// This file is part of Eigen, a lightweight C++ template library // for linear algebra. // // Copyright (C) 2011 Gael Guennebaud <gael.guennebaud@inria.fr> // // This Source Code Form is subject to the terms of the Mozilla // Public License v. 2.0. If a copy of the MPL was not distributed // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. #ifndef EIGEN_CONJUGATE_GRADIENT_H #define EIGEN_CONJUGATE_GRADIENT_H namespace Eigen { namespace internal { /** \internal Low-level conjugate gradient algorithm * \param mat The matrix A * \param rhs The right hand side vector b * \param x On input and initial solution, on output the computed solution. * \param precond A preconditioner being able to efficiently solve for an * approximation of Ax=b (regardless of b) * \param iters On input the max number of iteration, on output the number of performed iterations. * \param tol_error On input the tolerance error, on output an estimation of the relative error. */ template<typename MatrixType, typename Rhs, typename Dest, typename Preconditioner> EIGEN_DONT_INLINE void conjugate_gradient(const MatrixType& mat, const Rhs& rhs, Dest& x, const Preconditioner& precond, int& iters, typename Dest::RealScalar& tol_error) { using std::sqrt; using std::abs; typedef typename Dest::RealScalar RealScalar; typedef typename Dest::Scalar Scalar; typedef Matrix<Scalar,Dynamic,1> VectorType; RealScalar tol = tol_error; int maxIters = iters; int n = mat.cols(); VectorType residual = rhs - mat * x; //initial residual VectorType p(n); p = precond.solve(residual); //initial search direction VectorType z(n), tmp(n); RealScalar absNew = internal::real(residual.dot(p)); // the square of the absolute value of r scaled by invM RealScalar rhsNorm2 = rhs.squaredNorm(); RealScalar residualNorm2 = 0; RealScalar threshold = tol*tol*rhsNorm2; int i = 0; while(i < maxIters) { tmp.noalias() = mat * p; // the bottleneck of the algorithm Scalar alpha = absNew / p.dot(tmp); // the amount we travel on dir x += alpha * p; // update solution residual -= alpha * tmp; // update residue residualNorm2 = residual.squaredNorm(); if(residualNorm2 < threshold) break; z = precond.solve(residual); // approximately solve for "A z = residual" RealScalar absOld = absNew; absNew = internal::real(residual.dot(z)); // update the absolute value of r RealScalar beta = absNew / absOld; // calculate the Gram-Schmidt value used to create the new search direction p = z + beta * p; // update search direction i++; } tol_error = sqrt(residualNorm2 / rhsNorm2); iters = i; } } template< typename _MatrixType, int _UpLo=Lower, typename _Preconditioner = DiagonalPreconditioner<typename _MatrixType::Scalar> > class ConjugateGradient; namespace internal { template< typename _MatrixType, int _UpLo, typename _Preconditioner> struct traits<ConjugateGradient<_MatrixType,_UpLo,_Preconditioner> > { typedef _MatrixType MatrixType; typedef _Preconditioner Preconditioner; }; } /** \ingroup IterativeLinearSolvers_Module * \brief A conjugate gradient solver for sparse self-adjoint problems * * This class allows to solve for A.x = b sparse linear problems using a conjugate gradient algorithm. * The sparse matrix A must be selfadjoint. The vectors x and b can be either dense or sparse. * * \tparam _MatrixType the type of the sparse matrix A, can be a dense or a sparse matrix. * \tparam _UpLo the triangular part that will be used for the computations. It can be Lower * or Upper. Default is Lower. * \tparam _Preconditioner the type of the preconditioner. Default is DiagonalPreconditioner * * The maximal number of iterations and tolerance value can be controlled via the setMaxIterations() * and setTolerance() methods. The defaults are the size of the problem for the maximal number of iterations * and NumTraits<Scalar>::epsilon() for the tolerance. * * This class can be used as the direct solver classes. Here is a typical usage example: * \code * int n = 10000; * VectorXd