// This file is part of Eigen, a lightweight C++ template library // for linear algebra. // // Copyright (C) 2012 Désiré Nuentsa-Wakam <desire.nuentsa_wakam@inria.fr> // // This Source Code Form is subject to the terms of the Mozilla // Public License v. 2.0. If a copy of the MPL was not distributed // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. #ifndef EIGEN_INCOMPLETE_LUT_H #define EIGEN_INCOMPLETE_LUT_H namespace Eigen { /** * \brief Incomplete LU factorization with dual-threshold strategy * During the numerical factorization, two dropping rules are used : * 1) any element whose magnitude is less than some tolerance is dropped. * This tolerance is obtained by multiplying the input tolerance @p droptol * by the average magnitude of all the original elements in the current row. * 2) After the elimination of the row, only the @p fill largest elements in * the L part and the @p fill largest elements in the U part are kept * (in addition to the diagonal element ). Note that @p fill is computed from * the input parameter @p fillfactor which is used the ratio to control the fill_in * relatively to the initial number of nonzero elements. * * The two extreme cases are when @p droptol=0 (to keep all the @p fill*2 largest elements) * and when @p fill=n/2 with @p droptol being different to zero. * * References : Yousef Saad, ILUT: A dual threshold incomplete LU factorization, * Numerical Linear Algebra with Applications, 1(4), pp 387-402, 1994. * * NOTE : The following implementation is derived from the ILUT implementation * in the SPARSKIT package, Copyright (C) 2005, the Regents of the University of Minnesota * released under the terms of the GNU LGPL: * http://www-users.cs.umn.edu/~saad/software/SPARSKIT/README * However, Yousef Saad gave us permission to relicense his ILUT code to MPL2. * See the Eigen mailing list archive, thread: ILUT, date: July 8, 2012: * http://listengine.tuxfamily.org/lists.tuxfamily.org/eigen/2012/07/msg00064.html * alternatively, on GMANE: * http://comments.gmane.org/gmane.comp.lib.eigen/3302 */ template <typename _Scalar> class IncompleteLUT : internal::noncopyable { typedef _Scalar Scalar; typedef typename NumTraits<Scalar>::Real RealScalar; typedef Matrix<Scalar,Dynamic,1> Vector; typedef SparseMatrix<Scalar,RowMajor> FactorType; typedef SparseMatrix<Scalar,ColMajor> PermutType; typedef typename FactorType::Index Index; public: typedef Matrix<Scalar,Dynamic,Dynamic> MatrixType; IncompleteLUT() : m_droptol(NumTraits<Scalar>::dummy_precision()), m_fillfactor(10), m_analysisIsOk(false), m_factorizationIsOk(false), m_isInitialized(false) {} template<typename MatrixType> IncompleteLUT(const MatrixType& mat, RealScalar droptol=NumTraits<Scalar>::dummy_precision(), int fillfactor = 10) : m_droptol(droptol),m_fillfactor(fillfactor), m_analysisIsOk(false),m_factorizationIsOk(false),m_isInitialized(false) { eigen_assert(fillfactor != 0); compute(mat); } Index rows() const { return m_lu.rows(); } Index cols() const { return m_lu.cols(); } /** \brief Reports whether previous computation was successful. * * \returns \c Success if computation was succesful, * \c NumericalIssue if the matrix.appears to be negative. */ ComputationInfo info() const { eigen_assert(m_isInitialized && "IncompleteLUT is not initialized."); return m_info; } template<typename MatrixType> void analyzePattern(const MatrixType& amat); template<typename MatrixType> void factorize(const MatrixType& amat); /** * Compute an incomplete LU factorization with dual threshold on the matrix mat * No pivoting is done in this version * **/ template<typename MatrixType> IncompleteLUT<Scalar>& compute(const MatrixType& amat) { analyzePattern(amat); factorize(amat); eigen_assert(m_factorizationIsOk == true); m_isInitialized = true; return *this; } void setDroptol(RealScalar droptol); void setFillfactor(int fillfactor); template<typename Rhs, typename Dest> void _solve(const Rhs& b, Dest& x) const { x = m_Pinv * b; x = m_lu.template triangularView<UnitLower>().solve(x); x = m_lu.template triangularView<Upper>().solve(x); x = m_P * x; } template<typename Rhs> inline const internal::solve_retval<IncompleteLUT, Rhs> solve(const MatrixBase<Rhs>& b) const { eigen_assert(m_isInitialized && "IncompleteLUT is not initialized."); eigen_assert(cols()==b.rows() && "IncompleteLUT::solve(): invalid number of rows of the right hand side matrix b"); return internal::solve_retval<IncompleteLUT, Rhs>(*this, b.derived()); } protected: template <typename VectorV, typename VectorI> int QuickSplit(VectorV &row, VectorI &ind, int ncut); /** keeps off-diagonal entries; drops diagonal entries */ struct keep_diag { inline bool operator() (const Index& row, const Index& col, const Scalar&) const { return row!