// This file is part of Eigen, a lightweight C++ template library // for linear algebra. // // Copyright (C) 2010 Gael Guennebaud <gael.guennebaud@inria.fr> // // This Source Code Form is subject to the terms of the Mozilla // Public License v. 2.0. If a copy of the MPL was not distributed // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. /* NOTE: this routine has been adapted from the CSparse library: Copyright (c) 2006, Timothy A. Davis. http://www.cise.ufl.edu/research/sparse/CSparse CSparse is free software; you can redistribute it and/or modify it under the terms of the GNU Lesser General Public License as published by the Free Software Foundation; either version 2.1 of the License, or (at your option) any later version. CSparse is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more details. You should have received a copy of the GNU Lesser General Public License along with this Module; if not, write to the Free Software Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA */ #include "../Core/util/NonMPL2.h" #ifndef EIGEN_SPARSE_AMD_H #define EIGEN_SPARSE_AMD_H namespace Eigen { namespace internal { template<typename T> inline T amd_flip(const T& i) { return -i-2; } template<typename T> inline T amd_unflip(const T& i) { return i<0 ? amd_flip(i) : i; } template<typename T0, typename T1> inline bool amd_marked(const T0* w, const T1& j) { return w[j]<0; } template<typename T0, typename T1> inline void amd_mark(const T0* w, const T1& j) { return w[j] = amd_flip(w[j]); } /* clear w */ template<typename Index> static int cs_wclear (Index mark, Index lemax, Index *w, Index n) { Index k; if(mark < 2 || (mark + lemax < 0)) { for(k = 0; k < n; k++) if(w[k] != 0) w[k] = 1; mark = 2; } return (mark); /* at this point, w[0..n-1] < mark holds */ } /* depth-first search and postorder of a tree rooted at node j */ template<typename Index> Index cs_tdfs(Index j, Index k, Index *head, const Index *next, Index *post, Index *stack) { int i, p, top = 0; if(!head || !next || !post || !stack) return (-1); /* check inputs */ stack[0] = j; /* place j on the stack */ while (top >= 0) /* while (stack is not empty) */ { p = stack[top]; /* p = top of stack */ i = head[p]; /* i = youngest child of p */ if(i == -1) { top--; /* p has no unordered children left */ post[k++] = p; /* node p is the kth postordered node */ } else { head[p] = next[i]; /* remove i from children of p */ stack[++top] = i; /* start dfs on child node i */ } } return k; } /** \internal * Approximate minimum degree ordering algorithm. * \returns the permutation P reducing the fill-in of the input matrix \a C * The input matrix \a C must be a selfadjoint compressed column major SparseMatrix object. Both the upper and lower parts have to be stored, but the diagonal entries are optional. * On exit the values of C are destroyed */ template<typename Scalar, typename Index> void minimum_degree_ordering(SparseMatrix<Scalar,ColMajor,Index>& C, PermutationMatrix<Dynamic,Dynamic,Index>& perm) { using std::sqrt; typedef SparseMatrix<Scalar,ColMajor,Index> CCS; int d, dk, dext, lemax = 0, e, elenk, eln, i, j, k, k1, k2, k3, jlast, ln, dense, nzmax, mindeg = 0, nvi, nvj, nvk, mark, wnvi, ok, nel = 0, p, p1, p2, p3, p4, pj, pk, pk1, pk2, pn, q, t; unsigned int h; Index n = C.cols(); dense = std::max<Index> (16, Index(10 * sqrt(double(n)))); /* find dense threshold */ dense = std::min<Index> (n-2, dense); Index cnz = C.nonZeros(); perm.resize(n+1); t = cnz + cnz/5 + 2*n; /* add elbow room to C */ C.resizeNonZeros(t); Index* W = new Index[8*(n+1)]; /* get workspace */ Index* len = W; Index* nv = W + (n+1); Index* next = W + 2*(n+1); Index* head = W + 3*(n+1); Index* elen = W + 4*(n+1); Index* degree = W + 5*(n+1); Index* w = W + 6*(n+1); Index* hhead = W + 7*(n+1); Index* last = perm.indices().data(); /* use P as workspace for last */ /* --- Initialize quotient graph ---------------------------------------- */ Index* Cp = C.outerIndexPtr(); Index* Ci = C.innerIndexPtr(); for(k = 0; k < n; k++) len[k] = Cp[k+1] - Cp[k]; len[n] = 0; nzmax = t; for(i = 0; i <= n; i++) { head[i] = -1; // degree list i is empty last[i] = -1; next[i] = -1; hhead[i] = -1; // hash list i is empty nv[i] = 1; // node i is just one node w[i] = 1; // node i is alive elen[i] = 0; // Ek of node i is empty degree[i] = len[i]; // degree of node i } mark = internal::cs_wclear<Index>(0, 0, w, n); /* clear w */ elen[n] = -2; /* n is a dead element */ Cp[n] = -1; /* n is a root of assembly tree */ w[n] = 0; /* n is a dead element */ /* --- Initialize degree lists ------------------------------------------ */ for(i = 0; i < n; i++) { d = degree[i]; if(d == 0) /* node i is empty */ { elen[i] = -2; /* element i is dead */ nel++; Cp[i] = -1; /* i is a root of assembly tree */ w[i] = 0; } else if(d > dense) /* node i is dense */ { nv[i] = 0; /* absorb i into element n */ elen[i] = -1; /* node i is dead */ nel++; Cp[i] = amd_flip (n); nv[n]++; } else { if(head[d] != -1) last[head[d]] = i; next[i] = head[d]; /* put node i in degree list d */ head[d] = i; } } while (nel < n) /* while (selecting pivots) do */ { /* --- Select node of minimum approximate degree -------------------- */ for(k = -1; mindeg < n && (k = head[mindeg]) == -1; mindeg++) {} if(next[k] != -1) last[next[k]] = -1; head[mindeg] = next[k]; /* remove k from degree list */ elenk = elen[k]; /* elenk = |Ek| */ nvk = nv[k]; /* # of nodes k represents */ nel += nvk; /* nv[k] nodes of A eliminated */ /* --- Garbage collection ------------------------------------------- */ if(elenk > 0 && cnz + mindeg >= nzmax) { for(j = 0; j < n; j++) { if((p = Cp[j]) >= 0) /* j is a live node or element */ { Cp[j] = Ci[p]; /* save first entry of object */ Ci[p] = amd_flip (j); /* first entry is now amd_flip(j) */ } } for(q = 0, p = 0; p < cnz; ) /* scan all of memory */ { if((j = amd_flip (Ci[p++])) >= 0) /* found object j */ { Ci[q] = Cp[j]; /* restore first entry of object */ Cp[j] = q++; /* new pointer to object j */ for(k3 = 0; k3 < len[j]-1; k3++) Ci[q++] = Ci[p++]; } } cnz = q; /* Ci[cnz...nzmax-1] now free */ } /* --- Construct new element ---------------------------------------- */ dk = 0; nv[k] = -nvk; /* flag k as in Lk */ p = Cp[k]; pk1 = (elenk == 0) ? p : cnz; /* do in place if elen[k] == 0 */ pk2 = pk1; for(k1 = 1; k1 <= elenk + 1; k1++) { if(k1 > elenk) { e = k; /* search the nodes in k */ pj = p; /* list of nodes starts at Ci[pj]*/ ln = len[k] - elenk; /* length of list of nodes in k */ } else { e = Ci[p++]; /* search the nodes in e */ pj = Cp[e]; ln = len[e]; /* length of list of nodes in e */ } for(k2 = 1; k2 <= ln; k2++) { i = Ci[pj++]; if((nvi = nv[i]) <= 0) continue; /* node i dead, or seen */ dk += nvi; /* degree[Lk] += size of node i */ nv[i] = -nvi; /* negate nv[i] to denote i in Lk*/ Ci[pk2++] = i; /* place i in Lk */ if(next[i] != -1) last[next[i]] = last[i]; if(last[i] != -1) /* remove i from degree list */ { next[last[i]] = next[i]; } else { head[degree[i]] = next[i]; } } if(e != k) { Cp[e] = amd_flip (k); /* absorb e into k */ w[e] = 0; /* e is now a dead element */ } } if(elenk != 0) cnz = pk2; /* Ci[cnz...nzmax] is free */ degree[k] = dk; /* external degree of k - |Lk\i| */ Cp[k] = pk1; /* element k is in Ci[pk1..pk2-1] */ len[k] = pk2 - pk1; elen[k] = -2; /* k is now an element */ /* --- Find set differences ----------------------------------------- */ mark = internal::cs_wclear<Index>(mark, lemax, w, n); /* clear w if necessary */ for(pk = pk1; pk < pk2; pk++) /* scan 1: find |Le\Lk| */ { i = Ci[pk]; if((eln = elen[i]) <= 0) continue;/* skip if elen[i] empty */ nvi = -nv[i]; /* nv[i] was negated */ wnvi = mark - nvi; for(p = Cp[i]; p <= Cp[i] + eln - 1; p++) /* scan Ei */ { e = Ci[p]; if(w[e] >= mark) { w[e] -= nvi; /* decrement |Le\Lk| */ } else if(w[e] != 0) /* ensure e is a live element */ { w[e] = degree[e] + wnvi; /* 1st time e seen in scan 1 */ } } } /* --- Degree update ------------------------------------------------ */ for(pk = pk1; pk < pk2; pk++) /* scan2: degree update */ { i = Ci[pk]; /* consider node i in Lk */ p1 = Cp[i]; p2 = p1 + elen[i] - 1; pn = p1; for(h = 0, d = 0, p = p1; p <= p2; p++) /* scan