x(n), b(n); * SparseMatrix<double> A(n,n); * // fill A and b * ConjugateGradient<SparseMatrix<double> > cg; * cg.compute(A); * x = cg.solve(b); * std::cout << "#iterations: " << cg.iterations() << std::endl; * std::cout << "estimated error: " << cg.error() << std::endl; * // update b, and solve again * x = cg.solve(b); * \endcode * * By default the iterations start with x=0 as an initial guess of the solution. * One can control the start using the solveWithGuess() method. Here is a step by * step execution example starting with a random guess and printing the evolution * of the estimated error: * * \code * x = VectorXd::Random(n); * cg.setMaxIterations(1); * int i = 0; * do { * x = cg.solveWithGuess(b,x); * std::cout << i << " : " << cg.error() << std::endl; * ++i; * } while (cg.info()!=Success && i<100); * \endcode * Note that such a step by step excution is slightly slower. * * \sa class SimplicialCholesky, DiagonalPreconditioner, IdentityPreconditioner */ template< typename _MatrixType, int _UpLo, typename _Preconditioner> class ConjugateGradient : public IterativeSolverBase<ConjugateGradient<_MatrixType,_UpLo,_Preconditioner> > { typedef IterativeSolverBase<ConjugateGradient> Base; using Base::mp_matrix; using Base::m_error; using Base::m_iterations; using Base::m_info; using Base::m_isInitialized; public: typedef _MatrixType MatrixType; typedef typename MatrixType::Scalar Scalar; typedef typename MatrixType::Index Index; typedef typename MatrixType::RealScalar RealScalar; typedef _Preconditioner Preconditioner; enum { UpLo = _UpLo }; public: /** Default constructor. */ ConjugateGradient() : Base() {} /** Initialize the solver with matrix \a A for further \c Ax=b solving. * * This constructor is a shortcut for the default constructor followed * by a call to compute(). * * \warning this class stores a reference to the matrix A as well as some * precomputed values that depend on it. Therefore, if \a A is changed * this class becomes invalid. Call compute() to update it with the new * matrix A, or modify a copy of A. */ ConjugateGradient(const MatrixType& A) : Base(A) {} ~ConjugateGradient() {} /** \returns the solution x of \f$ A x = b \f$ using the current decomposition of A * \a x0 as an initial solution. * * \sa compute() */ template<typename Rhs,typename Guess> inline const internal::solve_retval_with_guess<ConjugateGradient, Rhs, Guess> solveWithGuess(const MatrixBase<Rhs>& b, const Guess& x0) const { eigen_assert(m_isInitialized && "ConjugateGradient is not initialized."); eigen_assert(Base::rows()==b.rows() && "ConjugateGradient::solve(): invalid number of rows of the right hand side matrix b"); return internal::solve_retval_with_guess <ConjugateGradient, Rhs, Guess>(*this, b.derived(), x0); } /** \internal */ template<typename Rhs,typename Dest> void _solveWithGuess(const Rhs& b, Dest& x) const { m_iterations = Base::maxIterations(); m_error = Base::m_tolerance; for(int j=0; j<b.cols(); ++j) { m_iterations = Base::maxIterations(); m_error = Base::m_tolerance; typename Dest::ColXpr xj(x,j); internal::conjugate_gradient(mp_matrix->template selfadjointView<UpLo>(), b.col(j), xj, Base::m_preconditioner, m_iterations, m_error); } m_isInitialized = true; m_info = m_error <= Base::m_tolerance ? Success : NoConvergence; } /** \internal */ template<typename Rhs,typename Dest> void _solve(const Rhs& b, Dest& x) const { x.setOnes(); _solveWithGuess(b,x); } protected: }; namespace internal { template<typename _MatrixType, int _UpLo, typename _Preconditioner, typename Rhs> struct solve_retval<ConjugateGradient<_MatrixType,_UpLo,_Preconditioner>, Rhs> : solve_retval_base<ConjugateGradient<_MatrixType,_UpLo,_Preconditioner>, Rhs> { typedef ConjugateGradient<_MatrixType,_UpLo,_Preconditioner> Dec; EIGEN_MAKE_SOLVE_HELPERS(Dec,Rhs) template<typename Dest> void evalTo(Dest& dst) const { dec()._solve(rhs(),dst); } }; } // end namespace internal } // end namespace Eigen #endif // EIGEN_CONJUGATE_GRADIENT_H