=col; } }; protected: FactorType m_lu; RealScalar m_droptol; int m_fillfactor; bool m_analysisIsOk; bool m_factorizationIsOk; bool m_isInitialized; ComputationInfo m_info; PermutationMatrix<Dynamic,Dynamic,Index> m_P; // Fill-reducing permutation PermutationMatrix<Dynamic,Dynamic,Index> m_Pinv; // Inverse permutation }; /** * Set control parameter droptol * \param droptol Drop any element whose magnitude is less than this tolerance **/ template<typename Scalar> void IncompleteLUT<Scalar>::setDroptol(RealScalar droptol) { this->m_droptol = droptol; } /** * Set control parameter fillfactor * \param fillfactor This is used to compute the number @p fill_in of largest elements to keep on each row. **/ template<typename Scalar> void IncompleteLUT<Scalar>::setFillfactor(int fillfactor) { this->m_fillfactor = fillfactor; } /** * Compute a quick-sort split of a vector * On output, the vector row is permuted such that its elements satisfy * abs(row(i)) >= abs(row(ncut)) if i<ncut * abs(row(i)) <= abs(row(ncut)) if i>ncut * \param row The vector of values * \param ind The array of index for the elements in @p row * \param ncut The number of largest elements to keep **/ template <typename Scalar> template <typename VectorV, typename VectorI> int IncompleteLUT<Scalar>::QuickSplit(VectorV &row, VectorI &ind, int ncut) { using std::swap; int mid; int n = row.size(); /* length of the vector */ int first, last ; ncut--; /* to fit the zero-based indices */ first = 0; last = n-1; if (ncut < first || ncut > last ) return 0; do { mid = first; RealScalar abskey = std::abs(row(mid)); for (int j = first + 1; j <= last; j++) { if ( std::abs(row(j)) > abskey) { ++mid; swap(row(mid), row(j)); swap(ind(mid), ind(j)); } } /* Interchange for the pivot element */ swap(row(mid), row(first)); swap(ind(mid), ind(first)); if (mid > ncut) last = mid - 1; else if (mid < ncut ) first = mid + 1; } while (mid != ncut ); return 0; /* mid is equal to ncut */ } template <typename Scalar> template<typename _MatrixType> void IncompleteLUT<Scalar>::analyzePattern(const _MatrixType& amat) { // Compute the Fill-reducing permutation SparseMatrix<Scalar,ColMajor, Index> mat1 = amat; SparseMatrix<Scalar,ColMajor, Index> mat2 = amat.transpose(); // Symmetrize the pattern // FIXME for a matrix with nearly symmetric pattern, mat2+mat1 is the appropriate choice. // on the other hand for a really non-symmetric pattern, mat2*mat1 should be prefered... SparseMatrix<Scalar,ColMajor, Index> AtA = mat2 + mat1; AtA.prune(keep_diag()); internal::minimum_degree_ordering<Scalar, Index>(AtA, m_P); // Then compute the AMD ordering... m_Pinv = m_P.inverse(); // ... and the inverse permutation m_analysisIsOk = true; } template <typename Scalar> template<typename _MatrixType> void IncompleteLUT<Scalar>::factorize(const _MatrixType& amat) { using std::sqrt; using std::swap; using std::abs; eigen_assert((amat.rows() == amat.cols()) && "The factorization should be done on a square matrix"); int n = amat.cols(); // Size of the matrix m_lu.resize(n,n); // Declare Working vectors and variables Vector u(n) ; // real values of the row -- maximum size is n -- VectorXi ju(n); // column position of the values in u -- maximum size is n VectorXi jr(n); // Indicate the position of the nonzero elements in the vector u -- A zero location is indicated by -1 // Apply the fill-reducing permutation eigen_assert(m_analysisIsOk && "You must first call analyzePattern()"); SparseMatrix<Scalar,RowMajor, Index> mat; mat = amat.twistedBy(m_Pinv); // Initialization jr.fill(-1); ju.fill(0); u.fill(0); // number of largest elements to keep in each row: int fill_in = static_cast<int> (amat.nonZeros()*m_fillfactor)/n+1; if (fill_in > n) fill_in = n; // number of largest nonzero elements to keep in the L and the U part of the current row: int nnzL = fill_in/2; int nnzU = nnzL; m_lu.reserve(n * (nnzL + nnzU + 1)); // global loop over the rows of the sparse matrix for (int ii = 0; ii < n; ii++) { // 1 - copy the lower and the upper part of the row i of mat in the working vector u int sizeu = 1; // number of nonzero elements in the upper part of the current row int sizel = 0; // number of nonzero elements in the lower part of the current row ju(ii) = ii; u(ii) = 0; jr(ii) = ii; RealScalar rownorm = 0; typename FactorType::InnerIterator j_it(mat, ii); // Iterate through the current row ii for (; j_it; ++j_it) { int k = j_it.index(); if (k < ii) { // copy the lower part ju(sizel) = k; u(sizel) = j_it.value(); jr(k) = sizel; ++sizel; } else if (k == ii) { u(ii) = j_it.value(); } else { // copy the upper part int jpos = ii + sizeu; ju(jpos) = k; u(jpos) = j_it.value(); jr(k) = jpos; ++sizeu; } rownorm += internal::abs2(j_it.value()); } // 2 - detect possible zero row if(rownorm==0) { m_info = NumericalIssue; return; } // Take the 2-norm of the current row as a relative tolerance rownorm = sqrt(rownorm); // 3 - eliminate the previous nonzero rows int jj = 0; int len = 0; while (jj < sizel) { // In order to eliminate in the correct order, // we must select first the smallest column index among ju(jj:sizel) int k; int minrow = ju.segment(jj,sizel-jj).minCoeff(&k); // k is relative to the segment k += jj; if (minrow != ju(jj)) { // swap the two locations int j = ju(jj); swap(ju(jj), ju(k)); jr(minrow) = jj; jr(j) = k; swap(u(jj), u(k)); } // Reset this location jr(minrow) = -1; // Start elimination typename FactorType::InnerIterator ki_it(m_lu, minrow); while (ki_it && ki_it.index() < minrow) ++ki_it; eigen_internal_assert(ki_it && ki_it.col()==minrow); Scalar fact = u(jj) / ki_it.value(); // drop too small elements if(abs(fact) <= m_droptol) { jj++; continue; } // linear combination of the current row ii and the row minrow ++ki_it; for (; ki_it; ++ki_it) { Scalar prod = fact * ki_it.value(); int j = ki_it.index(); int jpos = jr(j); if (jpos == -1) // fill-in element { int newpos; if (j >= ii) // dealing with the upper part { newpos = ii + sizeu; sizeu++; eigen_internal_assert(sizeu<=n); } else // dealing with the lower part { newpos = sizel; sizel++; eigen_internal_assert(sizel<=ii); } ju(newpos) = j; u(newpos) = -prod; jr(j) = newpos; } else u(jpos) -= prod; } // store the pivot element u(len) = fact; ju(len) = minrow; ++len; jj++; } // end of the elimination on the row ii // reset the upper part of the pointer jr to zero for(int k = 0; k <sizeu; k++) jr(ju(ii+k)) = -1; // 4 - partially sort and insert the elements in the m_lu matrix // sort the L-part of the row sizel = len; len = (std::min)(sizel, nnzL); typename Vector::SegmentReturnType ul(u.segment(0, sizel)); typename VectorXi::SegmentReturnType jul(ju.segment(0, sizel)); QuickSplit(ul, jul, len); // store the largest m_fill elements of the L part m_lu.startVec(ii); for(int k = 0; k < len; k++) m_lu.insertBackByOuterInnerUnordered(ii,ju(k)) = u(k); // store the diagonal element // apply a shifting rule to avoid zero pivots (we are doing an incomplete factorization) if (u(ii) == Scalar(0)) u(ii) = sqrt(m_droptol) * rownorm; m_lu.insertBackByOuterInnerUnordered(ii, ii) = u(ii); // sort the U-part of the row // apply the dropping rule first len = 0; for(int k = 1; k < sizeu; k++) { if(abs(u(ii+k)) > m_droptol * rownorm ) { ++len; u(ii + len) = u(ii + k); ju(ii + len) = ju(ii + k); } } sizeu = len + 1; // +1 to take into account the diagonal element len = (std::min)(sizeu, nnzU); typename Vector::SegmentReturnType uu(u.segment(ii+1, sizeu-1)); typename VectorXi::SegmentReturnType juu(ju.segment(ii+1, sizeu-1)); QuickSplit(uu, juu, len); // store the largest elements of the U part for(int k = ii + 1; k < ii + len; k++) m_lu.insertBackByOuterInnerUnordered(ii,ju(k)) = u(k); } m_lu.finalize(); m_lu.makeCompressed(); m_factorizationIsOk = true; m_info = Success; } namespace internal { template<typename _MatrixType, typename Rhs> struct solve_retval<IncompleteLUT<_MatrixType>, Rhs> : solve_retval_base<IncompleteLUT<_MatrixType>, Rhs> { typedef IncompleteLUT<_MatrixType> Dec; EIGEN_MAKE_SOLVE_HELPERS(Dec,Rhs) template<typename Dest> void evalTo(Dest& dst) const { dec()._solve(rhs(),dst); } }; } // end namespace internal } // end namespace Eigen #endif // EIGEN_INCOMPLETE_LUT_H