Ei */ { e = Ci[p]; if(w[e] != 0) /* e is an unabsorbed element */ { dext = w[e] - mark; /* dext = |Le\Lk| */ if(dext > 0) { d += dext; /* sum up the set differences */ Ci[pn++] = e; /* keep e in Ei */ h += e; /* compute the hash of node i */ } else { Cp[e] = amd_flip (k); /* aggressive absorb. e->k */ w[e] = 0; /* e is a dead element */ } } } elen[i] = pn - p1 + 1; /* elen[i] = |Ei| */ p3 = pn; p4 = p1 + len[i]; for(p = p2 + 1; p < p4; p++) /* prune edges in Ai */ { j = Ci[p]; if((nvj = nv[j]) <= 0) continue; /* node j dead or in Lk */ d += nvj; /* degree(i) += |j| */ Ci[pn++] = j; /* place j in node list of i */ h += j; /* compute hash for node i */ } if(d == 0) /* check for mass elimination */ { Cp[i] = amd_flip (k); /* absorb i into k */ nvi = -nv[i]; dk -= nvi; /* |Lk| -= |i| */ nvk += nvi; /* |k| += nv[i] */ nel += nvi; nv[i] = 0; elen[i] = -1; /* node i is dead */ } else { degree[i] = std::min<Index> (degree[i], d); /* update degree(i) */ Ci[pn] = Ci[p3]; /* move first node to end */ Ci[p3] = Ci[p1]; /* move 1st el. to end of Ei */ Ci[p1] = k; /* add k as 1st element in of Ei */ len[i] = pn - p1 + 1; /* new len of adj. list of node i */ h %= n; /* finalize hash of i */ next[i] = hhead[h]; /* place i in hash bucket */ hhead[h] = i; last[i] = h; /* save hash of i in last[i] */ } } /* scan2 is done */ degree[k] = dk; /* finalize |Lk| */ lemax = std::max<Index>(lemax, dk); mark = internal::cs_wclear<Index>(mark+lemax, lemax, w, n); /* clear w */ /* --- Supernode detection ------------------------------------------ */ for(pk = pk1; pk < pk2; pk++) { i = Ci[pk]; if(nv[i] >= 0) continue; /* skip if i is dead */ h = last[i]; /* scan hash bucket of node i */ i = hhead[h]; hhead[h] = -1; /* hash bucket will be empty */ for(; i != -1 && next[i] != -1; i = next[i], mark++) { ln = len[i]; eln = elen[i]; for(p = Cp[i]+1; p <= Cp[i] + ln-1; p++) w[Ci[p]] = mark; jlast = i; for(j = next[i]; j != -1; ) /* compare i with all j */ { ok = (len[j] == ln) && (elen[j] == eln); for(p = Cp[j] + 1; ok && p <= Cp[j] + ln - 1; p++) { if(w[Ci[p]] != mark) ok = 0; /* compare i and j*/ } if(ok) /* i and j are identical */ { Cp[j] = amd_flip (i); /* absorb j into i */ nv[i] += nv[j]; nv[j] = 0; elen[j] = -1; /* node j is dead */ j = next[j]; /* delete j from hash bucket */ next[jlast] = j; } else { jlast = j; /* j and i are different */ j = next[j]; } } } } /* --- Finalize new element------------------------------------------ */ for(p = pk1, pk = pk1; pk < pk2; pk++) /* finalize Lk */ { i = Ci[pk]; if((nvi = -nv[i]) <= 0) continue;/* skip if i is dead */ nv[i] = nvi; /* restore nv[i] */ d = degree[i] + dk - nvi; /* compute external degree(i) */ d = std::min<Index> (d, n - nel - nvi); if(head[d] != -1) last[head[d]] = i; next[i] = head[d]; /* put i back in degree list */ last[i] = -1; head[d] = i; mindeg = std::min<Index> (mindeg, d); /* find new minimum degree */ degree[i] = d; Ci[p++] = i; /* place i in Lk */ } nv[k] = nvk; /* # nodes absorbed into k */ if((len[k] = p-pk1) == 0) /* length of adj list of element k*/ { Cp[k] = -1; /* k is a root of the tree */ w[k] = 0; /* k is now a dead element */ } if(elenk != 0) cnz = p; /* free unused space in Lk */ } /* --- Postordering ----------------------------------------------------- */ for(i = 0; i < n; i++) Cp[i] = amd_flip (Cp[i]);/* fix assembly tree */ for(j = 0; j <= n; j++) head[j] = -1; for(j = n; j >= 0; j--) /* place unordered nodes in lists */ { if(nv[j] > 0) continue; /* skip if j is an element */ next[j] = head[Cp[j]]; /* place j in list of its parent */ head[Cp[j]] = j; } for(e = n; e >= 0; e--) /* place elements in lists */ { if(nv[e] <= 0) continue; /* skip unless e is an element */ if(Cp[e] != -1) { next[e] = head[Cp[e]]; /* place e in list of its parent */ head[Cp[e]] = e; } } for(k = 0, i = 0; i <= n; i++) /* postorder the assembly tree */ { if(Cp[i] == -1) k = internal::cs_tdfs<Index>(i, k, head, next, perm.indices().data(), w); } perm.indices().conservativeResize(n); delete[] W; } } // namespace internal } // end namespace Eigen #endif // EIGEN_SPARSE_AMD_H