalar,Dim,Dim> ReturnType; static inline ReturnType run(const RotationDerived& r, const MatrixType& m) { return r.toRotationMatrix() * m; } }; template<typename RotationDerived, typename Scalar, int Dim, int MaxDim> struct rotation_base_generic_product_selector< RotationDerived, DiagonalMatrix<Scalar,Dim,MaxDim>, false > { typedef Transform<Scalar,Dim,Affine> ReturnType; static inline ReturnType run(const RotationDerived& r, const DiagonalMatrix<Scalar,Dim,MaxDim>& m) { ReturnType res(r); res.linear() *= m; return res; } }; template<typename RotationDerived,typename OtherVectorType> struct rotation_base_generic_product_selector<RotationDerived,OtherVectorType,true> { enum { Dim = RotationDerived::Dim }; typedef Matrix<typename RotationDerived::Scalar,Dim,1> ReturnType; static EIGEN_STRONG_INLINE ReturnType run(const RotationDerived& r, const OtherVectorType& v) { return r._transformVector(v); } }; } // end namespace internal /** \geometry_module * * \brief Constructs a Dim x Dim rotation matrix from the rotation \a r */ template<typename _Scalar, int _Rows, int _Cols, int _Storage, int _MaxRows, int _MaxCols> template<typename OtherDerived> Matrix<_Scalar, _Rows, _Cols, _Storage, _MaxRows, _MaxCols> ::Matrix(const RotationBase<OtherDerived,ColsAtCompileTime>& r) { EIGEN_STATIC_ASSERT_MATRIX_SPECIFIC_SIZE(Matrix,int(OtherDerived::Dim),int(OtherDerived::Dim)) *this = r.toRotationMatrix(); } /** \geometry_module * * \brief Set a Dim x Dim rotation matrix from the rotation \a r */ template<typename _Scalar, int _Rows, int _Cols, int _Storage, int _MaxRows, int _MaxCols> template<typename OtherDerived> Matrix<_Scalar, _Rows, _Cols, _Storage, _MaxRows, _MaxCols>& Matrix<_Scalar, _Rows, _Cols, _Storage, _MaxRows, _MaxCols> ::operator=(const RotationBase<OtherDerived,ColsAtCompileTime>& r) { EIGEN_STATIC_ASSERT_MATRIX_SPECIFIC_SIZE(Matrix,int(OtherDerived::Dim),int(OtherDerived::Dim)) return *this = r.toRotationMatrix(); } namespace internal { /** \internal * * Helper function to return an arbitrary rotation object to a rotation matrix. * * \param Scalar the numeric type of the matrix coefficients * \param Dim the dimension of the current space * * It returns a Dim x Dim fixed size matrix. * * Default specializations are provided for: * - any scalar type (2D), * - any matrix expression, * - any type based on RotationBase (e.g., Quaternion, AngleAxis, Rotation2D) * * Currently toRotationMatrix is only used by Transform. * * \sa class Transform, class Rotation2D, class Quaternion, class AngleAxis */ template<typename Scalar, int Dim> static inline Matrix<Scalar,2,2> toRotationMatrix(const Scalar& s) { EIGEN_STATIC_ASSERT(Dim==2,YOU_MADE_A_PROGRAMMING_MISTAKE) return Rotation2D<Scalar>(s).toRotationMatrix(); } template<typename Scalar, int Dim, typename OtherDerived> static inline Matrix<Scalar,Dim,Dim> toRotationMatrix(const RotationBase<OtherDerived,Dim>& r) { return r.toRotationMatrix(); } template<typename Scalar, int Dim, typename OtherDerived> static inline const MatrixBase<OtherDerived>& toRotationMatrix(const MatrixBase<OtherDerived>& mat) { EIGEN_STATIC_ASSERT(OtherDerived::RowsAtCompileTime==Dim && OtherDerived::ColsAtCompileTime==Dim, YOU_MADE_A_PROGRAMMING_MISTAKE) return mat; } } // end namespace internal } // end namespace Eigen #endif // EIGEN_ROTATIONBASE_H